Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22889
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳怡然
dc.contributor.authorShu-Mei Huangen
dc.contributor.author黃淑美zh_TW
dc.date.accessioned2021-06-08T04:32:15Z-
dc.date.copyright2009-09-15
dc.date.issued2009
dc.date.submitted2009-09-10
dc.identifier.citation參考文獻
[1] T. A. Fjeldly , “Introduction to Device Modeling and Circuit Simulation ', John Wiley & Sons, 1998.
[2] H. Chern, C. L. Lee, and T. F. Lei, “An analytical model for the above-threshold characteristics of polysilicon thin-film transistors,” IEEE Trans. Electron Devices, vol. 42, pp. 1240–1246, July 1995.
[3] F. Qian, D. M. Kim, and G. H. Kawamoto, “Inversion/accumulation-mode polysilicon thin film transistors: Characterization and unified modeling,” IEEE Trans. Electron Devices, vol. 35, pp. 1501–1509, Sept. 1988.
[4] S. W. Wright, M. J. Lee, P. K. Roberts, and C. P. Judge, “A semi-empirical simulation model for polycrystalline thin film transistors,” Solid State Electron., vol. 43, pp. 2047–2055, 1999.
[5] H. De Smet, J. De Baets, A. M. De Cubber, and J. De Vos, “New model for the characterization and simulation of TFTs in all operating regions,” in SID Tech. Dig., pp. 119–122, 1995.
[6] http://www.chisso.com.tw/future.html
[7] http://edu.136z.com/DataBase/25876.html
[8] http://www.toppoly.com/
[9] 顧鴻壽, 光電液晶平面顯示器技術基礎及應用, 新文京, 台北市, 2004
[10] http://auo.com/auoDEV/technology.php?sec=LTPS&ls=tc
[11] http://www.pida.org.tw/optolink/optolink_pdf/86071007.pdf
[12] 陳志強, LTPS 低溫多晶矽擷示技術, 全華, 台北市, 2004
[13] 郭正邦, BiCMOS 數位IC, McGraw-Hill台灣分公司, 台北市, 1996
[14] 徐碩鴻, MOS元件之低頻與高頻雜訊探討, 奈米通訊, 頁52-56, 2007.12
[15] J. C. Guo, S. S. Chung and C. H. Hsu, “A New Approach to Determine the Effective Channel Length and the Drain-and-Source Series Resistance of Miniaturized MOSFET's ” IEEE Trans. Electron Device, Vol.41, No.10, October 1994
[16] Ling Wang, Tor A. Fjeldly, Benjamin Iniguez, Holly C. Slade, and Michael Shur, “Self-Heating and Kink Effects in a-Si :H Thin Film Transistors” IEEE Trans. Electron Device, Vol.47, No.2, pp. 1811–1818, February 2000.
[17] L. T. Su et al., “Measurement and modeling of self-heating in SOI NMOSFET’s,” IEEE Trans. Electron Devices, vol. 41, pp. 69–75, 1994.
[18] S. C. Lin, and J. B. Kuo, “Temperature-Dependent Kink Effect Model for Partially-Depleted SOI NMOS Devices,” IEEE Trans. Electron Devices, Vol. 46, No. 1, pp. 254-258, Jan. 1999.
[19] M.D Jacunski et al., “A short-channel DC SPICE model for polysilicon thin-film transistors including temperature effects”, IEEE Trans. Electron Device, Vol.33 No.7, pp1146-1158, 1999.
[20] Walid Benzarti, François Plais, Anthony De Luca, and Didier Pribat, “Compact Analytical Physical-Based Model of LTPS TFT for Active Matrix Displays Addressing Circuits Simulation and Design” IEEE Trans. Electron Device Vol. 51, No. 3, pp.345-350, March 2004.
[21]G. Dambrine et al.,“A new method to determining the FET small-signal circuit” IEEE Trans. Microwave Theory Tech., Vol. 36, No. 7, pp.1151-1159, 1988.
[22] F. Diamant and M. Laviron, “Measurement of the extrinsic series elements of a microwave MESFET under zero current condition,” Proc. 12th European Microwave Conf., pp. 451-456, 1982.
[23]L. Yang and S. I. Long, “New method to measure the source and drain resistance of the GaAs MESFET,” IEEE Electron Device Lett., vol. EDL-7, pp.75-77, Feb. 1986.
[24] Steve Hung-Min Jen, Christian C. Enz, David R. Pehlke, Michael Schroter and Bing J. Sheu, “Accurate Modeling and Parameter Extraction for MOS Transistors Valid up to 10 GHz” IEEE Trans. Electron Device, pp.2217-2227, 1999.
[25] D. Lovelace, J. Costa, and N. Camilleri, “Extracting small-signal model parameters of silicon MOSFET transistors,” in IEEE MTT-S Dig., pp. 865–868, 1994.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22889-
dc.description.abstract低溫多晶矽(Low Temperature Poly-Silicon,LTPS)已經變成一種應用在主動矩陣液晶顯示器和主動矩陣有機發光顯示器上TFT的標準製程。想要達到有效的電路模擬,發展正確的模型為必然的趨勢。為了能模擬大數量的矩陣圖素和積體驅動電路,模型必須夠簡單以允許大規模資料的電路模擬。
我們的直流模型適用於N型和P型通道LTPS TFT。模型建立在物理基礎上,也提出了幾個重要的物理參數用來解釋物理現象對汲極電流的影響,這些參數和元件結構和製程有關。直流模型包含了所有的操作區:線性區、飽和區、Kink區。模型中也考慮了溫度及通道長度對電流的影響。
本論文也包含了電晶體的小訊號模型。我們利用Cold-FET 高頻量測方法,萃取電晶體外部寄生元件參數;再經由矩陣轉換求得內部本質元件參數;最後建立電晶體小訊號等效模型。
zh_TW
dc.description.abstractLow-temperature poly-silicon (LTPS) is becoming a standard technology for the fabrication of thin-film transistors (TFTs) used in active matrix liquid crystal displays and in active matrix organic light emissive displays. In order to be able to simulate large number of matrix pixels or integrated drivers, this model is simple enough to allow simulator convergence.
A analytical model for the DC characteristics of both n- and p-channel LTPS TFT is described. Our approach results in a physically based model with some parameters, which are related to the device structure and fabrication process. The DC model describes all regimes of operation: linear, saturation, and Kink. The effects of temperature and channel length are also included in our model.
This thesis also contains the small-signal modeling. This method consists in a direct determination of all the FET parasitic elements. The knowledge of these parasitic element values allows us to determine the intrinsic parameters after a few simple matrix manipulations. Then all the extrinsic and intrinsic components are determined.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:32:15Z (GMT). No. of bitstreams: 1
ntu-98-J95921030-1.pdf: 2249812 bytes, checksum: e8db1d093044a0673a81d6384ec21417 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents目 錄
第一章 導論 1
1.1 研究動機 1
1.2 發展現況 3
1.3 論文架構 4
第二章 低溫多晶矽薄膜電晶體基礎理論 5
2.1 液晶平面顯示器介紹 5
2.2 LTPS低溫多晶矽元件基本物理結構 9
2.3 低溫多晶矽成長方式 10
2.4 低溫多晶矽薄膜電晶體液晶平面顯示器優勢 12
2.5 低溫多晶矽未來發展 14
第三章 低溫多晶矽薄膜電晶體直流模型理論探討 15
3.1 簡介 15
3.2 載子速度飽合效應與通道長度調變效應 16
3.3 源極/汲極寄生電阻模型 19
3.4 自我熱效應 23
3.4.1 臨界電壓和場效漂移率 23
3.4.2 熱電阻的物理模型 24
3.5 Kink效應 29
第四章 低溫多晶矽薄膜電晶體直流模型與驗證 32
4.1簡介 32
4.2直流模型理論與驗證 33
4.2.1 臨界電壓模型 33
4.2.2 寄生電阻模型 34
4.2.3 通道長度調變效應 35
4.2.4 自我熱效應 36
4.2.5 Kink效應 37
4.3直流模型理論驗證 38
第五章 低溫多晶矽薄膜電晶體直流可尺寸化模型理論探討與驗證 42
5.1簡介 42
5.2直流可尺寸化模型理論探討 43
5.3直流可尺寸化模型理論驗證 44
5.4 結論 48
第六章 低溫多晶矽薄膜電晶體高頻小訊號模型建立 49
6.1簡介 49
6.2小訊號模型理論分析 50
6.3 外部寄生元件參數的萃取 51
6.3.1 萃取寄生電容 52
6.3.2 萃取寄生電阻 54
6.4 本質元件參數的萃取 56
6.5 元件模擬與結果分析 58
6.6結論 66
第七章 結論 67
參考文獻 68
dc.language.isozh-TW
dc.subject低溫多晶矽zh_TW
dc.subject薄膜電晶體zh_TW
dc.subject直流模型zh_TW
dc.subject小訊號模型zh_TW
dc.subjectTFTen
dc.subjectLTPSen
dc.subjectDC modelen
dc.subjectsmall signal modelen
dc.title低溫多晶矽薄膜電晶體直流模型與小訊號模型zh_TW
dc.titleDC model and small signal model for LTPS TFTen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee曹恆偉,盧奕璋
dc.subject.keyword低溫多晶矽,薄膜電晶體,直流模型,小訊號模型,zh_TW
dc.subject.keywordDC model,small signal model,LTPS,TFT,en
dc.relation.page69
dc.rights.note未授權
dc.date.accepted2009-09-10
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
2.2 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved