Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22973
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor洪一平
dc.contributor.authorYen-Liang Linen
dc.contributor.author林彥良zh_TW
dc.date.accessioned2021-06-08T04:35:54Z-
dc.date.copyright2009-08-19
dc.date.issued2009
dc.date.submitted2009-08-18
dc.identifier.citation[1] Nakhoon Baek, Sun-Mi Park, Ku-Jin Kim, and Seong-Bae Park. Vehicle color clas-
sification based on the support vector machine method. ICIC, pages 1133–1139,
2007. 30
[2] H.G. Barrow, R.C. Bolles J.M. Tenenbaum, and H.C. Wolf. Parametric correspon-
dence and chamfer matching: Two new techniques for image matching. IJCAI,
1977. 20
[3] J. Batista, P. Peixoto, C. Fernandes, and M. Ribeiro. A dual-stage robust vehicle
detection and tracking for real-time traffic monitoring. Intelligent Transportation
Systems Conference, pages 528–535, 2006. 4
[4] G. Borgefors. Hierarchical chamfer matching: A parametric edge matching algo-
rithms. PAMI, 1988. 20
[5] Lisa M. Brown. View independent vehicle/person classification. In Proceedings of
the ACM 2nd international workshop on Video surveillance and sensor networks,
pages 114–123, 2004. 5
[6] Miriam Butzke, Alexandre G. Silva, Marcelo da S. Hounsell, and Maur’ıcio A. Pil-
lon. Automatic recognition of vehicle attributes color classification and logo seg-
mentation. Hifen, 32(62), 2008. 31
[7] Chu Song Chen, Chi Kuo Yu, and Yi Ping Hung. New calibration-free approach for
augmented reality based on parameterized cuboid structure. ICCV, 1:30–37, 1999.
6, 7, 11, 12, 15
[8] Yu-Ting Chen and Chu-Song Chen. A cascade of feed-forward classifiers for fast
pedestrian detection. ACCV, pages 905– 914, 2007. 3, 4, 27
[9] N. Chumerin and M. Van Hulle. An approach to on-road vehicle detection, de-
scription and tracking. IEEE Workshop on Machine Learning for Signal Processing,
(265-269), 2007. 4
43
BIBLIOGRAPHY
[10] B. Coifman, D. Beymer, P. McLauchlan, and J. Malik. A real-time computer vision
system for vehicle tracking and traffic surveillance. Transportation Research Part
C: Emerging Technologies, 6:271–288, 1998. 4
[11] N. Dalai and B. Triggs. Histograms of oriented gradients for human detection.
CVPR, 1:886–893, 2005. 3, 4
[12] M. Rudzsky E. Rivlin, R. Goldenberg, U. Bogomolov, and S. Lapchev. A real-time
system for classification of moving objects. ICPR, 688-691, 2002. 5
[13] D.M. Gavrila. Pedestrian detection from a moving vehicle. ECCV, 2000. 20, 23
[14] S. Gupte, O. Masoud, R. Martin, and N. Papanikolopoulos. Detection and classifica-
tion of vehicles. IEEE Transactions on Intelligent Transportation Systems, 3:37–47,
2002. 5
[15] Neeraj Krantiveer Kanhere, Stanley T. Birchfield, and Wayne A. Sarasua. Vehicle
segmentation and tracking in the presence of occlusions. Intelligent Transportation
Systems and Vehicle-Highway Automation, pages 89– 97, 2006. 5, 6, 17
[16] Thanarat H. Chalidabhongse Kyungnam Kim. Real-time foreground-background
using codebook model. Real-Time Imageing, 11:172–185, 2005. xi, 3, 7, 9, 10, 11
[17] Ping-Han Lee, Yen-Liang Lin, Tzu-Hsuan Chiu, and Yi-Ping Hung. Real-time
pedestrian and vehicle detection in video using 3d cues. ICME, 2009. 15
[18] A. Lipton, H. Fujiyoshi, and R. Patil. Moving target classification and tracking from
real-time video. IEEE Workshop on Application of Computer Vision, pages 8–14,
1998. 5
[19] Z. Liu and Z. You. A real-time vision-based vehicle tracking and traffic surveil-
lance. Eighth ACIS International Conference on Software Engineering, Artificial
Intelligence, Networking, and Parallel/Distributed Computing, 1(174-179), 2007. 4
[20] W.Huang L.Li, I. Y.-H. Gu, and Q. Tian. Statistical modeling of complex back-
grounds for foreground object detection. IEEE Transactions on Image Processing,
13:1459–1472, 2004. 3
[21] A. Senior, A. Hampapur, YL. Tian, L. Brown, S. Pankanti, and R. Bolle. Appear-
ance models for occlusion handling. In Proc. 2nd IEEE International Workshop on
Performance Evaluation of Tracking in Surveillance, 2001. 5
[22] Xuefeng Song and R. Nevatia. A model-based vehicle segmentation method for
tracking. ICCV, 2:1124–1131, 2005. 4, 5
[23] C. Stauffer and W. Grimson. Adaptive background mixture models for real-time
tracking. Computer Vision and Pattern Recognition, 2(-252), 1999. 3
44
BIBLIOGRAPHY
[24] Zehang Sun, George Bebis, and Ronald Miller. Improving the performance of on-
road vehicle detection by combining gabor and wavelet features. The IEEE 5th In-
ternational Conference on Intelligent Transportation Systems, pages 130–135, 2002.
4
[25] R. Taktak, M. Dufaut, and R. Husson. Road modelling and vehicle detection by
using image processing. IEEE International Conference on Systems, Man, and Cy-
bernetics, Humans, Information and Technology, 3:2153–2158, 1994. 4
[26] X. Tan, J. Li, and C. Liu. A video-based real-time vehicle detection method by
classified background learning. World Transactions on Engineering and Technology
Education, 6:189–192, 2007. 4, 5
[27] P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple
features. CVPR, pages 511–518, 2001. 3
[28] P. Viola, M.J. Jones, and D. Snow. Detecting pedestrians using patterns of motion
and appearance. ICCV, 2:734– 741, 2003. 3, 4
[29] Yuan-Kai Wang and Shao-Hua Chen. A robust vehicle detection approach. IEEE
Conference on Advanced Video and Signal Based Surveillance, pages 117– 122,
2005. 4, 5
[30] B. Wu and R. Nevatia. Detection of multiple, partially occluded humans in a single
image by bayesian combination of edgelet part detectors. ICCV, 1:90–97, 2005. 3,
4
[31] B. Wu and R. Nevatia. Cluster boosted classifier for multi-view, multi-pose object
detection. International Conference on Computer Vision, 2:1491–1498, 2007. 3
[32] G. Bebis Z. Sun and R. Miller. On-road vehicle detection using gabor filters and
support vector machines. International Conference on Digital Signal Processing,
2002. 4
[33] Jian Peng Zhou and Jack Hoang. Real-time robust human detection and tracking
system. CVPR Workshops, pages 149–149, 2005. 9, 11
[34] Q. Zhu, M.-C. Yeh, and K.-T. Chen. Fast human detection using a cascade of his-
tograms of oriented gradients. CVPR, 2:1491–1498, 2006. 3
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22973-
dc.description.abstract在視訊安全監控的相關研究中車輛與行人偵測和顏色辨識是相當重要的議題。 在
本論文中,我們將針對車輛與行人的偵測和顏色辯識技術進行探討。 在車輛行人
偵測方面,目前的方法大多使用2D資訊做為特徵,例如邊緣、顏色、輪廓、動
作...等。 其中只有少部分的研究使用3D的特徵。 本論文提出一套新的演算法使
用3D資訊來偵測車輛和行人。 首先會使用背景模型的技術來取得前景移動物體,
對於每一個前景移動物體,我們會利用相機的內外在參數來計算物體在3D空間中
的大小。 我們使用calibration-free的方法來估測攝影機參數, 其方法只需要在場
景點選長方體的六個點即可。 顏色辨識系統方面,我們會利用Bayesian分類器來
訓練所定義的顏色在HSV色彩空間的決策邊界, 然後依據車輛和行人影像中的像素
在所定義的顏色區域的分布來決定其顏色。 經由實驗結果,所提出的方法都能有
效的運作
zh_TW
dc.description.abstractWe propose a real-time intelligence surveillance system.Two important topics are studied, including vehicle and pedestrian detection, vehicle and pedestrian color classification. Existing pedestrian and vehicle detection algorithms utilize 2D cues of objects, such as pixel values, color and texture, shape information or motion. Some of them require heavy computation power and are thus prohibited from real-time applications. While many researchers focus on modeling objects based on 2D cues, the use of 3D cues in object detection are not well studied. In this paper we propose an algorithm that utilizes 3D cues to perform pedestrian and vehicle detection. The 3D cues of objects in a static scene monitored by a camera can be obtained using the intrinsic and extrinsic parameters of that camera. We apply a calibration-free method to estimate the camera parameters. This method simply requires users to specify 6 vertices on a cuboid in the scene. In the
aspect of vehicle color classification, we use Bayesian classifier to trained the decision boundaries of defined color in the HSV space, then determining the color of the object according to distribution of the the pixels in the vehicle and pedestrian images on the defined color region. Experiment results demonstrate our proposed method can work efficiently.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:35:54Z (GMT). No. of bitstreams: 1
ntu-98-R96944029-1.pdf: 10165063 bytes, checksum: b540d98ae702c4d20cccc1a05d319297 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsAbstract vii
List of Figures xi
List of Tables xiii
1 Introduction 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Vehicles and Pedestrians Detection Using 3D Scales and 2D Shapes 3
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Overview of the Proposed System . . . . . . . . . . . . . . . . . . . . . 7
2.4 Moving Blob Detection in Video . . . . . . . . . . . . . . . . . . . . . . 8
2.4.1 Background Modeling using Codebook Algorithm . . . . . . . . 9
2.4.2 Shadow Removal . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 3D Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5.1 Camera Calibration using Cuboid Algorithm . . . . . . . . . . . 12
Pinhole Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
ix
Cuboid Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5.2 2D Bounding Box Model . . . . . . . . . . . . . . . . . . . . . . 15
2.5.3 3D Bounding Box Model . . . . . . . . . . . . . . . . . . . . . . 18
Shape Kernel Database . . . . . . . . . . . . . . . . . . . . . . . 19
Chamfer Matching . . . . . . . . . . . . . . . . . . . . . . . . . 20
3D Bounding Box . . . . . . . . . . . . . . . . . . . . . . . . . 23
Speed Up Template Matching Process . . . . . . . . . . . . . . . 24
2.6 Verification Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.7 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3 Vehicle and Pedestrian Color Classification Using Bayesian Classifier 29
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Overview of The Proposed System . . . . . . . . . . . . . . . . . . . . . 32
3.4 Color Decision Boundary Using Bayesian Rule . . . . . . . . . . . . . . 33
3.5 Color Classification Algorithm . . . . . . . . . . . . . . . . . . . . . . . 36
3.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4 Conclusions and Future Work 41
4.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Bibliography 43
dc.language.isoen
dc.title即時車輛和行人偵測與顏色辨識系統zh_TW
dc.titleReal-Time Vehicle and Pedestrian Detection and Color Classification Systemen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee莊永裕,江政杰,徐繼聖
dc.subject.keyword車輛偵測,行人偵測,車輛色彩辨識,行人色彩辨識,zh_TW
dc.subject.keywordvehicle detection,pedestrian detection,vehicle color classification,pedestrian color classification,en
dc.relation.page45
dc.rights.note未授權
dc.date.accepted2009-08-18
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊網路與多媒體研究所zh_TW
顯示於系所單位:資訊網路與多媒體研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
9.93 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved