Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22879
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳朝?(Chau-Fong Chen)
dc.contributor.authorHsao-Hsun Hsuen
dc.contributor.author徐紹勛zh_TW
dc.date.accessioned2021-06-08T04:31:51Z-
dc.date.copyright2010-03-12
dc.date.issued2009
dc.date.submitted2009-09-25
dc.identifier.citation1. Barnes, P.J. and S.F. Liu, Regulation of pulmonary vascular tone. Pharmacol Rev, 1995. 47(1): p. 87-131.
2. Jeffery, T.K. and N.W. Morrell, Molecular and cellular basis of pulmonary vascular remodeling in pulmonary hypertension. Prog Cardiovasc Dis, 2002. 45(3): p. 173-202.
3. Humbert, M., et al., Cellular and molecular pathobiology of pulmonary arterial hypertension. J Am Coll Cardiol, 2004. 43(12 Suppl S): p. 13S-24S.
4. Dorfmuller, P., et al., Pathology and aspects of pathogenesis in pulmonary arterial hypertension. Sarcoidosis Vasc Diffuse Lung Dis, 2003. 20(1): p. 9-19.
5. Puri, A., M.D. McGoon, and S.S. Kushwaha, Pulmonary arterial hypertension: current therapeutic strategies. Nat Clin Pract Cardiovasc Med, 2007. 4(6): p. 319-29.
6. Taraseviciene-Stewart, L., et al., Simvastatin causes endothelial cell apoptosis and attenuates severe pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol, 2006. 291(4): p. L668-76.
7. Girgis, R.E., et al., Regression of chronic hypoxic pulmonary hypertension by simvastatin. Am J Physiol Lung Cell Mol Physiol, 2007. 292(5): p. L1105-10.
8. Nishimura, T., et al., Simvastatin attenuates smooth muscle neointimal proliferation and pulmonary hypertension in rats. Am J Respir Crit Care Med, 2002. 166(10): p. 1403-8.
9. Reindel, J.F., et al., Development of morphologic, hemodynamic, and biochemical changes in lungs of rats given monocrotaline pyrrole. Toxicology and Applied Pharmacology, 1990. 106(2): p. 179-200.
10. Stenmark, K.R., et al., Alveolar inflammation and arachidonate metabolism in monocrotaline-induced pulmonary hypertension. Am J Physiol Heart Circ Physiol, 1985. 248(6): p. H859-866.
11. Roth, R.A. and P.E. Ganey, Platelets and the puzzles of pulmonary pyrrolizidine poisoning. Toxicology and Applied Pharmacology, 1988. 93(3): p. 463-471.
12. Yu, C.C. and Y.L. Lai, Chronic hypoxia attenuates ischemia-reperfusion-induced increase in pulmonary vascular resistance. Life Sci, 2003. 73(17): p. 2171-84.
13. Suttner, D.M., et al., Protective effects of transient HO-1 overexpression on susceptibility to oxygen toxicity in lung cells. American Journal of Physiology- Lung Cellular and Molecular Physiology, 1999. 276(3): p. 443-451.
14. Choi, A.M. and J. Alam, Heme oxygenase-1: function, regulation, and implication of a novel stress-inducible protein in oxidant-induced lung injury. 1996, Am Thoracic Soc. p. 9-19.
15. Stenmark, K.R., K.A. Fagan, and M.G. Frid, Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms. Circ Res, 2006. 99(7): p. 675-91.
16. Laufs, U., V.L. Fata, and J.K. Liao, Inhibition of 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase blocks hypoxia-mediated down-regulation of endothelial nitric oxide synthase. J Biol Chem, 1997. 272(50): p. 31725-9.
17. Girgis, R.E., et al., Attenuation of chronic hypoxic pulmonary hypertension by simvastatin. Am J Physiol Heart Circ Physiol, 2003. 285(3): p. H938-45.
18. Nishimura, T., et al., Simvastatin rescues rats from fatal pulmonary hypertension by inducing apoptosis of neointimal smooth muscle cells. Circulation, 2003. 108(13): p. 1640-5.
19. Kao, P.N., Simvastatin Treatment of Pulmonary Hypertension: An Observational Case Series. Chest, 2005. 127(4): p. 1446-1452.
20. Vitali, S.H., et al., Mechanisms of Heme Oxygenase-1-Mediated Cardiac and Pulmonary Vascular Protection in Chronic Hypoxia: Roles of Carbon Monoxide and Bilirubin. Chest, 2005. 128(6_suppl): p. 578S-579.
21. Maines, M.D., Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. FASEB J, 1988. 2(10): p. 2557-68.
22. Morse, D. and A.M. Choi, Heme oxygenase-1: from bench to bedside. Am J Respir Crit Care Med, 2005. 172(6): p. 660-70.
23. Christou, H., et al., Prevention of hypoxia-induced pulmonary hypertension by enhancement of endogenous heme oxygenase-1 in the rat. Circ Res, 2000. 86(12): p. 1224-9.
24. Minamino, T., et al., Targeted expression of heme oxygenase-1 prevents the pulmonary inflammatory and vascular responses to hypoxia. Proc Natl Acad Sci U S A, 2001. 98(15): p. 8798-803.
25. Grosser, N., et al., The antioxidant defense protein heme oxygenase 1 is a novel target for statins in endothelial cells. Free Radic Biol Med, 2004. 37(12): p. 2064-71.
26. Lee, T.S., et al., Simvastatin induces heme oxygenase-1: a novel mechanism of vessel protection. Circulation, 2004. 110(10): p. 1296-302.
27. Fredenburgh, L.E., M.A. Perrella, and S.A. Mitsialis, The role of heme oxygenase-1 in pulmonary disease. Am J Respir Cell Mol Biol, 2007. 36(2): p. 158-65.
28. Yet, S.F., et al., Hypoxia induces severe right ventricular dilatation and infarction in heme oxygenase-1 null mice. J Clin Invest, 1999. 103(8): p. R23-9.
29. Goto, J., et al., Heme oxygenase-1 reduces murine monocrotaline-induced pulmonary inflammatory responses and resultant right ventricular overload. Antioxid Redox Signal, 2002. 4(4): p. 563-8.
30. Girgis, R.E., et al., Differential gene expression in chronic hypoxic pulmonary hypertension: effect of simvastatin treatment. Chest, 2005. 128(6 Suppl): p. 579S.
31. Zhou, H., et al., Heme oxygenase-1 mediates the protective effects of rapamycin in monocrotaline-induced pulmonary hypertension. Lab Invest, 2006. 86(1): p. 62-71.
32. Zhou, K.R. and Y.L. Lai, Capsaicin pretreatment attenuates monocrotaline-induced ventilatory dysfunction and pulmonary hypertension. J Appl Physiol, 1993. 75(6): p. 2781-2788.
33. Chen, M.J., L.Y. Chiang, and Y.L. Lai, Reactive oxygen species and substance P in monocrotaline-induced pulmonary hypertension. Toxicol Appl Pharmacol, 2001. 171(3): p. 165-73.
34. Caterina, M.J., et al., The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature, 1997. 389(6653): p. 816-24.
35. Szallasi, A. and P.M. Blumberg, Vanilloid (Capsaicin) Receptors and Mechanisms. Pharmacol Rev, 1999. 51(2): p. 159-212.
36. Lai, Y.L., H.D. Wu, and C.F. Chen, Antioxidants attenuate chronic hypoxic pulmonary hypertension. J Cardiovasc Pharmacol, 1998. 32(5): p. 714-20.
37. Ruan, T., et al., Sensory transduction of pulmonary reactive oxygen species by capsaicin-sensitive vagal lung afferent fibres in rats. J Physiol, 2005. 565(Pt 2): p. 563-78.
38. Lee, L.Y. and T.E. Pisarri, Afferent properties and reflex functions of bronchopulmonary C-fibers. Respir Physiol, 2001. 125(1-2): p. 47-65.
39. Lin, Y.S. and Y.R. Kou, Reflex apneic response evoked by laryngeal exposure to wood smoke in rats: neural and chemical mechanisms. J Appl Physiol, 1997. 83(3): p. 723-30.
40. Evans, R.G., J. Ludbrook, and J. Michalicek, Characteristics of cardiovascular reflexes originating from 5-HT3 receptors in the heart and lungs of unanaesthetized rabbits. Clin Exp Pharmacol Physiol, 1990. 17(9): p. 665-79.
41. Kirkup, A.J., et al., Excitatory effect of P2X receptor activation on mesenteric afferent nerves in the anaesthetised rat. J Physiol, 1999. 520 Pt 2: p. 551-63.
42. Smith, A., et al., Regulation of heme oxygenase and metallothionein gene expression by the heme analogs, cobalt-, and tin-protoporphyrin. J Biol Chem, 1993. 268(10): p. 7365-71.
43. Motterlini, R., et al., NO-mediated activation of heme oxygenase: endogenous cytoprotection against oxidative stress to endothelium. Am J Physiol, 1996. 270(1 Pt 2): p. H107-14.
44. Tenhunen, R., H.S. Marver, and R. Schmid, The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc Natl Acad Sci U S A, 1968. 61(2): p. 748-55.
45. McNally, S.J., et al., Optimization of the paired enzyme assay for heme oxygenase activity. Anal Biochem, 2004. 332(2): p. 398-400.
46. Galbraith, R.A. and A. Kappas, Regulation of food intake and body weight by cobalt porphyrins in animals. Proc Natl Acad Sci U S A, 1989. 86(19): p. 7653-7.
47. Muhoberac, B.B., et al., A model of cytochrome P-450-centered hepatic dysfunction in drug metabolism induced by cobalt-protoporphyrin administration. Biochem Pharmacol, 1989. 38(22): p. 4103-13.
48. Rosenberg, D.W. and A. Kappas, The comparative abilities of inorganic cobalt and cobalt-protoporphyrin to affect copper metabolism and elevate plasma ceruloplasmin. Pharmacology, 1995. 50(3): p. 201-8.
49. Smith, T.J., G.S. Drummond, and A. Kappas, Cobalt-Protoporphyrin Suppresses Thyroid and Testicular Hormone Concentrations in Rat Serum - a Novel Action of This Synthetic Heme Analog. Pharmacology, 1987. 34(1): p. 9-16.
50. Ganesh, S.K., C.M. Nass, and R.S. Blumenthal, Anti-atherosclerotic effects of statins: lessons from prevention trials. J Cardiovasc Risk, 2003. 10(3): p. 155-9.
51. LaRosa, J.C., Statins and risk of coronary heart disease. JAMA, 2000. 283(22): p. 2935-6.
52. Massy, Z.A., W.F. Keane, and B.L. Kasiske, Inhibition of the mevalonate pathway: benefits beyond cholesterol reduction? Lancet, 1996. 347(8994): p. 102-3.
53. Wierzbicki, A.S., R. Poston, and A. Ferro, The lipid and non-lipid effects of statins. Pharmacol Ther, 2003. 99(1): p. 95-112.
54. Lai, I.R., et al., Pharmacological preconditioning with simvastatin protects liver from ischemia-reperfusion injury by heme oxygenase-1 induction. Transplantation, 2008. 85(5): p. 732-8.
55. Rubin, L.J., Diagnosis and management of pulmonary arterial hypertension: ACCP evidence-based clinical practice guidelines. Chest, 2004. 126(1 Suppl): p. 7S-10S.
56. Sandoval, J., et al., Survival in primary pulmonary hypertension. Validation of a prognostic equation. Circulation, 1994. 89(4): p. 1733-44.
57. Micah R. Fisher, S.C.M.H.C.C.R.E.G.T.H.-H.L.H.J.A.K.F.W.P.M.H., Clinical differences between idiopathic and scleroderma-related pulmonary hypertension. Arthritis & Rheumatism, 2006. 54(9): p. 3043-3050.
58. Condliffe, R., et al., Connective Tissue Disease-associated Pulmonary Arterial Hypertension in the Modern Treatment Era. Am. J. Respir. Crit. Care Med., 2009. 179(2): p. 151-157.
59. Lee, P.J., et al., Hypoxia-inducible factor-1 mediates transcriptional activation of the heme oxygenase-1 gene in response to hypoxia. J Biol Chem, 1997. 272(9): p. 5375-81.
60. Morita, T., et al., Smooth muscle cell-derived carbon monoxide is a regulator of vascular cGMP. Proc Natl Acad Sci U S A, 1995. 92(5): p. 1475-9.
61. Hartsfield, C.L., et al., Regulation of heme oxygenase-1 gene expression in vascular smooth muscle cells by nitric oxide. Am J Physiol, 1997. 273(5 Pt 1): p. L980-8.
62. Carraway, M.S., et al., Expression of heme oxygenase-1 in the lung in chronic hypoxia. Am J Physiol Lung Cell Mol Physiol, 2000. 278(4): p. L806-12.
63. Breslow, E., R. Chandra, and A. Kappas, Biochemical properties of the heme oxygenase inhibitor, Sn- protoporphyrin. Interactions with apomyoglobin and human serum albumin. J. Biol. Chem., 1986. 261(7): p. 3135-3141.
64. Sardana, M.K. and A. Kappas, Dual control mechanism for heme oxygenase: tin (IV)-protoporphyrin potently inhibits enzyme activity while markedly increasing content of enzyme protein in liver. Proceedings of the National Academy of Sciences of the United States of America, 1987. 84(8): p. 2464.
65. Liao, J.K. and U. Laufs, PLEIOTROPIC EFFECTS OF STATINS. Annual Review of Pharmacology and Toxicology, 2005. 45(1): p. 89-118.
66. Widdicombe, J. and L.Y. Lee, Airway reflexes, autonomic function, and cardiovascular responses. Environ Health Perspect, 2001. 109 Suppl 4: p. 579-84.
67. Ghodsi, F. and J.A. Will, Changes in pulmonary structure and function induced by monocrotaline intoxication. Am J Physiol Heart Circ Physiol, 1981. 240(2): p. H149-155.
68. Hess, P., M. Clozel, and J.P. Clozel, Telemetry monitoring of pulmonary arterial pressure in freely moving rats. J Appl Physiol, 1996. 81(2): p. 1027-1032.
69. Coleridge, J.C. and H.M. Coleridge, Afferent vagal C fibre innervation of the lungs and airways and its functional significance. Rev Physiol Biochem Pharmacol, 1984. 99: p. 1-110.
70. Pelleg, A. and C.M. Hurt, Mechanism of action of ATP on canine pulmonary vagal C fibre nerve terminals. J Physiol, 1996. 490 ( Pt 1): p. 265-75.
71. Linhart, O., O. Obreja, and M. Kress, The inflammatory mediators serotonin, prostaglandin E2 and bradykinin evoke calcium influx in rat sensory neurons. Neuroscience, 2003. 118(1): p. 69-74.
72. Jancso, G. and G. Such, Effects of capsaicin applied perineurally to the vagus nerve on cardiovascular and respiratory functions in the cat. J Physiol, 1983. 341: p. 359-70.
73. Weitz-Schmidt, G., Statins as anti-inflammatory agents. Trends Pharmacol Sci, 2002. 23(10): p. 482-6.
74. Hothersall, E., C. McSharry, and N.C. Thomson, Potential therapeutic role for statins in respiratory disease. Thorax, 2006. 61(8): p. 729-734.
75. McKay, A., et al., A Novel Anti-Inflammatory Role of Simvastatin in a Murine Model of Allergic Asthma. J Immunol, 2004. 172(5): p. 2903-2908.
76. Lee, J.H., et al., Simvastatin inhibits cigarette smoking-induced emphysema and pulmonary hypertension in rat lungs. Am J Respir Crit Care Med, 2005. 172(8): p. 987-93.
77. Morse, D. and A.M. Choi, Heme oxygenase-1: the 'emerging molecule' has arrived. Am J Respir Cell Mol Biol, 2002. 27(1): p. 8-16.
78. Ruan, T., C.Y. Ho, and Y.R. Kou, Afferent vagal pathways mediating respiratory reflexes evoked by ROS in the lungs of anesthetized rats. J Appl Physiol, 2003. 94(5): p. 1987-98.
79. Langen, R.C., S.H. Korn, and E.F. Wouters, ROS in the local and systemic pathogenesis of COPD. Free Radic Biol Med, 2003. 35(3): p. 226-35.
80. Emelyanov, A., et al., Elevated concentrations of exhaled hydrogen peroxide in asthmatic patients. Chest, 2001. 120(4): p. 1136-9.
81. Wedgwood, S. and S.M. Black, Role of reactive oxygen species in vascular remodeling associated with pulmonary hypertension. Antioxid Redox Signal, 2003. 5(6): p. 759-69.
82. Van Dyke, K., M.R. Van Scott, and V. Castranova, Measurement of phagocytosis and cell-mediated cytotoxicity by chemiluminescence. Methods Enzymol, 1986. 132: p. 498-507.
83. Hsu, M., et al., Tissue-specific effects of statins on the expression of heme oxygenase-1 in vivo. Biochem Biophys Res Commun, 2006. 343(3): p. 738-44.
84. Rubin, L.J., Primary pulmonary hypertension. N Engl J Med, 1997. 336(2): p. 111-7.
85. D'Alonzo, G.E., et al., Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann Intern Med, 1991. 115(5): p. 343-9.
86. Channick, R.N., et al., Effects of the dual endothelin-receptor antagonist bosentan in patients with pulmonary hypertension: a randomised placebo-controlled study. Lancet, 2001. 358(9288): p. 1119-23.
87. Rubin, L.J., et al., Bosentan therapy for pulmonary arterial hypertension. N Engl J Med, 2002. 346(12): p. 896-903.
88. Sitbon, O., et al., Effects of the dual endothelin receptor antagonist bosentan in patients with pulmonary arterial hypertension: a 1-year follow-up study. Chest, 2003. 124(1): p. 247-54.
89. Sasayama, S., et al., Effects of the endothelin receptor antagonist bosentan on hemodynamics, symptoms and functional capacity in Japanese patients with severe pulmonary hypertension. Circ J, 2005. 69(2): p. 131-7.
90. Hsu, H.H., et al., Effects of continuous intravenous epoprostenol therapy on advanced primary pulmonary hypertension in Taiwanese patients. J Formos Med Assoc, 2005. 104(1): p. 60-3.
91. Standardization of Spirometry, 1994 Update. American Thoracic Society. Am J Respir Crit Care Med, 1995. 152(3): p. 1107-36.
92. Meyer, F.J., et al., Peripheral airway obstruction in primary pulmonary hypertension. Thorax, 2002. 57(6): p. 473-6.
93. Peacock, A.J., Primary pulmonary hypertension. Thorax, 1999. 54(12): p. 1107-18.
94. Giaid, A. and D. Saleh, Reduced expression of endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension. N Engl J Med, 1995. 333(4): p. 214-21.
95. Dinh-Xuan, A.T., et al., Impairment of endothelium-dependent pulmonary-artery relaxation in chronic obstructive lung disease. N Engl J Med, 1991. 324(22): p. 1539-47.
96. Fagan, K.A., I.F. McMurtry, and D.M. Rodman, Role of endothelin-1 in lung disease. Respir Res, 2001. 2(2): p. 90-101.
97. Strauss, H.W., et al., Of linens and laces--the eighth anniversary of the gated blood pool scan. Semin Nucl Med, 1979. 9(4): p. 296-309.
98. Morrison, D., et al., An improved method of right ventricular gated equilibrium blood pool radionuclide ventriculography. Chest, 1982. 82(5): p. 607-14.
99. de Groote, P., et al., Right ventricular ejection fraction is an independent predictor of survival in patients with moderate heart failure. J Am Coll Cardiol, 1998. 32(4): p. 948-54.
100. Rees, S., et al., Comparison of magnetic resonance imaging with echocardiography and radionuclide angiography in assessing cardiac function and anatomy following Mustard's operation for transposition of the great arteries. Am J Cardiol, 1988. 61(15): p. 1316-22.
101. McKee, P.A., et al., The natural history of congestive heart failure: the Framingham study. N Engl J Med, 1971. 285(26): p. 1441-6.
102. Lupow, J.B., The Accuracy of the Cardiothoracic Ratio as a Predictor of Cardiac Enlargement and Dysfunction. Academic Emergency Medicine, 2002. 9(5): p. 462.
103. Barst, R.J., et al., A comparison of continuous intravenous epoprostenol (prostacyclin) with conventional therapy for primary pulmonary hypertension. The Primary Pulmonary Hypertension Study Group. N Engl J Med, 1996. 334(5): p. 296-302.
104. Miyamoto, S., et al., Clinical correlates and prognostic significance of six-minute walk test in patients with primary pulmonary hypertension. Comparison with cardiopulmonary exercise testing. Am J Respir Crit Care Med, 2000. 161(2 Pt 1): p. 487-92.
105. Simonneau, G., et al., Continuous subcutaneous infusion of treprostinil, a prostacyclin analogue, in patients with pulmonary arterial hypertension: a double-blind, randomized, placebo-controlled trial. Am J Respir Crit Care Med, 2002. 165(6): p. 800-4.
106. Sitbon, O., et al., Survival in patients with class III idiopathic pulmonary arterial hypertension treated with first line oral bosentan compared with an historical cohort of patients started on intravenous epoprostenol. Thorax, 2005. 60(12): p. 1025-30.
107. Alter, M.J., et al., The natural history of community-acquired hepatitis C in the United States. The Sentinel Counties Chronic non-A, non-B Hepatitis Study Team. N Engl J Med, 1992. 327(27): p. 1899-905.
108. Tong, M.J., et al., Clinical outcomes after transfusion-associated hepatitis C. N Engl J Med, 1995. 332(22): p. 1463-6.
109. Alter, H.J., et al., Hepatitis C in asymptomatic blood donors. Hepatology, 1997. 26(3 Suppl 1): p. 29S-33S.
110. Hoeper, M.M., et al., Bosentan therapy for portopulmonary hypertension. Eur Respir J, 2005. 25(3): p. 502-8.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22879-
dc.description.abstract摘要
肺動脈高血壓是一種罕見的肺血管疾病,其主要致病機轉為肺血管收縮,肺血管壁重塑和血栓形成,導致肺動脈血管阻力增加與肺動脈壓力升高,若不積極治療,會因右心衰竭而終至死亡。肺高壓的傳統治療方式包括利尿劑,抗凝血劑,毛地黃,氧氣治療或給予血管舒張劑(例如鈣離子阻斷劑或前列腺素合成劑)等,但因傳統治療方式的療效不佳,病患的生活品質與長期存活率不甚良好。為了治療此罕見疾病,現有許多學者專注在研究新興的肺高壓治療藥物,並探究其相關的作用機轉,期盼能開啟另一扇治療之窗。本論文主要探討四個主題,在第一個主題中我們探討第一型血基質氧化酶(HO-1)在肺高壓中所扮演的角色; 第二部分則是研究辛伐他汀(simvastatin)在治療肺動脈高壓的角色與機轉,第三部分則在觀察辛伐他汀對肺動脈高壓大鼠肺部C神經纖維敏感性以及呼吸反射作用的影響; 第四個主題則是在探討使用喘可利錠(Bosentan),一種口服劑型之內皮激素接受阻斷劑(Endothelin Receptor Antagonist, 簡稱ERA)藥物,治療嚴重型原發性肺動脈高壓病患長期的安全性、療效及預後分析。以下簡述本論文的主要內容。
1. 為了探討第一型血基質氧化酶在肺高壓可能扮演的角色,我們利用已知的第一型血基質氧化酶誘發物Cobalt - protoporphyrin IX (CoPP) 應用在肺高壓大鼠中。在本實驗中,使用三種不同的肺高壓動物模式,一種是經由慢性低氧,另一種則是注射野百合鹼(monocrotaline, MCT),第三種則是合併兩種處理方法來引發肺高壓。在動物手術進行的前48小時與96小時給予CoPP (20 μmole/kg) 來誘導第一型血基質氧化酶的產生。Copp可以有效的在三種不同的動物模式中降低肺動脈壓; 同時也可改善動脈血氧分壓。並增加大鼠肺部第一血基質氧化酶的蛋白質表現量以及其酵素活性。而經由免疫染色分析顯示第一型血基質氧化酶的蛋白質表現在肺部血管周圍。綜合以上結果,我們可以推論經由誘發第一型血基質氧化酶的產生與降低肺高壓有關。
2. 辛伐他汀是一種3-羥基-3-甲基戊二酰輔酶A (3-hydroxy-3-methylglutaryl coenzyme A, HMG-CoA)還原酶抑制劑,是現今常使用之降血脂藥物,而辛伐他汀除了降血脂外,還有心血管的保護效果。在本篇論文中, 我們假設辛伐他汀治療肺高壓的效果主要是透過活化與增加第一型血基質氧化酵素產生的作用。我們將辛伐他汀(10 mg/kg w/day)應用在治療兩種肺動脈高壓的動物模式上(1)野百合鹼處理, (2)慢性低氧處理。 測量其肺動脈壓力以及大鼠肺組織中的第一型血基質氧化酶表現量和酵素活性, 同時利用第一型血基質氧化酶抑制劑(SnPP, 20 μmol/kg w/day), 來拮抗辛伐他汀的作用,觀察加入第一型血基質氧化酶抑制劑後是否會抑制辛伐他汀的療效。實驗結果指出, 在此兩種肺動脈高壓動物模式中,辛伐他汀治療可以顯著改善大鼠的肺高壓以及右心室肥大。 同時投與SnPP則會抑制辛伐他汀的效用。辛伐他汀會顯著增加大鼠肺中第一型血基質氧化酶蛋白質的表現量以及其酵素活性; 然而在同時投與SnPP 只會降低第一型血基質氧化酶的酵素活性。以上觀察指出, 辛伐他汀在降低肺高壓的療效中主要是經由第一型血基質氧化酵素活性而不是其表現量, 證明了辛伐他汀改善肺高壓的機制主要是由第一型血基質氧化酶所調控的。
3. 第三部分則是利用野百合鹼所引發的肺高壓動物模式來研究肺高壓以及肺部C神經纖維之間的關聯性。經由化學刺激物刺激肺部C神經纖維並觀察其所誘發之呼吸反射作用;接續觀察辛伐他汀的治療是否能改變肺部C神經纖維敏感度。在本實驗中我們利用三種不同的化學刺激物: 辣椒素(capsaicin), α,β-亞甲基三磷酸腺苷(α,β-methylene-ATP) 和苯基双胍(phenylbiguanide) 所引發的呼吸中止程度來測試大鼠肺部C神經纖維敏感度;實驗結果指出大鼠在經由野百合鹼處理21天後其肺部C神經纖維敏感度有顯著增加的情形;而將大鼠的雙側迷走神經切斷或利用高濃度辣椒素處理後,皆可阻斷由野百合鹼所引起的肺部C神經纖維高敏感情形。而肺高壓大鼠給予辛伐他汀之後,可明顯的降低肺高壓以及肺部C神經纖維高敏感情形。此外我們研究辛伐他汀的療效對肺部C神經纖維的影響,並探討其相關機制,主要是針對自由基以及第一血基質氧化酶之間的相關性。實驗結果顯示在野百合鹼處理後的大鼠支氣管肺泡灌洗液以及血液中活性氧屬(ROS)的含量明顯增加;然而在給予辛伐他汀的大鼠組別則有顯著降低情形。辛伐他汀可以明顯的增加大鼠肺中第一血基質氧化酶的蛋白表現量以及酵素活性。而在同時給予第一血基質氧化酶抑制劑的組別中,大鼠肺中第一血基質氧化酶的酵素活性有顯著降低情形,而辛伐他汀所造成的降低肺動脈、肺部C神經纖維敏感度以及活性氧屬的產生則被阻斷。綜合以上結果,更加進一步的證明了辛伐他汀在改善大鼠肺高壓是經由第一血基質氧化酶所調控的路徑。
4. 原發性肺動脈高壓(Idiopathic pulmonary arterial hypertension,簡稱IPAH)的發生率約為百萬分之一至二,台灣地區粗估每年約有40位新增病例。如果不治療,IPAH病患平均存活年數約為2.8年,一年存活率為68%,能夠存活超過五年以上者不到35%。病患預後不佳的主要原因,是由於持續升高之肺動脈壓及肺血管阻力,導致負責供應肺血液循環之右心室負荷過重,病患終會因右心衰竭而死亡。,肺高壓病患肺部與血液中之內皮激素(Endothelin) 濃度較正常人高;而內皮激素是由血管內皮細胞所分泌,它會和血管平滑肌細胞上的二種接受體(ETA及ETB)接合,引起血管收縮,內皮細胞增生及纖維化。因此減少身體內內皮激素之濃度,應可改善肺高壓病患的症狀。內皮激素接受阻斷劑(Endothelin Receptor Antagonist, 簡稱ERA)可與ETA與ETB二種接受體結合,使內皮激素無法再與此二種接受體接合,便可達到舒張血管,抑制內皮細胞生長與增生的效果。喘可利錠是第一個獲美國食物暨藥物管理局(FDA)核准上市之ERA,它於西元2001年獲准用於治療第三期及第四期之肺高壓病患;台灣地區則由衛生署於2003年公告為治療原發性肺動脈高壓之罕見疾病用藥。因喘可利錠主要是由肝臟代謝,因此有些長期服用喘可利錠的病患會出現肝功能異常(如GOT及GPT數值大幅昇高)的現象,嚴重時須要停止喘可利錠之使用,改以其他藥物治療。因為迄今喘可利錠對黃種人的長期療效與相關副作用仍無文獻報告,所以我們嘗試探討嚴重型原發性肺動脈高壓病患接受喘可利錠治療之效果。自2003年10月至2005年2月,有十五位年齡大於十二歲以上之病患使用喘可利錠做為第一線治療肺動脈高壓之藥物,其中有三位病患在四星期內因肝功能在服藥後 異常(兩位)或肺動脈高壓持續惡化(一位)而改用其他藥物治療。十二位病患經過了一年的喘可利錠治療後,其生活品質、運動能力、肺功能、與右心室收縮功能皆獲得顯著的改善,同時減緩了疾病惡化的程度,提升高了病患的長期存活率。
zh_TW
dc.description.abstractPulmonary hypertension (PH) is a rare disease that caused by three major pathogenic processes, vasoconstriction, remodeling of the pulmonary vessel wall and thrombosis, resulted in a progressive increase in pulmonary vascular resistance, high pulmonary arterial pressure (PAP) and right ventricular hypertrophy (RVH). Traditional treatment strategies for PH include diuretics, anticoagulation, digoxin, supplemental oxygen, and nonspecific vasodilating agents. Because these traditional therapeutic treatments were not effective, the mortality rate of this rare disease was still high and the long-term outcome was very unsatisfactory in the past. Recently, many investigators continued to study the pathogenesis of PH and explored the new therapeutic methods to treat this rare disease. In the basic parts of our studies, we focused on the protective role of heme oxygenase-1 (HO-1) in PH, the possible treatment mechanism of simvastatin in this rare disease and the effects of simvastatin on pulmonary C fiber (PCF) sensitivity in PH rats. Clinically, we surveyed the the long-term safety and efficacy of endothelin receptor antagonist in Taiwanese patients with advanced idiopathic pulmonary arterial hypertension. We summarized our researches in the following paragraphs.
1. To investigate the role of HO-1 in PH, we applied HO-1 inducer, Cobalt-protoporphyrin IX (CoPP), in pulmonary hypertensive rats. In this study, we used three PH-Rat models which were chronic hypoxia (CH)-induced monocrotaline (MCT)-induced, and combined. HO-1 was induced in lung by given CoPP (20 μmole/kgw) at the 96 and 48 hours before study. CoPP could significantly decrease the PAP in three PH rat models. PaO2 level were also improved after CoPP treatment. CoPP could significantly increased HO-1 protein expression and activity in rat lungs. Immunohistochemistry (IHC) stain revealed the HO-1 protein expression around the pulmonary vessels. In summary, these results suggest that the induction of HO-1 expression may involve in amelioration of PH.
2. Simvastatin is a 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor that confers cardiovascular benefits beyond its cholesterol-lowering effect. In this study, we demonstrated that the major benefits of simvastatin in PH occur via the HO-1 pathway. Simvastatin (10 mg/kg w/day) was tested in two rat models of PH: MCT administration and CH exposure. We also used Tin-protoporphyrin (SnPP, 20 μmol/kg w/day), a potent inhibitor of HO activity, to confirm the role of HO-1. Simvastatin significantly ameliorated pulmonary arterial hypertension and right ventricular hypertrophy in both rat models. Co-administration with SnPP could significantly abolish the benefits of simvastatin. Simvastatin significantly increased HO-1 protein expression and HO activity in the lungs of rats with PH; however co-administration of SnPP reduced HO-1 activity only. These observations indicated that the simvastatin-induced amelioration of PH was directly related to the activity of HO-1, rather than its expression. In conclusion, this study demonstrated that simvastatin treatment ameliorates established PH primarily through an HO-1-dependent pathway.
3. We examined the relationship between the pulmonary C fiber (PCF) sensitivity and PH in MCT-induced PH rats and whether the therapeutic effects of simvastatin would involve in the PCFs sensitivity or not. The PCF sensitivity was investigated by measuring the apneic durations evoked by three chemical stimulants: capsaicin, α,β-methylene-ATP (α,β-meATP) and phenylbiguanide (PBG), in rats. The sensitivity of PCFs was significantly increased after MCT application for 21 days. Bilateral vagatomy and high dose perivagal capsaicin (250 μg/ml) treatment both blocked the PCF hypersensitivity induced by MCT. Simvastatin treatment could significantly attenuate PH and reduced the hypersensitive status of PCFs in PH rats. Besides, we also examined the production of reactive oxygen species (ROS) and the expression of HO-1 protein to elucidate possible mechanisms of the therapeutic effect of simvastatin. In MCT-induced PH rats, the ROS productions were both significantly elevated in the blood and bronchoalveolar lavage; but both of them significantly decreased after simvastatin treatment. Simvastatin could significantly elevated HO-1 protein expression and the activity in rat lungs. Application of HO-1 inhibitor, SnPP, significantly attenuated the elevated HO-1 activity induced by simvastatin. Meanwhile, the effect of simvastatin on attenuating the PH, PCF hypersensitivity, and ROS production were all abolished after co-application of SnPP. In summary, these evidences further demonstrated that the effect of simvastatin in attenuating PH was mainly dependent on HO-1.
4. Idiopathic pulmonary arterial hypertension (IPAH) is a life-threatening disease of the pulmonary arterioles that can rapidly progress to right heart failure and death without treatment. It belongs to one of five classes of PH defined through the diagnostic classification system for PH at the Third World Symposium held in Venice. The incidence of IPAH has been estimated to occur in 1-2 cases per million and the cumulative survival at 1 and 5 years were 68% and 35%, respectively. In the last few years, a number of novel treatments for this devastating disease have been developed and lots of clinical trials were undergoing to investigate their clinical efficacy. Bosentan, a non-peptide antagonist blocking both endothelin A and B receptors, is the first oral therapy approved for the treatment of pulmonary arterial hypertension in North America and Europe. However, the long-term benefits of bosentan therapy among the Asian populations are largely unknown. Since October 2003, oral bosentan received approval from the National Institutes of Health for the treatment of advanced IPAH in Taiwan. Given the ease of administration and well documented clinical benefits of bosentan, first-line treatment with bosentan for advanced IPAH patients (functional class III or IV) is considered both reasonable and feasible. In this part of our studies, we wanted to survey the long-term safety and effects of bosentan treatment in Taiwanese IPAH patients. Fifteen patients with advanced IPAH met eligibility requirements and were enrolled into our study. In the first four weeks, three of them were excluded due to abnormal elevations of liver enzymes or PAH disease deterioration. The other 12 patients tolerated the long-term bosentan treatment well with significant improvements in their heart and lung functions, exercise capacity, and long-term survival.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:31:51Z (GMT). No. of bitstreams: 1
ntu-98-D90441002-1.pdf: 2720694 bytes, checksum: 77d337eccedda447cfc4b80f5eaa8d24 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents口試委員審定書…………………………………………………………i
誌謝………………………………………………………………………ii
摘要……………………………………………………………………iii
Abstract………………………………………………………………vi
Abbreviations…………………………………………………………ix
Chapter 1 Opening Remarks………………………………………1
Chapter 2
The Protective Role of Heme Oxygenase-1 in Pulmonary Hypertension
摘要 ………………………………………………………………………8
Abstract…………………………………………………………………9
Introduction……………………………………………………………10
Material and Methods ………………………………………………11
Results…………………………………………………………………15
Discussion………………………………………………………………17
Chapter 3
Simvastatin Ameliorates Established Pulmonary Hypertension Through a Heme Oxygenase-1 Dependent Pathway in Rats
摘要………………………………………………………………………20
Abstract…………………………………………………………………22
Introduction……………………………………………………………24
Material and Methods…………………………………………………25
Results…………………………………………………………………28
Discussion………………………………………………………………32
Chapter 4
Effects of Simvastatin on Pulmonary C Fiber Sensitivity in Monocrotaline-induced Pulmonary Hypertension Rats: Role of Heme Oxygenase-1
摘要………………………………………………………………………39
Abstract…………………………………………………………………41
Introduction……………………………………………………………43
Material and Methods…………………………………………………45
Results…………………………………………………………………49
Discussion………………………………………………………………53
Chapter 5
Long –term Outcome and Effects of Oral Bosentan Therapy in Taiwanese Patients with Advanced Idiopathic Pulmonary Arterial Hypertension
摘要………………………………………………………………………62
Abstract………………………………………………………………64
Introduction……………………………………………………………66
Material and Methods…………………………………………………67
Results…………………………………………………………………71
Discussion……………………………………………………………74
Figures …………………………………………………………………81
Tables…………………………………………………………………100
References……………………………………………………….…108
dc.language.isoen
dc.subject內皮激素接受阻斷劑zh_TW
dc.subject肺動脈高壓zh_TW
dc.subject辛伐他汀zh_TW
dc.subject第一型血基質氧化&#37238zh_TW
dc.subjectPulmonary arterial hypertensionen
dc.subjectSimvastatinen
dc.subjectHeme oxygenase-1en
dc.subjectEndothelin receptor antagonisten
dc.title探討肺動脈高壓治療的機制: 第一型血基質氧化酶和內皮激素阻斷劑的角色zh_TW
dc.titleTreatment of Pulmonary Arterial Hypertension: The Role of HO-1 and Endothelin Receptor Antagonisten
dc.typeThesis
dc.date.schoolyear98-1
dc.description.degree博士
dc.contributor.oralexamcommittee賴義隆(Yih-Loong Lai),李元麒(Yung-Chie Lee),柯文哲(Wen-Je Ko),周財福(Tsai-Fwu Chou)
dc.subject.keyword肺動脈高壓,辛伐他汀,第一型血基質氧化&#37238,內皮激素接受阻斷劑,zh_TW
dc.subject.keywordPulmonary arterial hypertension,Simvastatin,Heme oxygenase-1,Endothelin receptor antagonist,en
dc.relation.page123
dc.rights.note未授權
dc.date.accepted2009-09-28
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生理學研究所zh_TW
顯示於系所單位:生理學科所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
2.66 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved