Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23020
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林守德
dc.contributor.authorJui-Yu Wengen
dc.contributor.author翁睿妤zh_TW
dc.date.accessioned2021-06-08T04:38:06Z-
dc.date.copyright2011-08-20
dc.date.issued2011
dc.date.submitted2011-08-17
dc.identifier.citation[1] Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM : a library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2:27:1--27:27. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
[2] Mei-Yu Chen, Hsin-Ni Lin, Chang-An Shih, Yen-Ching Hsu, Pei-Yu Hsu, and Shu-Kai Hsieh. 2010. Classifying mood in plurks. In Proceedings of the 22nd Conference on Computational Linguistics and Speech Processing (ROCLING’10). pp. 172-183.
[3] Dipanjan Das and Andre F.T. Martins. 2007. A Survey on Automatic Text Summarization. Literature Survey for the Language and Statistics II Course at CMU.
[4] Helen Kwong and Neil Yorke-Smith. 2009. Detection of imperative and declarative question-answer pairs in email conversations. In Proceedings of the 21st international jont conference on Artifical intelligence (IJCAI'09). pp.1519-1524.
[5] Chuanhan Liu, Yongcheng Wang, and Fei Zheng. 2006. Automatic Text Summarization for Dialogue Style. In Proceedings of the IEEE International Conference on Information Acquisition (ICIA’06). pp. 274-278.
[6] Alexander Pak and Patrick Paroubek. 2010. Twitter as a Corpus for Sentiment Analysis and Opinion Mining. In Proceedings of International Conference on Language Resources and Evaluation (LREC’10). pp. 1320–1326.
[7] Bo Pang and Lillian Lee. 2004. A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based on Minimum Cuts. In Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics (ACL’04). pp. 271-278.
[8] Bo Pang and Lillian Lee. 2008. Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval, 2(1-2): 1-135.
[9] Dragomir R. Radev, Eduard Hovy, and Kathleen McKeown. 2002. Introduction to the special issue on summarization. Computational Linguistics. pp. 399-408.
[10] Satoshi Sekine and Chikashi Nobata. 2003. A Survey for Multi-Document Summarization. In Proceedings of North American Chapter of the Association for Computational Linguistics - Human Language Technologies (NAACL-HLT’03) on Text Summarization Workshop. pp.65-72.
[11] Beaux Sharifi, Mark A. Hutton, and Jugal Kalita. 2010. Summarizing microblogs Automatically. In Proceedings of the Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL-HLT’10). pp.685-688.
[12] Beaux Sharifi, Mark A. Hutton, and Jugal Kalita. 2010. Experiments in Microblog Summarization. In Proceedings of 2010 IEEE Second International Conference on Social Computing (SocialCom’10). pp.49-56.
[13] Lokesh Shrestha and Kathleen McKeown. 2004. Detection of Question-Answer Pairs in Email Conversations. In Proceedings of the 23rd International Conference on Computational Linguistics (COLING’04). pp. 889-895.
[14] Klaus Zechner. 2001. Automatic Generation of Concise Summaries of Spoken Dialogues in Unrestricted Domains. In Proceedings of the 24th ACM-SIGIR International Conference on Research and Development in Information Retrieval. pp. 199-207.
[15] Klaus Zechner. 2002. Automatic Summarization of Open-Domain Multiparty Dialogues in Diverse Genres. Computational Linguistics, 28(4): 447-485.
[16] Liang Zhou and Eduard Hovy. 2005. Digesting virtual geek culture: The summarization of technical internet relay chats, in Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL’05). pp. 298-305.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23020-
dc.description.abstract本論文提出一個自動摘要系統,針對每一則微網誌上的訊息及回應產生簡明易讀的摘要。此系統的目的在於幫助微網誌使用者可以在大量的網路訊息中,有效率地擷取到重要且有意義的資訊。它採用了兩階段的摘要架構:第一個階段進行訊息的分類。每一則訊息都會被分為「疑問」、「連結分享」、「連結討論」以及「閒聊」等四種類型;第二個階段則是針對該訊息在上個階段被分配到的類別,採用適合該類的摘要策略及呈現方式。我們提出的策略共有「意見分析」、「回應分群」以及「回應相關度偵測」等三種。本論文在處理微網誌摘要的問題上,提出了一個不同於傳統文件摘要技術的觀點:透過不同系統之間的整合,電腦可以有能力產生出合於使用者目的之摘要,而不僅是訊息的過濾與壓縮。zh_TW
dc.description.abstractThis paper presents a system to summarize a microblog post and its responses with the goal to provide readers a more constructive and concise set of information for efficient digestion. We introduce a novel two-phase summarization scheme. In the first phase, the post plus its responses are classified into four categories based on the intention, Interrogation, URL-Sharing, URL-Discussion and Chat. For each type of post, in the second phase, we exploit different strategies, including Opinion Analysis, Response Group Clustering, and Response Relevancy Detection, to summarize and highlight critical information to display. This system provides an alternative thinking about machine-summarization: by utilizing AI approaches, computers are capable of constructing deeper and more user-friendly abstraction.en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:38:06Z (GMT). No. of bitstreams: 1
ntu-100-R98922060-1.pdf: 1810465 bytes, checksum: 62f7c83b501d22d99daf7b6089f6a4d4 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents口試委員審定書 i
Acknowledgements ii
摘要 iii
Abstract iv
List of Figures vi
List of Tables vii
Chapter 1 Introduction 1
Chapter 2 Summarization Framework and Experiments 5
2.1 Plurk 5
2.2 Summarization Framework 6
2.2.1 Post Intention Classification 10
2.2.2 Opinion Analysis 14
2.2.3 Response Group Clustering 15
2.2.4 Response Relevance Detection 20
Chapter 3 System Demonstration 23
Chapter 4 Related Work 28
Chapter 5 Conclusion 31
References 32
dc.language.isoen
dc.subject系統整合zh_TW
dc.subject微網誌zh_TW
dc.subject自然語言處理zh_TW
dc.subject自動摘要zh_TW
dc.subject監督式學習zh_TW
dc.subjectNatural Language Processingen
dc.subjectSystem Integrationen
dc.subjectSupervised Leaningen
dc.subjectMicroblogen
dc.subjectAutomatic Summarizationen
dc.titleIMASS:智慧型微網誌自動分析及摘要系統zh_TW
dc.titleIMASS: An Intelligent Microblog Analysis and Summarization Systemen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳信希,鄭卜壬,劉昭麟,張俊盛
dc.subject.keyword自動摘要,微網誌,自然語言處理,監督式學習,系統整合,zh_TW
dc.subject.keywordAutomatic Summarization,Microblog,Natural Language Processing,Supervised Leaning,System Integration,en
dc.relation.page34
dc.rights.note未授權
dc.date.accepted2011-08-17
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
1.77 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved