Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23079
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李君男(Chun-Nan Lee)
dc.contributor.authorChia-Ming Fanen
dc.contributor.author范家銘zh_TW
dc.date.accessioned2021-06-08T04:40:53Z-
dc.date.copyright2009-09-15
dc.date.issued2009
dc.date.submitted2009-08-12
dc.identifier.citationAppel, N., Pietschmann, T. and Bartenschlager, R., 2005. Mutational analysis of hepatitis C virus nonstructural protein 5A: potential role of differential phosphorylation in RNA replication and identification of a genetically flexible domain. J Virol 79, 3187-94.
Bartenschlager, R., Frese, M. and Pietschmann, T., 2004. Novel insights into hepatitis C virus replication and persistence. Adv Virus Res 63, 71-180.
Boulant, S., Montserret, R., Hope, R.G., Ratinier, M., Targett-Adams, P., Lavergne, J.P., Penin, F. and McLauchlan, J., 2006. Structural determinants that target the hepatitis C virus core protein to lipid droplets. J Biol Chem 281, 22236-47.
Bowen, D.G. and Walker, C.M., 2005. Adaptive immune responses in acute and chronic hepatitis C virus infection. Nature 436, 946-52.
Chang, K.M., 2003. Immunopathogenesis of hepatitis C virus infection. Clin Liver Dis 7, 89-105.
Chang, S.C., Cheng, J.C., Kou, Y.H., Kao, C.H., Chiu, C.H., Wu, H.Y. and Chang, M.F., 2000. Roles of the AX(4)GKS and arginine-rich motifs of hepatitis C virus RNA helicase in ATP- and viral RNA-binding activity. J Virol 74, 9732-7.
Choo, Q.L., Kuo, G., Weiner, A.J., Overby, L.R., Bradley, D.W. and Houghton, M., 1989. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 244, 359-62.
Choo, Q.L., Weiner, A.J., Overby, L.R., Kuo, G., Houghton, M. and Bradley, D.W., 1990. Hepatitis C virus: the major causative agent of viral non-A, non-B hepatitis. Br Med Bull 46, 423-41.
Clancy, A., Crowley, B., Niesters, H. and Herra, C., 2008. The development of a qualitative real-time RT-PCR assay for the detection of hepatitis C virus. Eur J Clin Microbiol Infect Dis 27, 1177-82.
Collins, M.L., Irvine, B., Tyner, D., Fine, E., Zayati, C., Chang, C., Horn, T., Ahle, D., Detmer, J., Shen, L.P., Kolberg, J., Bushnell, S., Urdea, M.S. and Ho, D.D., 1997. A branched DNA signal amplification assay for quantification of nucleic acid targets below 100 molecules/ml. Nucleic Acids Res 25, 2979-84.
Compton, J., 1991. Nucleic acid sequence-based amplification. Nature 350, 91-2.
Crum, K.A., Logue, S.E., Curran, M.D. and Middleton, D., 2000. Development of a PCR-SSOP approach capable of defining the natural killer cell inhibitory receptor (KIR) gene sequence repertoires. Tissue Antigens 56, 313-26.
Daniel, H.D., Grant, P.R., Garson, J.A., Tedder, R.S., Chandy, G.M. and Abraham, P., 2008. Quantitation of hepatitis C virus using an in-house real-time reverse transcriptase polymerase chain reaction in plasma samples. Diagn Microbiol Infect Dis 61, 415-20.
Drexler, J.F., Kupfer, B., Petersen, N., Grotto, R.M., Rodrigues, S.M., Grywna, K., Panning, M., Annan, A., Silva, G.F., Douglas, J., Koay, E.S., Smuts, H., Netto, E.M., Simmonds, P., Pardini, M.I., Roth, W.K. and Drosten, C., 2009. A novel diagnostic target in the hepatitis C virus genome. PLoS Med 6, e31.
Dubuisson, J., Penin, F. and Moradpour, D., 2002. Interaction of hepatitis C virus proteins with host cell membranes and lipids. Trends Cell Biol 12, 517-23.
Egger, D., Wolk, B., Gosert, R., Bianchi, L., Blum, H.E., Moradpour, D. and Bienz, K., 2002. Expression of hepatitis C virus proteins induces distinct membrane alterations including a candidate viral replication complex. J Virol 76, 5974-84.
Eiras, A., Franco, E., Montoro, J.A., Planelles, D. and Villaescusa, R., 2003. HCV NAT (minipool RT-PCR) and HCV core antigen ELISA. Transfusion 43, 118; author reply 118-9.
Erensoy, S., 2001. Diagnosis of hepatitis C virus (HCV) infection and laboratory monitoring of its therapy. J Clin Virol 21, 271-81.
Forns, X. and Costa, J., 2006. HCV virological assessment. J Hepatol 44, S35-9.
Franck, N., Le Seyec, J., Guguen-Guillouzo, C. and Erdtmann, L., 2005. Hepatitis C virus NS2 protein is phosphorylated by the protein kinase CK2 and targeted for degradation to the proteasome. J Virol 79, 2700-8.
Friebe, P. and Bartenschlager, R., 2002. Genetic analysis of sequences in the 3' nontranslated region of hepatitis C virus that are important for RNA replication. J Virol 76, 5326-38.
Fried, M.W., Shiffman, M.L., Reddy, K.R., Smith, C., Marinos, G., Goncales, F.L., Jr., Haussinger, D., Diago, M., Carosi, G., Dhumeaux, D., Craxi, A., Lin, A., Hoffman, J. and Yu, J., 2002. Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection. N Engl J Med 347, 975-82.
Gale, M., Jr., Blakely, C.M., Kwieciszewski, B., Tan, S.L., Dossett, M., Tang, N.M., Korth, M.J., Polyak, S.J., Gretch, D.R. and Katze, M.G., 1998. Control of PKR protein kinase by hepatitis C virus nonstructural 5A protein: molecular mechanisms of kinase regulation. Mol Cell Biol 18, 5208-18.
Grakoui, A., McCourt, D.W., Wychowski, C., Feinstone, S.M. and Rice, C.M., 1993. A second hepatitis C virus-encoded proteinase. Proc Natl Acad Sci U S A 90, 10583-7.
Griffin, S.D., Beales, L.P., Clarke, D.S., Worsfold, O., Evans, S.D., Jaeger, J., Harris, M.P. and Rowlands, D.J., 2003. The p7 protein of hepatitis C virus forms an ion channel that is blocked by the antiviral drug, Amantadine. FEBS Lett 535, 34-8.
Hadziyannis, S.J., Sette, H., Jr., Morgan, T.R., Balan, V., Diago, M., Marcellin, P., Ramadori, G., Bodenheimer, H., Jr., Bernstein, D., Rizzetto, M., Zeuzem, S., Pockros, P.J., Lin, A. and Ackrill, A.M., 2004. Peginterferon-alpha2a and ribavirin combination therapy in chronic hepatitis C: a randomized study of treatment duration and ribavirin dose. Ann Intern Med 140, 346-55.
Hahn, C.S., Cho, Y.G., Kang, B.S., Lester, I.M. and Hahn, Y.S., 2000. The HCV core protein acts as a positive regulator of fas-mediated apoptosis in a human lymphoblastoid T cell line. Virology 276, 127-37.
Hoofnagle, J.H. and di Bisceglie, A.M., 1997. The treatment of chronic viral hepatitis. N Engl J Med 336, 347-56.
Hsu, C.S., Liu, C.H., Liu, C.J., Wang, C.C., Chen, C.L., Lai, M.Y., Chen, P.J., Chen, D.S. and Kao, J.H., 2009. Association of lipid profiles with hepatitis C viral load in chronic hepatitis C patients with genotype 1 or 2 infection. Am J Gastroenterol 104, 598-604.
Hsu, C.S., Liu, C.J., Lai, M.Y., Chen, P.J., Kao, J.H. and Chen, D.S., 2007. Early viral kinetics during treatment of chronic hepatitis C virus infection with pegylated interferon alpha plus ribavirin in Taiwan. Intervirology 50, 310-5.
Hsu, C.S., Liu, C.J., Liu, C.H., Wang, C.C., Chen, C.L., Lai, M.Y., Chen, P.J., Kao, J.H. and Chen, D.S., 2008. High hepatitis C viral load is associated with insulin resistance in patients with chronic hepatitis C. Liver Int 28, 271-7.
Jin, D.Y., Wang, H.L., Zhou, Y., Chun, A.C., Kibler, K.V., Hou, Y.D., Kung, H. and Jeang, K.T., 2000. Hepatitis C virus core protein-induced loss of LZIP function correlates with cellular transformation. EMBO J 19, 729-40.
Kato, N., Ootsuyama, Y., Tanaka, T., Nakagawa, M., Nakazawa, T., Muraiso, K., Ohkoshi, S., Hijikata, M. and Shimotohno, K., 1992. Marked sequence diversity in the putative envelope proteins of hepatitis C viruses. Virus Res 22, 107-23.
Kato, N., Yoshida, H., Ono-Nita, S.K., Kato, J., Goto, T., Otsuka, M., Lan, K., Matsushima, K., Shiratori, Y. and Omata, M., 2000. Activation of intracellular signaling by hepatitis B and C viruses: C-viral core is the most potent signal inducer. Hepatology 32, 405-12.
Keck, Z.Y., Sung, V.M., Perkins, S., Rowe, J., Paul, S., Liang, T.J., Lai, M.M. and Foung, S.K., 2004. Human monoclonal antibody to hepatitis C virus E1 glycoprotein that blocks virus attachment and viral infectivity. J Virol 78, 7257-63.
Kolykhalov, A.A., Mihalik, K., Feinstone, S.M. and Rice, C.M., 2000. Hepatitis C virus-encoded enzymatic activities and conserved RNA elements in the 3' nontranslated region are essential for virus replication in vivo. J Virol 74, 2046-51.
Koretz, R.L., Abbey, H., Coleman, E. and Gitnick, G., 1993. Non-A, non-B post-transfusion hepatitis. Looking back in the second decade. Ann Intern Med 119, 110-5.
Krajden, M., 2000. Hepatitis C virus diagnosis and testing. Can J Public Health 91 Suppl 1, S34-9, S36-42.
Lee, C.M., Hung, C.H., Lu, S.N., Wang, J.H., Tung, H.D., Huang, W.S., Chen, C.L., Chen, W.J. and Changchien, C.S., 2006. Viral etiology of hepatocellular carcinoma and HCV genotypes in Taiwan. Intervirology 49, 76-81.
Lee, H., Shin, H., Wimmer, E. and Paul, A.V., 2004. cis-acting RNA signals in the NS5B C-terminal coding sequence of the hepatitis C virus genome. J Virol 78, 10865-77.
Lin, C. and Rice, C.M., 1995. The hepatitis C virus NS3 serine proteinase and NS4A cofactor: establishment of a cell-free trans-processing assay. Proc Natl Acad Sci U S A 92, 7622-6.
Lindenbach, B.D. and Rice, C.M., 2005. Unravelling hepatitis C virus replication from genome to function. Nature 436, 933-8.
Liu, C.H., Liu, C.J., Lin, C.L., Liang, C.C., Hsu, S.J., Yang, S.S., Hsu, C.S., Tseng, T.C., Wang, C.C., Lai, M.Y., Chen, J.H., Chen, P.J., Chen, D.S. and Kao, J.H., 2008. Pegylated interferon-alpha-2a plus ribavirin for treatment-naive Asian patients with hepatitis C virus genotype 1 infection: a multicenter, randomized controlled trial. Clin Infect Dis 47, 1260-9.
Lorenz, I.C., Marcotrigiano, J., Dentzer, T.G. and Rice, C.M., 2006. Structure of the catalytic domain of the hepatitis C virus NS2-3 protease. Nature 442, 831-5.
Lundin, M., Monne, M., Widell, A., Von Heijne, G. and Persson, M.A., 2003. Topology of the membrane-associated hepatitis C virus protein NS4B. J Virol 77, 5428-38.
Manns, M.P., McHutchison, J.G., Gordon, S.C., Rustgi, V.K., Shiffman, M., Reindollar, R., Goodman, Z.D., Koury, K., Ling, M. and Albrecht, J.K., 2001. Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial. Lancet 358, 958-65.
Marcellin, P., 1999. Hepatitis C: the clinical spectrum of the disease. J Hepatol 31 Suppl 1, 9-16.
McLauchlan, J., Lemberg, M.K., Hope, G. and Martoglio, B., 2002. Intramembrane proteolysis promotes trafficking of hepatitis C virus core protein to lipid droplets. EMBO J 21, 3980-8.
Monis, P.T., Giglio, S. and Saint, C.P., 2005. Comparison of SYTO9 and SYBR Green I for real-time polymerase chain reaction and investigation of the effect of dye concentration on amplification and DNA melting curve analysis. Anal Biochem 340, 24-34.
Moradpour, D., Evans, M.J., Gosert, R., Yuan, Z., Blum, H.E., Goff, S.P., Lindenbach, B.D. and Rice, C.M., 2004. Insertion of green fluorescent protein into nonstructural protein 5A allows direct visualization of functional hepatitis C virus replication complexes. J Virol 78, 7400-9.
Moriya, K., Fujie, H., Shintani, Y., Yotsuyanagi, H., Tsutsumi, T., Ishibashi, K., Matsuura, Y., Kimura, S., Miyamura, T. and Koike, K., 1998. The core protein of hepatitis C virus induces hepatocellular carcinoma in transgenic mice. Nat Med 4, 1065-7.
Moriya, K., Yotsuyanagi, H., Shintani, Y., Fujie, H., Ishibashi, K., Matsuura, Y., Miyamura, T. and Koike, K., 1997. Hepatitis C virus core protein induces hepatic steatosis in transgenic mice. J Gen Virol 78 ( Pt 7), 1527-31.
Naganuma, A., Nozaki, A., Tanaka, T., Sugiyama, K., Takagi, H., Mori, M., Shimotohno, K. and Kato, N., 2000. Activation of the interferon-inducible 2'-5'-oligoadenylate synthetase gene by hepatitis C virus core protein. J Virol 74, 8744-50.
Njiru, Z.K., Mikosza, A.S., Armstrong, T., Enyaru, J.C., Ndung'u, J.M. and Thompson, A.R., 2008a. Loop-Mediated Isothermal Amplification (LAMP) Method for Rapid Detection of Trypanosoma brucei rhodesiense. PLoS Negl Trop Dis 2, e147.
Njiru, Z.K., Mikosza, A.S., Matovu, E., Enyaru, J.C., Ouma, J.O., Kibona, S.N., Thompson, R.C. and Ndung'u, J.M., 2008b. African trypanosomiasis: sensitive and rapid detection of the sub-genus Trypanozoon by loop-mediated isothermal amplification (LAMP) of parasite DNA. Int J Parasitol 38, 589-99.
Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N. and Hase, T., 2000. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28, E63.
Op De Beeck, A., Cocquerel, L. and Dubuisson, J., 2001. Biogenesis of hepatitis C virus envelope glycoproteins. J Gen Virol 82, 2589-95.
Op De Beeck, A., Voisset, C., Bartosch, B., Ciczora, Y., Cocquerel, L., Keck, Z., Foung, S., Cosset, F.L. and Dubuisson, J., 2004. Characterization of functional hepatitis C virus envelope glycoproteins. J Virol 78, 2994-3002.
Parida, M., Sannarangaiah, S., Dash, P.K., Rao, P.V. and Morita, K., 2008. Loop mediated isothermal amplification (LAMP): a new generation of innovative gene amplification technique; perspectives in clinical diagnosis of infectious diseases. Rev Med Virol 18, 407-21.
Pasternack, R., Vuorinen, P. and Miettinen, A., 1997. Evaluation of the Gen-Probe Chlamydia trachomatis transcription-mediated amplification assay with urine specimens from women. J Clin Microbiol 35, 676-8.
Pavlovic, D., Neville, D.C., Argaud, O., Blumberg, B., Dwek, R.A., Fischer, W.B. and Zitzmann, N., 2003. The hepatitis C virus p7 protein forms an ion channel that is inhibited by long-alkyl-chain iminosugar derivatives. Proc Natl Acad Sci U S A 100, 6104-8.
Pawlotsky, J.M., 1999. Diagnostic tests for hepatitis C. J Hepatol 31 Suppl 1, 71-9.
Peyrefitte, C.N., Boubis, L., Coudrier, D., Bouloy, M., Grandadam, M., Tolou, H.J. and Plumet, S., 2008. Real-time reverse-transcription loop-mediated isothermal amplification for rapid detection of rift valley Fever virus. J Clin Microbiol 46, 3653-9.
Pietschmann, T., Kaul, A., Koutsoudakis, G., Shavinskaya, A., Kallis, S., Steinmann, E., Abid, K., Negro, F., Dreux, M., Cosset, F.L. and Bartenschlager, R., 2006. Construction and characterization of infectious intragenotypic and intergenotypic hepatitis C virus chimeras. Proc Natl Acad Sci U S A 103, 7408-13.
Ravaggi, A., Natoli, G., Primi, D., Albertini, A., Levrero, M. and Cariani, E., 1994. Intracellular localization of full-length and truncated hepatitis C virus core protein expressed in mammalian cells. J Hepatol 20, 833-6.
Ray, R.B., Meyer, K. and Ray, R., 1996. Suppression of apoptotic cell death by hepatitis C virus core protein. Virology 226, 176-82.
Rees, W.A., Yager, T.D., Korte, J. and von Hippel, P.H., 1993. Betaine can eliminate the base pair composition dependence of DNA melting. Biochemistry 32, 137-44.
Sakai, A., Claire, M.S., Faulk, K., Govindarajan, S., Emerson, S.U., Purcell, R.H. and Bukh, J., 2003. The p7 polypeptide of hepatitis C virus is critical for infectivity and contains functionally important genotype-specific sequences. Proc Natl Acad Sci U S A 100, 11646-51.
Sala, M. and Wain-Hobson, S., 2000. Are RNA viruses adapting or merely changing? J Mol Evol 51, 12-20.
Simmonds, P., Bukh, J., Combet, C., Deleage, G., Enomoto, N., Feinstone, S., Halfon, P., Inchauspe, G., Kuiken, C., Maertens, G., Mizokami, M., Murphy, D.G., Okamoto, H., Pawlotsky, J.M., Penin, F., Sablon, E., Shin, I.T., Stuyver, L.J., Thiel, H.J., Viazov, S., Weiner, A.J. and Widell, A., 2005. Consensus proposals for a unified system of nomenclature of hepatitis C virus genotypes. Hepatology 42, 962-73.
Simmonds, P., Holmes, E.C., Cha, T.A., Chan, S.W., McOmish, F., Irvine, B., Beall, E., Yap, P.L., Kolberg, J. and Urdea, M.S., 1993. Classification of hepatitis C virus into six major genotypes and a series of subtypes by phylogenetic analysis of the NS-5 region. J Gen Virol 74 ( Pt 11), 2391-9.
Suzuki, R., Matsuura, Y., Suzuki, T., Ando, A., Chiba, J., Harada, S., Saito, I. and Miyamura, T., 1995. Nuclear localization of the truncated hepatitis C virus core protein with its hydrophobic C terminus deleted. J Gen Virol 76 ( Pt 1), 53-61.
Taylor, D.R., Shi, S.T., Romano, P.R., Barber, G.N. and Lai, M.M., 1999. Inhibition of the interferon-inducible protein kinase PKR by HCV E2 protein. Science 285, 107-10.
Tellinghuisen, T.L., Evans, M.J., von Hahn, T., You, S. and Rice, C.M., 2007. Studying hepatitis C virus: making the best of a bad virus. J Virol 81, 8853-67.
Tellinghuisen, T.L., Marcotrigiano, J., Gorbalenya, A.E. and Rice, C.M., 2004. The NS5A protein of hepatitis C virus is a zinc metalloprotein. J Biol Chem 279, 48576-87.
Urdea, M.S., Wuestehube, L.J., Laurenson, P.M. and Wilber, J.C., 1997. Hepatitis C--diagnosis and monitoring. Clin Chem 43, 1507-11.
von Wagner, M., Huber, M., Berg, T., Hinrichsen, H., Rasenack, J., Heintges, T., Bergk, A., Bernsmeier, C., Haussinger, D., Herrmann, E. and Zeuzem, S., 2005. Peginterferon-alpha-2a (40KD) and ribavirin for 16 or 24 weeks in patients with genotype 2 or 3 chronic hepatitis C. Gastroenterology 129, 522-7.
Vyas, J., Elia, A. and Clemens, M.J., 2003. Inhibition of the protein kinase PKR by the internal ribosome entry site of hepatitis C virus genomic RNA. RNA 9, 858-70.
Welbourn, S., Green, R., Gamache, I., Dandache, S., Lohmann, V., Bartenschlager, R., Meerovitch, K. and Pause, A., 2005. Hepatitis C virus NS2/3 processing is required for NS3 stability and viral RNA replication. J Biol Chem 280, 29604-11.
Wiedmann, M., Wilson, W.J., Czajka, J., Luo, J., Barany, F. and Batt, C.A., 1994. Ligase chain reaction (LCR)--overview and applications. PCR Methods Appl 3, S51-64.
Yamaguchi, A., Tazuma, S., Nishioka, T., Ohishi, W., Hyogo, H., Nomura, S. and Chayama, K., 2005. Hepatitis C virus core protein modulates fatty acid metabolism and thereby causes lipid accumulation in the liver. Dig Dis Sci 50, 1361-71.
Yamashita, T., Kaneko, S., Shirota, Y., Qin, W., Nomura, T., Kobayashi, K. and Murakami, S., 1998. RNA-dependent RNA polymerase activity of the soluble recombinant hepatitis C virus NS5B protein truncated at the C-terminal region. J Biol Chem 273, 15479-86.
Yanagi, M., St Claire, M., Emerson, S.U., Purcell, R.H. and Bukh, J., 1999. In vivo analysis of the 3' untranslated region of the hepatitis C virus after in vitro mutagenesis of an infectious cDNA clone. Proc Natl Acad Sci U S A 96, 2291-5.
Yi, M., Ma, Y., Yates, J. and Lemon, S.M., 2007. Compensatory mutations in E1, p7, NS2, and NS3 enhance yields of cell culture-infectious intergenotypic chimeric hepatitis C virus. J Virol 81, 629-38.
Yu, M.L., Chuang, W.L., Chen, S.C., Dai, C.Y., Hou, C., Wang, J.H., Lu, S.N., Huang, J.F., Lin, Z.Y., Hsieh, M.Y., Tsai, J.F., Wang, L.Y. and Chang, W.Y., 2001. Changing prevalence of hepatitis C virus genotypes: molecular epidemiology and clinical implications in the hepatitis C virus hyperendemic areas and a tertiary referral center in Taiwan. J Med Virol 65, 58-65.
Zanetti, A.R., Romano, L., Zappa, A. and Velati, C., 2006. Changing patterns of hepatitis B infection in Italy and NAT testing for improving the safety of blood supply. J Clin Virol 36 Suppl 1, S51-5.
Zhu, N., Khoshnan, A., Schneider, R., Matsumoto, M., Dennert, G., Ware, C. and Lai, M.M., 1998. Hepatitis C virus core protein binds to the cytoplasmic domain of tumor necrosis factor (TNF) receptor 1 and enhances TNF-induced apoptosis. J Virol 72, 3691-7.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23079-
dc.description.abstractC型肝炎病毒屬於黃熱病毒科,肝炎病毒屬,為單股正向RNA病毒,依基因序列主要可分為6種基因型。C型肝炎病毒主要由血液或體液傳染,其感染易轉變成慢性肝炎,或甚至惡化為肝硬化或肝細胞癌,現今估計全球至少有一億七千萬人感染C型肝炎病毒。目前現有的檢測試劑包含了免疫法偵測及核酸偵測,但其缺點如耗時與需高度精密儀器等,本研究希望能夠發展一套成本低、速度快、敏感度高的C型肝炎病毒定量方法來偵測C型肝炎病毒,以提供用藥的依據。
2000年日本Notomi等人發展出迴路恆溫增幅法(loop-mediated isothermal amplification, LAMP),其反應只需在單一溫度下,一個小時內,就能完成訊號放大。本研究嘗試運用此原理偵測C型肝炎病毒,並利用SYTO-9螢光物質於即時偵測系統測試。本實驗比對各基因型的較保守區5’NCR區域並設計六條特殊引子,再以TA cloning建立病毒標準品,針對影響反應關鍵因子,進行一系列最適化條件測試,測試各反應成分之最適濃度。SYTO-9物質所使用的最適濃度為0.3μM;Betaine為0.8 M;MgSO4為8 mM;dNTP為1.4 mM;F3/B3為0.2 μM;LF/LB為1.0 μM;FIP/BIP為2.0 μM;反應溫度則以65℃最佳。再進行特異性分析,測試不同的病毒核酸,結果顯示只有C型肝炎病毒能成功放大訊號。測試定量標準曲線結果,每次反應偵測極限則可至30 copies。為了解此方法是否針對不同基因型的C型肝炎病毒偵測具有良好的穩定性,本實驗測試了不同基因亞型,結果顯示其穩定性良好。
系統建立後與目前已商業化的定量系統比較其相關程度。與分枝DNA方法比較10支臨床檢體結果,敏感性與特異性皆可達100%,散佈圖比較結果其相關程度為R2 = 0.956,Bland-Altman plot分析兩種方法差異皆小於0.5 log也呈現高度一致性。另外再與即時反轉錄聚合酶連鎖反應比較79個臨床檢體,敏感度為90.2%,而特異性則為71.4%。其散佈圖也顯示有R2 = 0.8947的良好相關性,Bland-Altman plot分析顯示差異皆小於0.5 log,呈現高度一致性。為確定此方法是否有偽陽性或偽陰性發生,本實驗取了可能發生偽陽性及偽陰性的臨床檢體,進一步以melting curve測試,測試結果,增幅的產物與陽性控制組的Tm值皆位於87.25℃。而原未增幅的檢體也維持未增幅狀態。最後再將檢體以演化樹狀圖分析,其結果顯示分析的檢體中,其基因型大部分以1b亞型為主;而有一支檢體較為特殊,為第6型。
本研究成功建立迴路恆溫增幅法來偵測C型肝炎病毒。而後續的研究中,希望能再進一步改良偵測的敏感度,並且將反轉錄與增幅反應合為同一步驟進行,期待未來能應用於C型肝炎病毒的快速定量檢測。
zh_TW
dc.description.abstractHepatitis C virus, HCV, is classified in the Hepacivirus genus within the Flaviviridae family. There are six major genotypes that differ in their nucleotide sequence. The transmission of HCV has been associated with blood and body fluid HCV infect is one of the leading causes for chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Seroprevalence studies suggest that at least 170 million individuals have been infected worldwide. Many commercial kits of serological assay or nucleic acid assay are available. These methods have disadvantages such as time-consuming and requiring a high-precision instrument. In this study, we intend to setup an economical, rapid, and sensitive assay for HCV detection to provide the information for HCV treatment.
Loop-mediated isothermal amplification (LAMP) is a novel technique for nucleic acid amplification. This simple and rapid method can be finished in one hour under the isothermal condition. We used LAMP assay combined with the fluorescence dye, SYTO-9, for real-time detection. In order to optimize the condition of LAMP assay, we adjusted the key factors of LAMP assay. The best condition of reaction was later carried out in a mixture containing the following factors: 0.3μM SYTO-9, 0.8 M Betaine, 8 mM MgSO4, 1.4 mM dNTP, 0.2 μM F3/B3, 1 μM LF/LB, and 2 μM FIP/BIP, and the mixture was incubated at 65℃. To check the specificity, we tested the DNA of different viruses and only HCV could be amplified. The limit of detection for this assay was 30 copies per reaction. Moreover, the LAMP assay was able to detect different genotypes of HCV.
We used this method to test 10 samples, which previously were quantified by branched DNA (bDNA) method. The sensitivity and specificity were 100% as compared to real-time RT-PCR method. The scatter plot showed a high correlation coefficient (R2 = 0.956) and the Bland-Altman plot showed that differences between the two methods were less than 1.96 SD. Further, 79 samples, previously determined by real-time RT-PCR, were examined by this method. The sensitivity was 90.19% and the specificity was 71.42% as compared to real-time RT-PCR method. The scatter plot showed R2 = 0.8947 and the Bland-Altman plot showed that the differences between them were mostly less than 1.96 SD. The results by both methods were highly correlated. To confirm if there was any false positive or false negative, we used melting curve analysis to determine the Tm value. The results showed that all the positive samples had the same Tm value, 87.25℃, as the positive control, and the negative samples were the same after repeated testing. Finally, for these 79 samples, genes were sequenced and genotypes were determined by phylogenetic analysis. The results showed that 1b was major genotype in Taiwan, and one sample with genotype 6 was found.
The LAMP assay for HCV detection was established in this study. In the future, we need to improve the sensitivity and to simplify the method by combining reverse transcription and amplification in a one-step reaction. We hope that HCV LAMP assay could be useful for rapid quantification of HCV in the future.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:40:53Z (GMT). No. of bitstreams: 1
ntu-98-R96424016-1.pdf: 2359385 bytes, checksum: 790ef5ebe7f6640a48be0a3b5d06f901 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents口試委員審定書………………………………………………………………i
致謝………………………………………………………………..............ii
中文摘要…………………………………………………………………….…iii
英文摘要…………………………………………………………………………v
第一章 緒論…………………………………………………………………………1
1.1 C型肝炎病毒簡介 …………………………………………………1
1.2 C型肝炎病毒的基因結構與蛋白功能 ………………………………1
1.3 C型肝炎病毒的流行病學 ……………………………………………5
1.4 C型肝炎病毒的診斷………………………………………………6
1.5 病毒核酸的檢測技術…………………………………………….7
1.6 研究動機與目的……………………………………………………8
第二章 材料與方法……………………………………………………………9
2.1 檢體來源 …………………………………………………………9
2.2 臨床檢體中病毒核酸之萃取 ……………………………………9
2.3 反轉錄反應 ………………………………………………………9
2.4 增幅C型肝炎病毒5’非轉譯區部分基因片段……………………10
2.5 質體之製備………………………………………………………11
2.6 質體之萃取………………………………………………………13
2.7 限制酶切割試驗…………………………………………………14
2.8 核酸之定序………………………………………………………14
2.9 迴路恆溫增幅法(LAMP)之建立 ………………………………16
2.10 臨床檢體之基因分型…………………………………………19
2.11 資料分析 .………………………………………………………20
第三章 結果.…………………………………………………………………21
3.1 C型肝炎病毒定量標準品的建立..…….……………………21
3.2 迴路恆溫增幅法(LAMP)之建立………………………………21
3.3 迴路恆溫增幅法(LAMP)應用於臨床檢體……………………26
3.4 臨床檢體之C型肝炎病毒基因分型…………………………27
第四章 討論 ………………………………………………………………………28
圖……………………………………………………………………………………..33
表……………………………………………………………………………………..55
參考文獻……………………………………………………………………………..61
dc.language.isozh-TW
dc.subjectC型肝炎病毒zh_TW
dc.subject迴路恆溫增幅法zh_TW
dc.subjectHCVen
dc.subjectLAMPen
dc.title利用迴路恆溫增幅法快速偵測C型肝炎病毒zh_TW
dc.titleRapid detection of Hepatitis C Virus by Loop-mediated Isothermal Amplificationen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee高全良(Chuan-Liang Kao),張淑媛(Sui-Yuan Chang),高嘉宏(Jia-Horng Kao)
dc.subject.keyword迴路恆溫增幅法,C型肝炎病毒,zh_TW
dc.subject.keywordLAMP,HCV,en
dc.relation.page68
dc.rights.note未授權
dc.date.accepted2009-08-12
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
2.3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved