請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22891完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 藍崇文(Chung-Wen Lan) | |
| dc.contributor.author | Kuan-Hui Lee | en |
| dc.contributor.author | 李冠輝 | zh_TW |
| dc.date.accessioned | 2021-06-08T04:32:20Z | - |
| dc.date.copyright | 2009-09-08 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-09-01 | |
| dc.identifier.citation | 1. Yablonovitch, E., Inhibited spontaneous emission in solid-state physics and electronics. Physical Review Letters, 1987. 58(20): pp. 2059-2062.
2. John, S., Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters, 1987. 58(23): pp. 2486-2489. 3. 蔡雅芝, 淺談光子晶體. 物理雙月刊, 1999. 21(4): pp. 445-450. 4. Joannopoulos, J.D., S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals:Molding the Flow of Light second edition. 2008. 5. Hiltner, P.A. and I.M. Krieger, Diffraction of light by ordered suspensions. Journal of Physical Chemistry, 1969. 73(7): pp. 2386-2389. 6. Yablonovitch, E., T.J. Gmitter, and K.M. Leung, Photonic band-structure - the face-centered-cubic case employing nonspherical atoms. Physical Review Letters, 1991. 67(17): pp. 2295-2298. 7. Fleming, J.G. and S.Y. Lin, Three-dimensional photonic crystal with a stop band from 1.35 to 1.95 mu m. Optics Letters, 1999. 24(1): pp. 49-51. 8. Noda, S., N. Yamamoto, M. Imada, H. Kobayashi, and M. Okano, Alignment and stacking of semiconductor photonic bandgaps by wafer-fusion. Journal of Lightwave Technology, 1999. 17(11): pp. 1948-1955. 9. Salvarezza, R.C., L. Vazquez, H. Miguez, R. Mayoral, C. Lopez, and F. Meseguer, Edward-Wilkinson behavior of crystal surfaces grown by sedimentation of SiO2 nanospheres. Physical Review Letters, 1996. 77(22): pp. 4572-4575. 10. Russel, W.B., Condensed-matter physics: Tunable colloidal crystals. Nature, 2003. 421(6922): pp. 490-491. 11. Woodcock, L.V., Entropy difference between crystal phases - Reply. Nature, 1997. 388(6639): pp. 236-237. 12. Mayoral, R., J. Requena, J.S. Moya, C. Lopez, A. Cintas, H. Miguez, F. Meseguer, L. Vazquez, M. Holgado, and A. Blanco, 3D long-range ordering in an SiO2 submicrometer-sphere sintered superstructure. Advanced Materials, 1997. 9(3): pp. 257-260. 13. Fudouzi, H., Novel coating method for artificial opal films and its process analysis. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2007. 311(1-3): pp. 11-15. 14. Norris, D.J., E.G. Arlinghaus, L. Meng, R. Heiny, and L.E. Scriven, Opaline photonic crystals: How does self-assembly work? Advanced Materials, 2004. 16(16): pp. 1393-1399. 15. Jiang, P., J.F. Bertone, K.S. Hwang, and V.L. Colvin, Single-crystal colloidal multilayers of controlled thickness. Chemistry of Materials, 1999. 11(8): pp. 2132-2140. 16. Velev, O.D., K. Furusawa, and K. Nagayama, Assembly of latex particles by using emulsion droplets as templates .1. Microstructured hollow spheres. Langmuir, 1996. 12(10): pp. 2374-2384. 17. Velev, O.D., K. Furusawa, and K. Nagayama, Assembly of latex particles by using emulsion droplets as templates .2. Ball-like and composite aggregates. Langmuir, 1996. 12(10): pp. 2385-2391. 18. Velev, O.D. and K. Nagayama, Assembly of latex particles by using emulsion droplets .3. Reverse (water in oil) system. Langmuir, 1997. 13(6): pp. 1856-1859. 19. Vlasov, Y.A., X.Z. Bo, J.C. Sturm, and D.J. Norris, On-chip natural assembly of silicon photonic bandgap crystals. Nature, 2001. 414(6861): pp. 289-293. 20. Ye, Y.-H., F. LeBlanc, A. Hache, and V.-V. Truong, Self-assembling three-dimensional colloidal photonic crystal structure with high crystalline quality. Applied Physics Letters, 2001. 78(1): pp. 52-54. 21. Szekeres, M., O. Kamalin, R.A. Schoonheydt, K. Wostyn, K. Clays, A. Persoons, and I. Dekany, Ordering and optical properties of monolayers and multilayers of silica spheres deposited by the Langmuir-Blodgett method. Journal of Materials Chemistry, 2002. 12(11): pp. 3268-3274. 22. Im, S.H., M.H. Kim, and O.O. Park, Thickness control of colloidal crystals with a substrate dipped at a tilted angle into a colloidal suspension. Chemistry of Materials, 2003. 15(9): pp. 1797-1802. 23. Bertone, J.F., P. Jiang, K.S. Hwang, D.M. Mittleman, and V.L. Colvin, Thickness dependence of the optical properties of ordered silica-air and air-polymer photonic crystals. Physical Review Letters, 1999. 83(2): pp. 300-303. 24. Vlasov, Y.A., M. Deutsch, and D.J. Norris, Single-domain spectroscopy of self-assembled photonic crystals. Applied Physics Letters, 2000. 76(12): pp. 1627-1629. 25. Shung, K.W.K. and Y.C. Tsai, Surface effects and band measurements in photonic crystals. Physical Review B, 1993. 48(15): pp. 11265-11269. 26. Augustin, M., H.J. Fuchs, D. Schelle, E.B. Kley, S. Nolte, A. Tunnermann, R. Iliew, C. Etrich, U. Peschel, and F. Lederer, High transmission and single-mode operation in low-index-contrast photonic crystal waveguide devices. Applied Physics Letters, 2004. 84(5): pp. 663-665. 27. Taton, T.A. and D.J. Norris, Device physics: Defective promise in photonics. Nature, 2002. 416(6882): pp. 685-686. 28. Huisman, C.L., J. Schoonman, and A. Goossens, The application of inverse titania opals in nanostructured solar cells. Solar Energy Materials and Solar Cells, 2005. 85: pp. 115-124. 29. Stober, W., A. Fink, and E. Bohn, Controlled growth of monodisperse silica spheres in micron size range. Journal of Colloid and Interface Science, 1968. 26(1): pp. 62-69. 30. Schmitz, K.S., An introduction to dynamic light scattering by macromolecules. 1990, Boston :: Academic Press. 31. Pedrotti, F.L., Introduction to optics. 1993, Englewood Cliffs, N.J. :: Prentice Hall. 32. Miguez, H., F. Meseguer, C. Lopez, A. Mifsud, J.S. Moya, and L. Vazquez, Evidence of FCC crystallization of SiO2 nanospheres. Langmuir, 1997. 13(23): pp. 6009-6011. 33. Cheng, B.Y., P.G. Ni, C.J. Jin, Z.L. Li, D.Z. Zhang, P. Dong, and X.C. Guo, More direct evidence of the fcc arrangement for artificial opal. Optics Communications, 1999. 170(1-3): pp. 41-46. 34. Teh, L.K., N.K. Tan, C.C. Wong, and S. Li, Growth imperfections in three-dimensional colloidal self-assembly. Applied Physics a-Materials Science & Processing, 2005. 81(7): pp. 1399-1404. 35. Adachi, E., A.S. Dimitrov, and K. Nagayama, Stripe patterns formed on a glass-surface during droplet evaporation. Langmuir, 1995. 11(4): pp. 1057-1060. 36. Yong, V., L.K. Aagesen, and R.P.H. Chang, Growth of highly ordered colloidal photonic crystals using a modeling approach. Nanotechnology, 2008. 19(43): pp. 435204. 37. Egen, M., R. Voss, B. Griesebock, R. Zentel, S. Romanov, and C.S. Torres, Heterostructures of polymer photonic crystal films. Chemistry of Materials, 2003. 15(20): pp. 3786-3792. 38. Chung, Y.W., Fabrication and characterization of photonic crystals by employing the colloidal process. PhD dissertation, in Materials Science and Engineering. 2006, National Cheng Kung University: Tainan. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22891 | - |
| dc.description.abstract | 光子晶體為一具有週期性結構之介電材料,改變晶體結構週期便能改變其光子能隙特性,從而控制光的傳播行為,可用於製作許多新型光電元件。故無論在光學理論及應用方面都引起人們很大興趣。
本論文旨在以浸提法生長光子晶體。使用粒徑均一(偏差值小於5%)之二氧化矽奈米粒子之酒精懸浮液,在不同濃度、拉速條件下生長光子晶體。在掃瞄式電子顯微鏡觀察下,晶體以面心立方結構組成。當固定濃度、拉速漸增時,晶體剖面輪廓由平滑轉為週期性帶狀結構,且晶體厚度(層數)漸減;而當拉速固定時,則存在一最佳濃度可長成平滑且最厚之晶體。晶體缺陷分為巨觀與微觀兩部分,週期性帶狀結構為巨觀缺陷,而微觀缺陷則有平行條紋、塊狀晶粒、點缺陷等。文中也討論了不同狀態下的生長機制及缺陷成因。 對這些晶體進行反射頻譜量測,其反射峰位置與布拉格反射理論值相符,再次驗證晶體為面心立方結構;且反射峰之半高寬倒數(1/FWHM)與晶體厚度呈正相關;反射頻譜中出現的Fabry-Perot震盪圖譜亦與晶體層數有關。針對反射頻譜以傳遞矩陣(transfer matrix)加以擬合,不論反射峰位置、Fabry-Perot震盪圖譜均得到一致性結果。 | zh_TW |
| dc.description.abstract | Photonic crystal is a dielectric material with periodic structure. We can control light propagation by utilizing photonic band gap which has connection with periodic structure. It can be used to fabricate novel optoelectronic devices. People are interested in this field either theory or application.
This thesis is to grow colloidal opal by dip-coating method with monodispersed SiO2 ethanol suspension under various concentration and pulling velocity. The opal possess FCC structure under SEM. When constant concentration, increasing pulling velocity, the opal cross-section profile transfers from a smooth band to periodic growth bands. Also the opal thickness decreases. There exist an optimal concentration to grow a smooth and thickest opal while constant pulling velocity. Periodic growth bands are macroscopic defects. The microscopic defects are parallel striations, grains and point defects. The growth mechanism and how defects formed had been discussed in this thesis. The reflectance spectrum measurements showed consistent results between Bragg reflection and reflection peak position, which verified the opal possess FCC structure. The inverse FWHM of reflection peak is positively correlated to opal thickness. The Fabry-Perot fringes in reflectance spectrum also related to layers of opal. Using transfer matrix to fit the reflectance spectrum, we have got consistent results either peak position or Fabry-Perot fringes. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T04:32:20Z (GMT). No. of bitstreams: 1 ntu-98-R95524085-1.pdf: 3519985 bytes, checksum: 250410ac2eb5722dc283eedb3af54bfb (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii 英文摘要 iii 總目錄 iv 圖目錄 vi 表目錄 ix 第一章 光子晶體簡介 1 1-1 光子晶體定義 1 1-2 光子晶體光學性質 2 1-3 光子晶體製程 4 1-3.1 機械鑽孔法及半導體製程 4 1-3.2 膠體製程 5 1-4 光學性質量測 9 1-5 光子晶體應用 11 1-6 研究動機與目的 11 第二章 實驗步驟及方法 13 2-1 實驗流程 13 2-2 實驗藥品 14 2-3 實驗儀器 15 2-3.1 離心機 15 2-3.2 雷射粒徑分析儀 15 2-3.3 掃瞄式電子顯微鏡 15 2-3.4 浸提設備 16 2-3.5 垂直入射--漫射式光譜 16 2-3.6 非正向入射之反射光譜 17 2-4 SiO2奈米粒子之合成及純化 18 2-5 粒徑分析 19 2-6 晶體生長 19 2-7 晶體SEM檢測及光學性質檢測 20 2-8 光學性質分析— Transfer Matrix 20 第三章 晶體結構 23 3-1 巨觀晶體結構 23 3-2 微觀晶體結構 24 3-2.1 晶體堆積方式 24 3-2.2 拉速對晶體結構之影響 26 3-2.2.1 晶體剖面 26 3-2.2.2 晶體表面 27 3-2.3 濃度對晶體結構之影響 30 3-2.3.1 晶體剖面 30 3-2.3.2 晶體表面 30 3-3 晶體缺陷 33 3-3.1 巨觀缺陷 33 3-3.2 微觀缺陷 33 第四章 晶體生長機制探討 35 4-1 浸提法晶體生長機制 35 4-2 在濃度固定、拉速改變下晶體之生長機制 36 4-3 在拉速固定、濃度改變下晶體之生長機制 38 4-4 缺陷可能成因 39 第五章 反射率量測與分析 41 5-1 垂直入射--漫射式光譜 41 5-2 非正向入射之反射光譜 44 5-3 Transfer Matrix模擬結果比較 48 第六章 結論 49 參考文獻 50 | |
| dc.language.iso | zh-TW | |
| dc.subject | 傳遞矩陣 | zh_TW |
| dc.subject | 浸提法 | zh_TW |
| dc.subject | 光子晶體 | zh_TW |
| dc.subject | 膠體製程 | zh_TW |
| dc.subject | 機制 | zh_TW |
| dc.subject | 反射率 | zh_TW |
| dc.subject | transfer matrix | en |
| dc.subject | dip-coating | en |
| dc.subject | colloidal opal | en |
| dc.subject | mechanism | en |
| dc.subject | reflectance | en |
| dc.title | 浸提法光子晶體生長及其機制研究 | zh_TW |
| dc.title | A Study on Colloidal Opal Grown by Dip-Coating Method | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 何國川(Kuo-Chuan Ho),張正陽(Jenq-Yang Chang),陳啟昌(Chii -Chang Chen) | |
| dc.subject.keyword | 浸提法,光子晶體,膠體製程,機制,反射率,傳遞矩陣, | zh_TW |
| dc.subject.keyword | dip-coating,colloidal opal,mechanism,reflectance,transfer matrix, | en |
| dc.relation.page | 54 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2009-09-02 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 3.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
