Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23078
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉瑞芬
dc.contributor.authorTse-Yen Liuen
dc.contributor.author劉則言zh_TW
dc.date.accessioned2021-06-08T04:40:50Z-
dc.date.copyright2009-08-18
dc.date.issued2009
dc.date.submitted2009-08-12
dc.identifier.citationAnn, P. J. 2002. New disease and records of flowering potted plants caused by Phytophthora species in Taiwan. Plant Pathol. Bulletin. 9:1-10.
Armstrong, M. R., Whisson, S. C., Pritchard, L., Bos, J. I., Venter, E., Avrova, A. O., Rehmany, A. P., Bohme, U., Brooks, K., Cherevach, I., Hamlin, N., White, B., Fraser, A., Lord, A., Quail, M. A., Churcher, C., Hall, N., Berriman, M., Huang, S., Kamoun, S., Beynon, J. L. and Birch, P. R. 2005. An ancestral oomycete locus contains late blight avirulence gene Avr3a, encoding a protein that is recognized in the host cytoplasm. Proc. Natl. Acad. Sci. U.S.A. 102: 7766-7771.
Baldauf, S. L., Roger, A. J., Wenk-Siefert, I. and Doolittle, W. F. 2000. A kingdom-level phylogeny of eukaryotes based on combined protein data. Science. 290:972-977.
Boudart, G., Charpentier, M., Lafitte, C., Martinez, Y., Jauneau, A., Gaulin, E., Esquerre-Tugaye, M. T. and Dumas, B. 2003. Elicitor activity of a fungal endopolygalacturonase in tobacco requires a functional catalytic site and cell wall localization. Plant Physiol. 131:93-101.
Capodicasa, C., Vairo, D., Zabotina, O., McCartney, L., Caprari, C., Mattei, B., Manfredini, C., Aracri, B., Benen, J., Knox, J. P., De Lorenzo, G. and Cervone, F. 2004. Targeted modification of homogalacturonan by transgenic expression of a fungal polygalacturonase alters plant growth. Plant Physiol. 135: 1294-1304.
Casasoli, M., Federici, L., Spinelli, F., Di Matteo, A., Vella, N., Scaloni, F., Fernandez-Recio, J., Cervone, F. and De Lorenzo, G. 2009. Integration of evolutionary and desolvation energy analysis identifies functional sites in a plant immunity protein. Proc. Natl. Acad. Sci. U.S.A. 106:7666-7671.
Cervone, F., Hahn, M.G., De Lorenzo, G., Darvill, A. and Albersheim, P. 1989. Host-Pathogen Interactions: XXXIII. A Plant Protein Converts a Fungal Pathogenesis Factor into an Elicitor of Plant Defense Responses. Plant Physiol. 90:542-548.
Chapple, C. and Carpita, N. 1998. Plant cell walls as targets for biotechnology. Curr. Opin. in Plant Biol. 1:179-185.
D'Ovidio, R., Raiola, A., Capodicasa, C., Devoto, A., Pontiggia, D., Roberti, S., Galletti, R., Conti, E., O'Sullivan, D. and De Lorenzo, G. 2004. Characterization of the complex locus of bean encoding polygalacturonase-inhibiting proteins reveals subfunctionalization for defense against fungi and insects. Plant Physiol. 135:2424-2435.
D'Ovidio, R., Roberti, S., Di Giovanni, M., Capodicasa, C., Melaragni, M., Sella, L., Tosi, P. and Favaron, F. 2006. The characterization of the soybean polygalacturonase-inhibiting proteins (Pgip) gene family reveals that a single member is responsible for the activity detected in soybean tissues. Planta. 224: 633-645.
De Lorenzo, G., D'Ovidio, R. and Cervone, F. 2001. The role of polygalacturonase-inhibiting proteins (PGIPs) in defense against pathogenic fungi. Annu. Rev. Phytopathol. 39:313-335.
Di, C., Zhang, M., Xu, S., Cheng, T. and An, L. 2006. Role of poly-galacturonase inhibiting protein in plant defense. Crit. Rev. Microbiol. 32:91-100.
Di Matteo, A., Bonivento, D., Tsernoglou, D., Federici, L. and Cervone, F. 2006. Polygalacturonase-inhibiting protein (PGIP) in plant defence: a structural view. Phytochem. 67:528-533.
Di Matteo, A., Federici, L., Mattei, B., Salvi, G., Johnson, K. A., Savino, C., De Lorenzo, G., Tsernoglou, D. and Cervone, F. 2003. The crystal structure of polygalacturonase-inhibiting protein (PGIP), a leucine-rich repeat protein involved in plant defense. Proc. Natl. Acad. Sci. U.S.A. 100:10124-10128.
Favaron, F., D'Ovidio, R., Porceddu, E. and Alghisi, P. 1994. Purification and molecular characterization of a soybean polygalacturonase-inhibiting protein. Planta. 195:80-87.
Federici, L., Caprari, C., Mattei, B., Savino, C., Di Matteo, A., De Lorenzo, G., Cervone, F. and Tsernoglou, D. 2001. Structural requirements of endopolygalacturonase for the interaction with PGIP (polygalacturonase-inhibiting protein). Proc. Natl. Acad. Sci. U.S.A. 98: 13425-13430.
Ferrari, S., Vairo, D., Ausubel, F. M., Cervone, F. and De Lorenzo, G. 2003. Tandemly duplicated Arabidopsis genes that encode polygalacturonase-inhibiting proteins are regulated coordinately by different signal transduction pathways in response to fungal infection. Plant Cell. 15:93-106.
Green, F., Clausen, C. A. and Highley, T. L. 1989. Adaptation of the Nelson-Somogyi reducing-sugar assay to a microassay using microtiter plates. Analytical Biochem. 182:197-199.
Hegedus, D. D., Li, R., Buchwaldt, L., Parkin, I., Whitwill, S., Coutu, C., Bekkaoui, D. and Roger Rimmer, S. 2008. Brassica napus possesses an expanded set of polygalacturonase inhibitor protein genes that are differentially regulated in response to Sclerotinia sclerotiorum infection, wounding and defense hormone treatment. Planta. 228:241-253.
Isshiki, A., Akimitsu, K., Yamamoto, M. and Yamamoto, H. 2001. Endopolygalacturonase Is Essential for Citrus Black Rot Caused by Alternaria citri but Not Brown Spot Caused by Alternaria alternata. Mol. Plant-Microbe Interact. 14:749-757.
Janni, M., Di Giovanni, M., Roberti, S., Capodicasa, C. and D'Ovidio, R. 2006. Characterization of expressed Pgip genes in rice and wheat reveals similar extent of sequence variation to dicot PGIPs and identifies an active PGIP lacking an entire LRR repeat. Theor. Appl. Genet. 113:1233-1245.
Janni, M., Sella, L., Favaron, F., Blechl, A. E., De Lorenzo, G. and D'Ovidio, R. 2008. The expression of a bean PGIP in transgenic wheat confers increased resistance to the fungal pathogen Bipolaris sorokiniana. Mol. Plant-Microbe Interact. 21:171-177.
Joubert, D. A., Kars, I., Wagemakers, L., Bergmann, C., Kemp, G., Vivier, M. A. and van Kan, J. A. 2007. A polygalacturonase-inhibiting protein from grapevine reduces the symptoms of the endopolygalacturonase BcPG2 from Botrytis cinerea in Nicotiana benthamiana leaves without any evidence for in vitro interaction. Mol. Plant-Microbe Interact. 20:392-402.
Joubert, D. A., Slaughter, A. R., Kemp, G., Becker, J. V., Krooshof, G. H., Bergmann, C., Benen, J., Pretorius, I. S. and Vivier, M. A. 2006. The grapevine polygalacturonase-inhibiting protein (VvPGIP1) reduces Botrytis cinerea susceptibility in transgenic tobacco and differentially inhibits fungal polygalacturonases. Transgenic Res. 15:687-702.
Katoh, H., Nalumpang, S., Yamamoto, H. and Akimitsu, K. 2007. Overexpression of citrus polygalacturonase-inhibiting protein in citrus black rot pathogen Alternaria citri. J. of Plant Physiol. 164:527-535.
Kemp, G., Bergmann, C. W., Clay, R., Van der Westhuizen, A. J. and Pretorius, Z. A. 2003. Isolation of a polygalacturonase-inhibiting protein (PGIP) from wheat. Mol. Plant-Microbe Interact. 16:955-961.
Kemp, G., Stanton, L., Bergmann, C. W., Clay, R. P., Albersheim, P. and Darvill, A. 2004 Polygalacturonase-inhibiting proteins can function as activators of polygalacturonase. Mol. Plant-Microbe Interact. 17:888-894.
King, D., Bergmann, C., Orlando, R., Benen, J. A., Kester, H. C. and Visser, J. 2002. Use of amide exchange mass spectrometry to study conformational changes within the endopolygalacturonase II-homogalacturonan-polygalacturonase inhibiting protein system. Biochem. 41:10225-10233.
Leckie, F., Mattei, B., Capodicasa, C., Hemmings, A., Nuss, L., Aracri, B., De Lorenzo, G. and Cervone, F. 1999. The specificity of polygalacturonase-inhibiting protein (PGIP): a single amino acid substitution in the solvent-exposed beta-strand/beta-turn region of the leucine-rich repeats (LRRs) confers a new recognition capability. EMBO J. 18:2352-2363.
Li, R., Rimmer, R., Yu, M., Sharpe, A. G., Seguin-Swartz, G., Lydiate, D. and Hegedus, D. D. 2003. Two Brassica napus polygalacturonase inhibitory protein genes are expressed at different levels in response to biotic and abiotic stresses. Planta. 217:299-308.
Liou, R. F., Lee, J. T., Lee, H. C. and Ann, P. J. 2002. Analysis of Phytophthora parasitica by retrotransposon-dervied DNA fingerprinting. Bot. Bull. Acda. Sin. 43:21-29.
Lynch, M., O'Hely, M., Walsh, B. and Force, A. 2001. The probability of preservation of a newly arisen gene duplicate. Genetics. 159:1789-1804.
Manfredini, C., Sicilia, F., Ferrari, S., Pontiggia, D., Salvi, G., Caprari, C., Lorito, M. and Lorenzo, G. D. 2005. Polygalacturonase-inhibiting protein 2 of Phaseolus vulgaris inhibits BcPG1, a polygalacturonase of Botrytis cinerea important for pathogenicity, and protects transgenic plants from infection. Physiol. and Mol. Plant Pathol. 67:108-115.
Martin, G. B., Bogdanove, A. J. and Sessa, G. 2003. Understanding the functions of plant disease resistance proteins. Annu. Rev. Plant Biol. 54:23-61.
Mehli, L., Kjellsen, T. D., Dewey, F. M. and Hietala, A. M. 2005. A case study from the interaction of strawberry and Botrytis cinerea highlights the benefits of comonitoring both partners at genomic and mRNA level. New Phytol. 168: 465-474.
Misas-Villamil, J. C. and van der Hoorn, R. A. 2008. Enzyme-inhibitor interactions at the plant-pathogen interface. Curr. Opin. Plant Biol. 11:380-388.
Oeser, B., Heidrich, P. M., Muller, U., Tudzynski, P. and Tenberge, K. B. 2002. Polygalacturonase is a pathogenicity factor in the Claviceps purpurea/rye interaction. Fungal Genet. Biol. 36:176-186.
Powell, A. L., van Kan, J., ten Have, A., Visser, J., Greve, L. C., Bennett, A. B. and Labavitch, J. M. 2000. Transgenic expression of pear PGIP in tomato limits fungal colonization. Mol. Plant-Microbe Interact. 13:942-950.
Protsenko, M. A., Buza, N. L., Krinitsyna, A. A., Bulantseva, E. A. and Korableva, N. P. 2008. Polygalacturonase-inhibiting protein is a structural component of plant cell wall. Biochem. (Mosc). 73:1053-1062.
Raiola, A., Sella, L., Castiglioni, C., Balmas, V. and Favaron, F. 2008. A single amino acid substitution in highly similar endo-PGs from Fusarium verticillioides and related Fusarium species affects PGIP inhibition. Fungal Genet. Biol. 45: 776-789.
Sarunya Nalumpangi, Yukie Gotoh, Hiroyuki Tsuboi, Kenji Gomi, Yamamoto, H. and Akimitsu, K. 2002. Functional Characterization of Citrus Polygalacturonase-inhibiting Protein. J. Gen. Plant Pathol. 68:118-127.
Spadoni, S., Zabotina, O., Di Matteo, A., Mikkelsen, J. D., Cervone, F., De Lorenzo, G., Mattei, B. and Bellincampi, D. 2006. Polygalacturonase-inhibiting protein interacts with pectin through a binding site formed by four clustered residues of arginine and lysine. Plant Physiol. 141:557-564.
ten Have, A., Mulder, W., Visser, J. and van Kan, J. A. 1998. The endopolygalacturonase gene Bcpg1 is required for full virulence of Botrytis cinerea. Mol. Plant-Microbe Interact. 11:1009-1016.
Toubart, P., Desiderio, A., Salvi, G., Cervone, F., Daroda, L. and De Lorenzo, G. 1992. Cloning and characterization of the gene encoding the endopolygalacturonase-inhibiting protein (PGIP) of Phaseolus vulgaris L. Plant J. 2:367-373.
Wu, C. H., Yan, H. Z., Liu, L. F. and Liou, R. F. 2008. Functional Characterization of a Gene Family Encoding Polygalacturonases in Phytophthora parasitica. Mol. Plant-Microbe Interact. 21:480-489.
Yamane, Y., Fujita, J., Shimizu, R., Hiyoshi, A., Fukuda, H., Kizaki, Y. and Wakabayashi, S. 2002. Production of cellulose- and xylan-degrading enzymes by a koji mold, aspergillus oryzae, and their contribution to the maceration of rice endosperm cell wall. J. Biosci. Bioeng. 93:9-14.
Yan, H. Z. and Liou, R. F. 2005. Cloning and analysis of pppg1, an inducible endopolygalacturonase gene from the oomycete plant pathogen Phytophthora parasitica. Fungal Genet. Biol. 42:339-350.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23078-
dc.description.abstract植物抵抗病原菌侵染所涉及的機制相當複雜,而植物細胞間隙為兩者攻防的重要場域之一。許多植物病原菌會外泌細胞壁分解酵素破壞植物細胞壁,其中的多聚半乳糖醛酸酶(endopolygalacturonase, endoPG)被認為是感染初期最早產生的酵素之一。植物的多聚半乳糖醛酸酶抑制蛋白(polygalacturonase-inhibiting protein, PGIP)對真菌的endoPG有抑制作用,並參與在長鏈寡半乳糖醛酸(long-chain oligogalacturonides, OGs)誘導植物抗病的訊息傳導途徑中,於植物抵抗病原菌的致病過程扮演重要角色。Phytophthora parasitica為重要的植物病原卵菌,本實驗室先前的研究自其基因體選殖出十個endoPG基因(pppg1-pppg10),這些基因在P. parasitica侵染植物過程會被誘導表現,且個別於菸草(Nicotiana benthamiana)進行系統性表現時所造成的影響各有不同,顯示其在分解植物細胞壁時各扮演獨特的角色。為了解植物PGIP在植物抵抗卵菌與其對卵菌endoPG的抑制作用,我們從P. parasitica的寄主植物Citrus grandis f. buntan Hay.與Citrus sinensis Osb.中選殖PGIP基因。由序列分析結果得知,與其他植物PGIP具同源性,命名為cgpgip。南方雜合分析顯示C. grandis僅含單一個PGIP基因,但在C. sinensis基因體中應有其他cgpgip的同源性序列存在。親緣分析的結果顯示,PGIP依植物所屬分科而分群,且柑橘與其他芸香科的PGIP有較高的同源性。利用甲醇酵母菌(Pichia pastoris)表現CgPGIP與PpPG的重組蛋白,並對CgPGIP抑制PpPG活性情形進行分析,發現對CgPGIP對PpPG2有抑制效果。以PVX agroinfection在菸草上系統性表現CgPGIP,隨後再挑戰接種P. parasitica,結果發現表現CgPGIP之植物的發病程度比較輕微。此外,以PVX agroinfection在菸草同時表現PpPG與CgPGIP,觀察PpPG所造成的症狀受到CgPGIP影響情形時發現,CgPGIP會減弱被歸類為第三群的PpPG所造成的效應,此現象在針對PpPG8和PpPG10特別顯著,但在第二群與第四群PpPG則見不到此情形,顯示CgPGIP對於個別PpPG的抑制作用有選擇性。zh_TW
dc.description.abstractOur previous study has discovered a multigene family (pppg1-pppg10) encoding endopolygalacturonase (endoPG) in Phytophthora parasitica, an oomyceteous plant pathogen known to cause severe disease in a wide variety of plant species. They are induced in the process of plant infection, suggestive of their importance in the pathogenesis. Further analysis indicated that each PpPG plays a distinct role in the decomposition of plant cell wall. To find out if polygalacturonase-inhibiting proteins (PGIP) contain an inhibitor activity toward endoPGs from P. parasitica, we cloned PGIP genes from two Citrus species, Citrus grandis f. buntan Hay. and Citrus sinensis Osb.. Nucleotide sequences of PGIPs obtained from these two plants were identical, and we named one of the clones from C. grandis as cgpgip. Southern hybridization using cgpgip as a probe revealed the presence of a single copy gene in C. grandis, while two bands showed up in C. sinensis. Analysis of the deduced amino acid sequence indicated that CgPGIP contains a typical PGIP protein structure. Phylogenetic analysis indicated that PGIPs from Citrus spp. were clustered into a group distinct from PGIPs from Phaselous spp., which were well characterized and known to have an inhibitor activity toward endoPGs of fungi. To characterize the function of CgPGIP, recombinant proteins of CgPGIP and some PpPGs were expressed by using a yeast expression system, and used to analyze the inhibitor activity of CgPGIP. The results indicated that the recombinant protein of CgPGIP displayed an inhibitor activity toward PpPG2. Systemic expression of CgPGIP in Nicotiana benthamiana, by using the PVX agroinfection system, followed by inoculation with P. parasitica revealed that the CgPGIP-expressing plants are more resistant to this pathogen. Besides, co-expression of CgPGIP and PpPGs in planta resulted in a substantial reduction of the symptoms caused by PpPGs of group III, especially PpPG8 and PpPG10. These data suggest that, of the PpPGs of P. parasitica identified thus far, CgPGIP showed the inhibitor activity only toward PpPG2, PpPG8, and PpPG10, all of which belong to group III. Furthermore, expression of CgPGIP conferred certain degree of plant resistance against P. parasitica.en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:40:50Z (GMT). No. of bitstreams: 1
ntu-98-R95633017-1.pdf: 3402291 bytes, checksum: 47535abdf104d3a93e9a92b573c9cf19 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents中文摘要 i
Abstract iii
Introduction 1
Materials and Methods 7
Microbial strains and plant materials 7
Isolation and characterization of the cgpgip gene 8
Expression of cgpgip in Pichia pastoris and inhibitor activity assay 10
Agrobacterium-mediated transient expression of CgPGIP in N. benthamiana and pathogenicity analysis 12
Transient co-expression assay by PVX agroinfection 13
RT-PCR analysis 14
Results 15
Molecular cloning and characterization of the cgpgip gene 15
Inhibitor activity of CgPGIP toward PpPGs 17
Resistance ability of plants expressing CgPGIP to P. parasitica 18
Functional analysis of CgPGIP by PVX agroinfection 20
Inhibitor activity of CgPGIP to PpPGs of group III in planta 22
Discussions 25
The properties of CgPGIP 25
Relationship of PGIPs from the Citrus spp. and other taxa 27
Recombinant proteins of CgPGIP inhibit the enzymatic activity of PpPG2 28
Resistance ability of plants expressing CgPGIP to P. parasitica 29
In planta interaction of PpPGs and CgPGIP upon transient co-expression 31
References 33
Tables 39
Legends 42
Appendix 55
dc.language.isoen
dc.subject疫病菌zh_TW
dc.subject抑制蛋白zh_TW
dc.subject多聚半乳糖醛酸&#37238zh_TW
dc.subject多聚半乳糖醛酸&#37238zh_TW
dc.subjectPVX agroinfectionzh_TW
dc.subject柑橘zh_TW
dc.subjectendopolygalacturonaseen
dc.subjectPVX agroinfectionen
dc.subjectCitrus spp.en
dc.subjectPhytophthora parasiticaen
dc.subjectpolygalacturonase-inhibiting proteinen
dc.title探討柑橘多聚半乳糖醛酸酶抑制蛋白對疫病菌多聚半乳糖醛酸酶的抑制作用zh_TW
dc.titleInhibitor activity of citrus polygalacturonase-inhibiting protein against the endopolygalacturonase of the oomyceteous pathogen Phytophthora parasiticaen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee曾顯雄,張雅君,林乃君
dc.subject.keyword多聚半乳糖醛酸&#37238,抑制蛋白,多聚半乳糖醛酸&#37238,柑橘,疫病菌,PVX agroinfection,zh_TW
dc.subject.keywordendopolygalacturonase,polygalacturonase-inhibiting protein,Phytophthora parasitica,Citrus spp.,PVX agroinfection,en
dc.relation.page59
dc.rights.note未授權
dc.date.accepted2009-08-12
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
3.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved