請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23006
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 謝文陽 | |
dc.contributor.author | Yin-Ting Chen | en |
dc.contributor.author | 陳盈廷 | zh_TW |
dc.date.accessioned | 2021-06-08T04:37:27Z | - |
dc.date.copyright | 2009-08-18 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-08-17 | |
dc.identifier.citation | Aguilera, M., Jimenez-Pranteda, M. L., Kharroub, K., Gonzalez-Paredes, A., Durban, J. J., Russell, N. J., Ramos-Cormenzana, A. & Monteoliva-Sanchez, M. (2009). Marinobacter lacisalsi sp. nov. a moderately halophilic bacterium isolated from the saline-wetland wildfowl reserve 'Fuente de Piedra' in Southern Spain. International Journal of Systematic and Evolutionary Microbiology 59, 1691-1695.
Atlas, R. (1984). Microbiology: fundamentals and applications: MacMillan Publishing Company. Atlas, R. M. (1981). Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiology and Molecular Biology Reviews 45, 180-209. Atlas, R. M. & Bartha, R. (1981). Microbial ecology: fundamentals and applications. MA: Addison-Wesley Publishing Company, Reading. Atlas, R. M. (1988). Biodegradation of hydrocarbons in the environment. Environmental Biotechnology: Reducing Risks from Environmental Chemicals Through Biotechnology, 211. Ballihaut, G., Klein, B., Goulas, P., Duran, R., Caumette, P. & Grimaud, R. (2004). Analysis of the adaptation to alkanes of the marine bacterium Marinobacter hydrocarbonoclasticus SP7 by two dimensional gel electrophoresis. Aquatic Living Resources 17, 269-272. Bennasar, A., Guasp, C. & Lalucat, J. (1998). Molecular methods for the detection and identification of Pseudomonas stutzeri in pure culture and environmental samples. Microbial ecology, 22-33. Buck, J. D. (1982). Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Applied and Environmental Microbiology 44, 992-993. Burke, G., Sing, B. R. & Theodore, L. (2000). Handbook of environmental management and technology. New York: John Wiley & Sons, Inc. Publication. Chen, Q., Janssen, D. & Witholt, B. (1996). Physiological changes and alk gene instability in Pseudomonas oleovorans during induction and expression of alk genes. Journal of bacteriology 178, 5508-5512. Collier, D. N., Hager, P. W. & Phibbs, P. V. (1996). Catabolite repression control in the Pseudomonads. Research in Microbiology 147, 551-561. Dinamarca, M. A., Aranda-Olmedo, I., Puyet, A. & Rojo, F. (2003). Expression of the Pseudomonas putida OCT plasmid alkane degradation pathway is modulated by two different global control signals: evidence from continuous cultures. The Journal of Bacteriology 185, 4772-4778. Dyksterhouse, S. E., Gray, J. P., Herwig, R. P., Lara, J. C. & Staley, J. T. (1995). Cycloclasticus pugetii gen. nov., sp. nov., an Aromatic Hydrocarbon-Degrading Bacterium from Marine Sediments. International Journal of Systematic Bacteriology 45, 116-123. Evans, G. M. & Furlong, J. C. (2003). Contaminated Land and Bioremediation. In Environmental biotechnology: theory and application, pp. 91-94. England: John Wiley & Sons, Inc. Publication. Eweis, J. B., Ergas, S. J., Chang, D. P. Y. & Schroeder, E. D. (1998). Bioremediation principles. Singapore: McGraw-Hill Inc. Publication. Fernandez-Martinez, J., Pujalte, M. J., Garcia-Martinez, J., Mata, M., Garay, E. & Rodriguez-Valera, F. (2003). Description of Alcanivorax venustensis sp. nov. and reclassification of Fundibacter jadensis DSM 12178T (Bruns and Berthe-Corti 1999) as Alcanivorax jadensis comb. nov., members of the emended genus Alcanivorax. International Journal of Systematic and Evolutionary Microbiology 53, 331-338. Gauthier, M. J., Lafay, B., Christen, R., Fernandez, L., Acquaviva, M., Bonin, P. & Bertrand, J. C. (1992). Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a New, Extremely Halotolerant, Hydrocarbon-Degrading Marine Bacterium. International Journal of Systematic and Evolutionary Microbiology 42, 568-576. Golyshin, P. N., Chernikova, T. N., Abraham, W. R., Lunsdorf, H., Timmis, K. N. & Yakimov, M. M. (2002). Oleiphilaceae fam. nov., to include Oleiphilus messinensis gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. International Journal of Systematic and Evolutionary Microbiology 52, 901-911. Golyshin, P. N., Martins, D. S. V. A., Kaiser, O. & other authors (2003). Genome sequence completed of Alcanivorax borkumensis, a hydrocarbon-degrading bacterium that plays a global role in oil removal from marine systems. Journal of Biotechnology 106, 215-220. Gorshkova, N. M., Ivanova, E. P., Sergeev, A. F., Zhukova, N. V., Alexeeva, Y., Wright, J. P., Nicolau, D. V., Mikhailov, V. V. & Christen, R. (2003). Marinobacter excellens sp. nov., isolated from sediments of the Sea of Japan. International Journal of Systematic and Evolutionary Microbiology 53, 2073-2078. Green, D. H., Bowman, J. P., Smith, E. A., Gutierrez, T. & Bolch, C. J. S. (2006). Marinobacter algicola sp. nov., isolated from laboratory cultures of paralytic shellfish toxin-producing dinoflagellates. International Journal of Systematic and Evolutionary Microbiology 56, 523-527. Gu, J., Cai, H., Yu, S. L., Qu, R., Yin, B., Guo, Y. F., Zhao, J. Y. & Wu, X. L. (2007). Marinobacter gudaonensis sp. nov., isolated from an oil-polluted saline soil in a Chinese oilfield. International Journal of Systematic and Evolutionary Microbiology 57, 250-254. Guo, B., Gu, J., Ye, Y. G., Tang, Y. Q., Kida, K. & Wu, X. L. (2007). Marinobacter segnicrescens sp. nov., a moderate halophile isolated from benthic sediment of the South China Sea. International Journal of Systematic and Evolutionary Microbiology 57, 1970-1974. Handley, K. M., Hery, M. & Lloyd, J. R. (2009). Marinobacter santoriniensis sp. nov., an arsenate-respiring and arsenite-oxidizing bacterium isolated from hydrothermal sediment. International Journal of Systematic and Evolutionary Microbiology 59, 886-892. Harayama, S., Kishira, H., Kasai, Y. & Shutsubo, K. (1999). Petroleum biodegradation in marine environments. Journal of Molecular Microbiology and Biotechnology 1, 63-70. Head, I. M., Jones, D. M. & Roling, F. M. (2006). Marine microorganisms make a meal of oil. Nature Reviews Microbiology 4, 173-182. Hedlund, B. P., Geiselbrecht, A. D., Bair, T. J. & Staley, J. T. (1999). Polycyclic Aromatic Hydrocarbon Degradation by a New Marine Bacterium, Neptunomonas naphthovorans gen. nov., sp. nov. Applied and Environmental Microbiology 65, 251-259. Ho, C. L. (2005). Bioremediation of n-tetradecane by a pure strain (Rhodococcus erythropolis NTU1) and a mixed culture (TN-4). Master’s thesis, National Taiwan University. Huo, Y. Y., Wang, C. S., Yang, J. Y., Wu, M. & Xu, X. W. (2008). Marinobacter mobilis sp. nov. and Marinobacter zhejiangensis sp. nov., halophilic bacteria isolated from the East China Sea. International Journal of Systematic and Evolutionary Microbiology 58, 2885-2889. Huu, N. B., Denner, E. B. M., Ha, D. T. C., Wanner, G. & Stan-Lotter, H. (1999). Marinobacter aquaeolei sp. nov., a halophilic bacterium isolated from a Vietnamese oil-producing well. International Journal of Systematic and Evolutionary Microbiology 49, 367-375. Kasai, Y., Kishira, H. & Harayama, S. (2002a). Bacteria Belonging to the Genus Cycloclasticus Play a Primary Role in the Degradation of Aromatic Hydrocarbons Released in a Marine Environment. Applied and Environmental Microbiology 68, 5625-5633. Kasai, Y., Kishira, H., Sasaki, T., Syutsubo, K., Watanabe, K. & Harayama, S. (2002b). Predominant growth of Alcanivorax strains in oil-contaminated and nutrient-supplemented sea water. Environmental Microbiology 4, 141. Kim, B. Y., Weon, H. Y., Yoo, S. H., Kim, J. S., Kwon, S. W., Stackebrandt, E. & Go, S. J. (2006). Marinobacter koreensis sp nov., isolated from sea sand in Korea. International Journal of Systematic and Evolutionary Microbiology 56, 2653-2656. Klein, B., Grossi, V., Bouriat, P., Goulas, P. & Grimaud, R. (2008). Cytoplasmic wax ester accumulation during biofilm-driven substrate assimilation at the alkane - water interface by Marinobacter hydrocarbonoclasticus SP17. Research in Microbiology 159, 137-144. Lee, K. & Merlin, F. (1999). Bioremediation of oil on shoreline environments: development of techniques and guidelines. Pure and Applied Chemistry 71, 161-172. Liebgott, P. P., Casalot, L., Paillard, S., Lorquin, J. & Labat, M. (2006). Marinobacter vinifirmus sp. nov., a moderately halophilic bacterium isolated from a wine-barrel-decalcification wastewater. International Journal of Systematic and Evolutionary Microbiology 56, 2511-2516. Liu, C. L. & Shao, Z. Z. (2005). Alcanivorax dieselolei sp. nov., a novel alkane-degrading bacterium isolated from sea water and deep-sea sediment. International Journal of Systematic and Evolutionary Microbiology 55, 1181-1186. Marquez, M. C. & Ventosa, A. (2005). Marinobacter hydrocarbonoclasticus Gauthier et al. 1992 and Marinobacter aquaeolei Nguyen et al. 1999 are heterotypic synonyms. International Journal of Systematic and Evolutionary Microbiology 55, 1349-1351. Martin, S., Marquez, M. C., Sanchez-Porro, C., Mellado, E., Arahal, D. R. & Ventosa, A. (2003). Marinobacter lipolyticus sp. nov., a novel moderate halophile with lipolytic activity. International Journal of Systematic and Evolutionary Microbiology 53, 1383-1387. Montes, M. J., Bozal, N. & Mercade, E. (2008). Marinobacter guineae sp. nov., a novel moderately halophilic bacterium from an Antarctic environment. International Journal of Systematic and Evolutionary Microbiology 58, 1346-1349. Obuekwe, C., Al-Jadi, Z. & Al-Saleh, E. (2008). Comparative hydrocarbon utilization by hydrophobic and hydrophilic variants of Pseudomonas aeruginosa. Journal of Applied Microbiology 105, 1876-1887. Okoh, A. I. (2006). Biodegradation alternative in the cleanup of petroleum hydrocarbon pollutants. Biotechmology and Molecular Biology Review 1, 38-50. Olivera, N. L., Nievas, M. L., Lozada, M., del Prado, G., Dionisi, H. M. & Sineriz, F. (2009). Isolation and characterization of biosurfactant-producing Alcanivorax strains: hydrocarbon accession strategies and alkane hydroxylase gene analysis. Research in Microbiology 160, 19-26. Röling, W., Milner, M., Jones, D., Lee, K., Daniel, F., Swannell, R. & Head, I. (2002). Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation. Applied and Environmental Microbiology 68, 5537-5548. Rivas, R., Paula García-Fraile, P., Peix, A., Mateos, P. F., Martínez-Molina, E. & Velázquez, E. (2007). Alcanivorax balearicus sp. nov., isolated from Lake Martel. International Journal of Systematic and Evolutionary Microbiology 57, 1331-1335. Roh, S. W., Quan, Z. X., Nam, Y. D., Chang, H. W., Kim, K. H., Rhee, S. K., Oh, H. M., Jeon, C. O., Yoon, J. H. & Bae, J. W. (2008). Marinobacter goseongensis sp. nov., from seawater. International Journal of Systematic and Evolutionary Microbiology 58, 2866-2870. Romanenko, L. A., Schumann, P., Rohde, M., Zhukova, N. V., Mikhailov, V. V. & Stackebrandt, E. (2005). Marinobacter bryozoorum sp. nov. and Marinobacter sediminum sp. nov., novel bacteria from the marine environment. International Journal of Systematic and Evolutionary Microbiology 55, 143-148. Ron, E. & Rosenberg, E. (2001). Natural roles of biosurfactants. Environmental Microbiology 3, 229. Rosenberg, M., Bayer, E., Delarea, J. & Rosenberg, E. (1982). Role of thin fimbriae in adherence and growth of Acinetobacter calcoaceticus RAG-1 on hexadecane. Applied and Environmental Microbiology 44, 929-937. Sánchez, O., Ferrera, I., Vigués, N., Oteyza, T. G., Grimalt, J. O. & Mas, J. (2006). Presence of opportunistic oil-degrading microorganisms operating at the initial steps of oil extraction and handling. International Microbiology 9, 119-124. Schippers, A., Bosecker, K., Sproer, C. & Schumann, P. (2005). Microbacterium oleivorans sp. nov. and Microbacterium hydrocarbonoxydans sp. nov., novel crude-oil-degrading Gram-positive bacteria. International Journal of Systematic and Evolutionary Microbiology 55, 655-660. Schneiker, S., V. A. Martins dos Santos, D. Bartels, T. Bekel, M. Brecht, J. Buhrmester, T. N. Chernikova, R. Denaro, M. Ferrer, C. Gertler, A. Goesmann, O. V. Golyshina, F. Kaminski, A. N. Khachane, S. Lang, B. Linke, A. C. McHardy, F. Meyer, T. Nechitaylo, A. Puhler, D. Regenhardt, O. Rupp, J. S. Sabirova, W. Selbitschka, M. M. Yakimov, K. N. Timmis, F. J. Vorholter, S. Weidner, O. Kaiser, and P. N. Golyshin. (2006). Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis. Nature Biotechnology 24, 997-1004. Shieh, W., Chen, A. & Chiu, H. (2000). Vibrio aerogenes sp. nov., a facultatively anaerobic marine bacterium that ferments glucose with gas production. International Journal of Systematic and Evolutionary Microbiology 50, 321-329. Shieh, W. Y., Lin, Y. T. & Jean, W. D. (2004). Pseudovibrio denitrificans gen. nov., sp. nov., a marine, facultatively anaerobic, fermentative bacterium capable of denitrification. International Journal of Systematic and Evolutionary Microbiology 54, 2307-2312. Shieh, W. Y., Jean, W. D., Lin, Y. T. & Tseng, M. (2003). Marinobacter lutaoensis sp. nov., a thermotolerant marine bacterium isolated from a coastal hot spring in Lutao, Taiwan. Canadian Journal of Microbiology 49, 244-252. Smiber, R. M. & Krieg, N. R. (1994). Phenotypic characterization. In Methods for general and molecular bacteriology, pp. 607-654. Washington: American Society for Microbiology. Turekian, K. K. (1968). Oceans: Prentice-Hall. van Beilen, J. B., Wubbolts, M. G. & Witholt, B. (1994). Genetics of alkane oxidation by Pseudomonas oleovorans. Biodegradation 5, 161-174. van Beilen, J. B., Marin, M. M., Smits, T. H. M., Röthlisberger, M., Franchini, A. G., Witholt, B. & Rojo, F. (2004). Characterization of two alkane hydroxylase genes from the marine hydrocarbonoclastic bacterium Alcanivorax borkumensis. Environmental Microbiology 6, 264-273. Wu, M. H. (2008). The diversity of bacteria degrading hexadecane or cyclohexane in coastal waters from Taiwan. Master’s thesis, National Taiwan University. Xu, X. W., Wu, Y. H., Wang, C. S., Yang, J. Y., Oren, A. & Wu, M. (2008). Marinobacter pelagius sp. nov., a moderately halophilic bacterium. International Journal of Systematic and Evolutionary Microbiology 58, 637-640. Yakimov, M. M., Golyshin, P. N., Lang, S., Moore, E. R. B., Abraham, W. R., Lunsdorf, H. & Timmis, K. N. (1998). Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. International Journal of Systematic and Evolutionary Microbiology 48, 339-348. Yakimov, M. M., Giuliano, L., Gentile, G., Crisafi, E., Chernikova, T. N., Abraham, W. R., Lunsdorf, H., Timmis, K. N. & Golyshin, P. N. (2003). Oleispira antarctica gen. nov., sp. nov., a novel hydrocarbonoclastic marine bacterium isolated from Antarctic coastal sea water. International Journal of Systematic and Evolutionary Microbiology 53, 779-785. Yakimov, M. M., Timmis, K. N. & Golyshin, P. N. (2007). Obligate oil-degrading marine bacteria. Current Opinion in Biotechnology 18, 257-266. Yoon, J. H., Shin, D. Y., Kim, I. G., Kang, K. H. & Park, Y. H. (2003). Marinobacter litoralis sp. nov., a moderately halophilic bacterium isolated from sea water from the East Sea in Korea. International Journal of Systematic and Evolutionary Microbiology 53, 563-568. Yoon, J. H., Yeo, S. H., Kim, I. G. & Oh, T. K. (2004). Marinobacter flavimaris sp. nov. and Marinobacter daepoensis sp. nov., slightly halophilic organisms isolated from sea water of the Yellow Sea in Korea. International Journal of Systematic and Evolutionary Microbiology 54, 1799-1803. Yoon, J. H., Lee, M. H., Kang, S. J. & Oh, T. K. (2007). Marinobacter salicampi sp. nov., isolated from a marine solar saltern in Korea. International Journal of Systematic and Evolutionary Microbiology 57, 2102-2105. Young, S. O., Doo, S. S. & Sang, J. K. (2001). Effects of nutrients on crude oil biodegradation in the upper intertidal zone. Marine Pollution Bulletin 42, 1367-1372. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23006 | - |
dc.description.abstract | 碳氫化合物為石油的主要成份之一。本實驗室於2008年分離出二十九株能夠以十六烷作為單一碳源生長的分離菌,其中六株菌株經半年保存培養後失去其分解活性。將分解效率最高之四菌株作為研究對象,鑑種並利用氣相層析儀探討它們在本實驗室之人工海水、含有機營養鹽的人工海水與過濾海水間降解十六烷之差異。經16S rDNA序列分析與生理生化特性測試,判定四菌株HD5、HD8、HD51、MO27分別為Marinobacter hydrocarbonoclasticus、Alcanivorax dieselolei、Marinobacter mobilis、Alcanivorax balearicus,並發現過濾海水相較於人工海含有能夠促進菌株適應新系統的成份。含量較高的氮鹽、磷鹽等營養鹽或有機營養物質能助長菌株HD5和菌株MO27對十六烷的利用;同屬之HD8、MO27二菌株擁有不同基因序列與alkB基因數量,且其對三種系統環境的反應也不同。 | zh_TW |
dc.description.abstract | The main composition of petroleum oil is hydrocarbon. Our laboratory isolated 29 bacterial strains which were able to utilize hexadecane as sole carbon source in 2008. After conserving strain sources for six months, six strains lost hydrocarbon-degrading ability. Four of the fastest growing bacterial strains were selected as material to study their hexadecane-utilization efficiency in three culture conditions: artificial seawater, artificial seawater with organic nutrient and filtered natural seawater. Strain HD5, HD8, HD51 and MO27 were identified as Marinobacter hydrocarbonoclasticus, Alcanivorax dieselolei, Marinobacter mobilis and Alcanivorax balearicus. Bacterial cells could adapt to new system more quickly in filtered natural seawater than in artificial seawater. Higher nitrogenous and phosphoric nutrients or organic nutrient content can improve hexadecane utilization by isolates HD5 and MO27. HD8 and MO27, classified as the same genus, had different gene sequences and number of alkB genes, and had different reactions to three culture conditions. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T04:37:27Z (GMT). No. of bitstreams: 1 ntu-98-R96241214-1.pdf: 1168987 bytes, checksum: b5f9827364c2537012a263181df24549 (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 目錄 iii
表目錄 iv 圖目錄 v 中文摘要 vi Abstract vii 第一章 前言 1 一、石油於人類的益處與害處 1 二、石油汙染物的處理 1 三、降解石油的微生物 2 四、影響石油生物降解的因素 3 五、研究動機與目的 4 第二章 材料與方法 5 一、培養基配置 5 二、細菌樣本 5 三、分解效率再現性(reproducibility)之測試 5 四、菌株鑑定 6 五、十六烷分解效率 13 第三章 結果與討論 16 一、分解效率再現性之測試 16 二、16S rDNA序列分析與生理生化特性比較 17 三、菌株於PY培養基之生長狀況 19 四、菌株於三種培養液培養96小時後之十六烷降解結果 20 五、菌株以十六烷作為單一碳源之生長曲線與十六烷降解量變化 21 六、菌株的利用與未來展望 24 第四章 總結 25 參考文獻 26 附錄 51 | |
dc.language.iso | zh-TW | |
dc.title | 臺灣沿岸細菌分離株降解十六烷之研究探討 | zh_TW |
dc.title | Comparison of hexadecane utilization by bacteria isolates from coastal water of Taiwan | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 簡文達,蔡珊珊,李重義 | |
dc.subject.keyword | 十六烷降解,培養條件,氣相層析儀,Marinobacter,Alcanivorax, | zh_TW |
dc.subject.keyword | hexadecane degradation,culture condition,gas chromatography,Marinobacter,Alcanivorax, | en |
dc.relation.page | 54 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2009-08-17 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 1.14 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。