請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22871
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 顏家鈺(Jia-Yush Yen) | |
dc.contributor.author | Shu-Hung Liu | en |
dc.contributor.author | 劉書宏 | zh_TW |
dc.date.accessioned | 2021-06-08T04:31:31Z | - |
dc.date.copyright | 2009-10-28 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-10-16 | |
dc.identifier.citation | [1] R. C. Smith, Smart material systems, Society for Industrial and Applied Mathematics, Philadelphia, 2005.
[2] J. N. Kudva, B. P. Sanders, J. L. Pinkerton-Florance, and E. Garcia, 'Overview of the DARPA/AFRL/NASA Smart Wing Phase II program,' in Smart Structures and Materials 2001: Industrial and Commercial Applications of Smart Structures Technologies, Newport Beach, CA, USA, vol. 4332, pp. 383-389, Mar. 5-8, 2001. [3] G. B. Song and N. Ma, 'Robust control of a shape memory alloy wire actuated flap,' Smart Materials & Structures, vol. 16, no. 6, pp. N51-N57, Dec. 2007. [4] S. Yan, X. Liu, F. Xu, and J. Wang, 'A gripper actuated by a pair of differential SMA springs,' Journal of Intelligent Material Systems and Structures, vol. 18, no. 5, pp. 459-466, 2007. [5] H. Zhang, Y. Bellouard, E. Burdet, R. Clavel, A. N. Poo, and D. W. Hutamacher, 'Shape memory alloy microgripper for robotic microassembly of tissue engineering scaffolds,' in Proceedings of the 2004 IEEE International Conference on Robotics and Automation. ICRA '04, New Orleans, LA, USA, vol. 5, pp. 4918-4924 Vol.5, Apr. 26 - May 1, 2004. [6] H. Ashrafiuon and V. R. Jala, 'Sliding Mode Control of Mechanical Systems Actuated by Shape Memory Alloy,' Journal of Dynamic Systems, Measurement, and Control, vol. 131, no. 1, pp. 011010-6, 2009. [7] K. Yang and C. L. Gu, 'A novel robot hand with embedded shape memory alloy actuators,' Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 216, no. 7, pp. 737-745, 2002. [8] E. Williams and M. H. Elahinia, 'An Automotive SMA Mirror Actuator: Modeling, Design, and Experimental Evaluation,' Journal of Intelligent Material Systems and Structures, vol. 19, no. 12, pp. 1425-1434, 2008. [9] K. Dhanalakshmi and M. Umapathy, 'Active Vibration Control of SMA Actuated Structures using Fast Output Sampling Based Sliding Mode Control,' Instrumentation Science & Technology, vol. 36, no. 2, pp. 180-193, 2008. [10] K. Ikuta, M. Tsukamoto, and S. Hirose, 'Shape memory alloy servo actuator system with electric resistance feedback and application for active endoscope,' in Proceedings of IEEE International Conference on Robotics and Automation, Philadelphia, PA, USA, vol. 1, pp. 427-430 Apr. 24-29, 1988. [11] S.-H. Liu and J.-Y. Yen, 'A hexapod robot based on shape memory alloy actuators,' in Proceeding of the 4th IFAC-Symposium on Mechatronic Systems, Heidelberg, Germany, pp. 689-693, Sep. 12-14, 2006. [12] K.-Y. Tu, T.-T. Lee, C.-H. Wang, and C.-A. Chang, 'Design of a fuzzy walking pattern (FWP) for a shape memory alloy (SMA) biped robot,' Robotica, vol. 17, no. 4, pp. 373-382, Jul. 1999. [13] J. W. Mills, 'Lukasiewicz insect: The role of continuous-valued logic in a mobile robot's sensors, control, and locomotion,' in Proceedings of The International Symposium on Multiple-Valued Logic, Sacramento, CA, USA, pp. 258-263, May 24-27, 1993. [14] S.-H. Liu, Y.-T. Chen, and J.-Y. Yen, 'Sensor fusion in a Six-legged Bio-mimicking Robot,' in Proceedings of the 17th IFAC World Congress (IFAC'08), Seoul, Korea, pp. 15624-15629, Jul. 6-11, 2008. [15] S.-H. Liu, T.-S. Huang, and J.-Y. Yen, 'Sensor fusion in a SMA-based hexapod bio-mimetic robot,' in IEEE International Conference on Advanced Robotics and its Social Impacts, ARSO 2008, Taipei, Taiwan, Aug. 23-25, 2008. [16] P. S. Maybeck, Stochastic models, estimation and control, Academic Press, New York, 1979. [17] J. L. Pons, D. Reynaerts, J. Peirs, R. Ceres, and H. VanBrussel, 'Comparison of different control approaches to drive SMA actuators,' in Proceedings of 8th International Conference on Advanced Robotics, ICAR '97, Monterey, California, USA, pp. 819-824, 1997. [18] N. Ma, G. Song, and H. J. Lee, 'Position control of shape memory alloy actuators with internal electrical resistance feedback using neural networks,' Smart Materials & Structures, vol. 13, no. 4, pp. 777-783, Aug. 2004. [19] G. B. Song, N. Ma, and H. J. Lee, 'Position estimation and control of SMA actuators based on electrical resistance measurement,' Smart Structures and Systems, vol. 3, no. 2, pp. 189-200, 2007. [20] K. Malukhin and K. F. Ehmann, 'An experimental investigation of the feasibility of 'self-sensing' shape memory alloy based actuators,' Journal of Manufacturing Science and Engineering-Transactions of the ASME, vol. 130, no. 3, pp. 031109-1-10, Jun. 2008. [21] S. Majima, K. Kodama, and T. Hasegawa, 'Modeling of shape memory alloy actuator and tracking control system with the model,' IEEE Transactions on Control Systems Technology, vol. 9, no. 1, pp. 54-59, 2001. [22] S. M. Dutta and F. H. Ghorbel, 'Differential hysteresis modeling of a shape memory alloy wire actuator,' IEEE-ASME Transactions on Mechatronics, vol. 10, no. 2, pp. 189-197, Apr. 2005. [23] J. Jayender, R. V. Patel, S. Nikumb, and M. Ostojic, 'Modeling and control of shape memory alloy actuators,' IEEE Transactions on Control Systems Technology, vol. 16, no. 2, pp. 279-287, Mar. 2008. [24] R. B. Gorbet, D. W. L. Wang, and K. A. Morris, 'Preisach model identification of a two-wire SMA actuator,' in Proceedings of the IEEE International Conference on Robotics and Automation, Leuven, Belgium, vol. 1-4, pp. 2161-2167, May 16-20, 1998. [25] G. Webb, A. Kurdila, and D. Lagoudas, 'Adaptive hysteresis model for model reference control with actuator hysteresis,' Journal of Guidance, Control, and Dynamics, vol. 23, no. 3, pp. 459-465, 2000. [26] Y. Huo, 'A mathematical model for the hysteresis in shape memory alloys,' Continuum Mechanics and Thermodynamics, vol. 1, no. 4, pp. 283-303, 1989. [27] D. Hughes and J. T. Wen, 'Preisach modeling of piezoceramic and shape memory alloy hysteresis,' Smart Materials and Structures, vol. 6, no. 3, pp. 287-300, 1997. [28] I. D. Mayergoyz, 'Dynamic Preisach models of hysteresis,' IEEE Transactions on Magnetics, vol. 24, no. 6, pp. 2925-2927, 1988. [29] Z. Bo and D. C. Lagoudas, 'Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part IV: modeling of minor hysteresis loops,' International Journal of Engineering Science, vol. 37, no. 9, pp. 1205-1249, 1999. [30] D. R. Madill and D. Wang, 'Modeling and L2-stability of a shape memory alloy position control system,' IEEE Transactions on Control Systems Technology, vol. 6, no. 4, pp. 473-481, Jul. 1998. [31] Y. Ivshin and T. J. Pence, 'A constitutive model for hysteretic phase-transition behavior,' International Journal of Engineering Science, vol. 32, no. 4, pp. 681-704, Apr. 1994. [32] A. A. Likhachev, 'Differential equation of hysteresis: Application to partial martensitic transformation in shape-memory alloys,' Scripta Metallurgica et Materialia, vol. 32, no. 4, pp. 633-636, 1995. [33] A. Visintin, Differential models of hysteresis, Springer-Verlag, New York, 1995. [34] S. M. Dutta, F. H. Ghorbel, and J. B. Dabney, 'Modeling and control of a shape memory alloy actuator,' in Proceedings of the 20th IEEE International Symposium on Intelligent Control, ISIC '05, Limassol, Cyprus, pp. 1007-1012, Jun. 27-29, 2005. [35] M. H. Elahinia and H. Ashrafiuon, 'Nonlinear control of a shape memory alloy actuated manipulator,' Journal of Vibration and Acoustics, Transactions of the ASME, vol. 124, no. 4, pp. 566-575, 2002. [36] J. E. Bares and D. S. Wettergreen, 'Dante II: technical description, results, and lessons learned,' International Journal of Robotics Research, vol. 18, no. 7, pp. 621-649, 1999. [37] F. Delcomyn and M. E. Nelson, 'Architectures for a biomimetic hexapod robot,' Robotics and Autonomous Systems, vol. 30, no. 1, pp. 5-15, 2000. [38] B. Klaassen, R. Linnemann, D. Spenneberg, and F. Kirchner, 'Biomimetic walking robot SCORPION: Control and modeling,' Robotics and Autonomous Systems, vol. 41, no. pp. 69-76, 2002. [39] G. M. Nelson, R. D. Quinn, R. J. Bachmann, W. C. Flannigan, R. E. Ritzmann, and J. T. Watson, 'Design and simulation of a cockroach-like hexapod robot,' in Proceedings of IEEE International Conference on Robotics and Automation, Albuquerque, New Mexico, vol. 2, pp. 1106-1111, Apr. 20-25, 1997. [40] U. Saranli, M. Buehler, and D. E. Koditschek, 'RHex: A simple and highly mobile hexapod robot,' International Journal of Robotics Research, vol. 20, no. 7, pp. 616-631, 2001. [41] K. Kato and S. Hirose, 'Development of the quadruped walking robot, TITAN-IX - mechanical design concept and application for the humanitarian de-mining robot,' Advanced Robotics, vol. 15, no. 2, pp. 191-204, 2001. [42] F. Pfeiffer, 'The TUM walking machines,' Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, vol. 365, no. 1850, pp. 109-131, 2007. [43] J. Ayers and J. Witting, 'Biomimetic approaches to the control of underwater walking machines,' Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, vol. 365, no. 1850, pp. 273-295, 2007. [44] J. E. Clark, J. G. Cham, S. A. Bailey, E. M. Froehlich, P. K. Nahata, R. J. Full, and M. R. Cutkosky, 'Biomimetic design and fabrication of a hexapedal running robot,' in Proceedings of IEEE International Conference on Robotics and Automation, Seoul, Korea, vol. 4, pp. 3643-3649, May 21-26, 2001. [45] J. E. Clark and M. R. Cutkosky, 'The effect of leg specialization in a biomimetic hexapedal running robot,' Journal of dynamic systems measurement and control-Transactions of the ASME, vol. 128, no. 1, pp. 26-35, Mar. 2006. [46] R. K. Barai and K. Nonami, 'Locomotion control of a hydraulically actuated hexapod robot by robust adaptive fuzzy control with self-tuned adaptation gain and dead zone fuzzy pre-compensation,' Journal of Intelligent & Robotic Systems, vol. 53, no. 1, pp. 35-56, Sep. 2008. [47] J.-Y. Kim, C. G. Atkeson, J. K. Hodgins, D. C. Bentivegna, and S. J. Cho, 'Online gain switching algorithm for joint position control of a hydraulic humanoid robot,' in International Conference on Humanoid Robots, Pittsburg, Pennsylvania, USA, pp. 13-18, Nov. 29-Dec. 1, 2007. [48] G. Kofod, Dielectric elastomer actuators, Ph.D. thesis, The Technical University of Denmark, 2001. [49] C. Huang, R. Klein, F. Xia, H. Li, Q. M. Zhang, F. Bauer, and Z. Y. Cheng, 'Poly(vinylidene fluoride-trifluoroethylene) based high performance electroactive polymers,' IEEE Transactions on Dielectrics and Electrical Insulation, vol. 11, no. 2, pp. 299-311, Apr. 2004. [50] W. Lehmann, H. Skupin, C. Tolksdorf, E. Gebhard, R. Zentel, P. Kruger, M. Losche, and F. Kremer, 'Giant lateral electrostriction in ferroelectric liquid-crystalline elastomers,' Nature, vol. 410, no. 6827, pp. 447-450, Mar. 2001. [51] R. H. Baughman, 'Conducting polymer artificial muscles,' Synthetic Metals, vol. 78, no. 3, pp. 339-353, Apr. 1996. [52] M. J. Marsella and R. J. Reid, 'Toward molecular muscles: Design and synthesis of an electrically conducting poly[cyclooctatetrathiophene],' Macromolecules, vol. 32, no. 18, pp. 5982-5984, Sep. 1999. [53] K. J. Kim and M. Shahinpoor, 'Ionic polymer-metal composites: II. Manufacturing techniques,' Smart Materials and Structures, vol. 12, no. 1, pp. 65-79, Feb. 2003. [54] D. Grant and V. Hayward, 'Variable structure control of shape memory alloy actuators,' IEEE Control Systems Magazine, vol. 17, no. 3, pp. 80-88, 1997. [55] J. Farrell and M. Barth, The global positioning system and inertial navigation, McGraw-Hill, New York, 1999. [56] R. M. Rogers, Applied mathematics in integrated navigation systems, 2nd ed., American Institute of Aeronautics and Astronautics, Reston, VA, 2003. [57] F. Caron, E. Duflos, D. Pomorski, and P. Vanheeghe, 'GPS/IMU data fusion using multisensor Kalman filtering: introduction of contextual aspects,' Information Fusion, vol. 7, no. 2, pp. 221-230, 2006. [58] P.-C. Lin, H. Komsuoglu, and D. E. Koditschek, 'Sensor data fusion for body state estimation in a hexapod robot with dynamical gaits,' IEEE Transactions on Robotics [see also IEEE Transactions on Robotics and Automation] vol. 22, no. 5, pp. 932-943, 2006. [59] V. Gupta and S. Brennan, 'Terrain-based vehicle orientation estimation combining vision and inertial measurements,' Journal of Field Robotics, vol. 25, no. 3, pp. 181-202, Mar. 2008. [60] P. M. Lee, B. H. Jun, K. Kim, J. Lee, T. Aoki, and T. Hyakudome, 'Simulation of an inertial acoustic navigation system with range aiding for an autonomous underwater vehicle,' IEEE Journal of Oceanic Engineering, vol. 32, no. 2, pp. 327-345, Apr. 2007. [61] B. Barshan and H. F. Durrant-Whyte, 'An inertial navigation system for a mobile robot,' in Proceedings of the 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS '93, vol. 3, pp. 2243-2248 vol.3, 1993. [62] M. Kam, M. Kam, Z. Xiaoxun, and P. Kalata, 'Sensor fusion for mobile robot navigation,' Proceedings of the IEEE, vol. 85, no. 1, pp. 108-119, 1997. [63] P. Zhang, J. Gu, E. E. Milios, and P. Huynh, 'Navigation with IMU/GPS/digital compass with unscented Kalman filter,' in 2005 IEEE International Conference on Mechatronics and Automation, Niagara Falls, Ontario, Canada, vol. 3, pp. 1497-1502 Vol. 3, Jul. 29-Aug. 1, 2005. [64] D. Jurman, M. Jankovec, R. Kamnik, and M. Topic, 'Calibration and data fusion solution for the miniature attitude and heading reference system,' Sensors and Actuators, A: Physical, vol. 138, no. 2, pp. 411-420, 2007. [65] M. S. Grewal, V. D. Henderson, and R. S. Miyasako, 'Application of Kalman filtering to the calibration and alignment of inertial navigation systems,' IEEE Transactions on Automatic Control, vol. 36, no. 1, pp. 3-13, 1991. [66] A. Gelb, Applied optimal estimation, M.I.T. Press, Cambridge, Mass., 1974. [67] G. Minkler and J. Minkler, Theory and application of Kalman filtering, Magellan Book Co., Palm Bay, FL, 1993. [68] X. M. Shen and L. Deng, 'Game theory approach to discrete H∞ filter design,' IEEE Transactions on Signal Processing, [see also IEEE Transactions on Acoustics, Speech, and Signal Processing], vol. 45, no. 4, pp. 1092-1095, 1997. [69] X. Shen, 'Discrete H∞ filter design with application to speech enhancement,' in International Conference on Acoustics, Speech, and Signal Processing, ICASSP-95, Detroit, Michigan, USA, vol. 2, pp. 1504-1507 vol.2, May 9-12, 1995. [70] 'IEEE standard specification format guide and test procedure for single-axis laser gyros,' IEEE Std 647-1995, 1996. [71] D. W. Allan, 'Statistics of atomic frequency standards,' Proceedings of the IEEE, vol. 54, no. 2, pp. 221-230, 1966. [72] N. El-Sheimy, H. Haiying, and N. Xiaoji, 'Analysis and Modeling of Inertial Sensors Using Allan Variance,' IEEE Transactions on Instrumentation and Measurement, vol. 57, no. 1, pp. 140-149, 2008. [73] L. C. Ng and D. J. Pines, 'Characterization of ring laser gyro performance using the Allan variance method,' Journal of Guidance Control and Dynamics, vol. 20, no. 1, pp. 211-214, 1997. [74] H. L. Chang, L. Xue, W. Qin, G. M. Yuan, and W. Z. Yuan, 'An integrated MEMS gyroscope array with higher accuracy output,' Sensors, vol. 8, no. 4, pp. 2886-2899, Apr. 2008. [75] J. J. Ford and M. E. Evans, 'Online estimation of allan variance parameters,' Journal of Guidance, Control, and Dynamics, vol. 23, no. 6, pp. 980-987, 2000. [76] R. C. Hibbeler, Mechanics of materials, Maxwell Macmillan International, New York, 1991. [77] TOKI CORPORATION, Bio-Metal Fiber BMF150 Instruction Manual, 2006. [78] J. M. Conrad, Stiquito, IEEE Computer Society Press, Los Alamitos, Calif., 1998. [79] M. H. Elahinia, T. M. Seigler, D. J. Leo, and M. Ahmadian, 'Nonlinear stress-based control of a rotary SMA-actuated manipulator,' Journal of Intelligent Material Systems and Structures, vol. 15, no. 6, pp. 495-508, Jun. 2004. [80] Omron, Instruction sheet of model Z4W-V25R LED displacement sensor, 1998. [81] E. D. Gates, Introduction to electronics, Delmar Publishers, Albany, New York, 1991. [82] B. Grob, Basic electronics, Glencoe/McGraw-Hill, New York, 1997. [83] T. Raparelli, P. Beomonte Zobel, and F. Durante, 'A robot actuated by shape memory alloy wires,' in Proceedings of the IEEE International Symposium on Industrial Electronics, ISIE 2002, L'Aquila, Italy, vol. 2, pp. 420-423, Jul. 8-11, 2002. [84] X. D. Wu, J. S. Wu, and Z. Wang, 'Variation of electrical resistance of near stoichiometric NiTi during thermo-mechanic procedures,' Smart Materials and Structures, vol. 8, no. 5, pp. 574-578, 1999. [85] K. Ikuta, M. Tsukamoto, and S. Hirose, 'Mathematical model and experimental verification of shape memory alloy for designing micro actuator,' in Proceedings of IEEE Micro Electro Mechanical Systems, MEMS '91, Nara, Japan, pp. 103-108, Jan. 30-Feb. 2, 1991. [86] J. P. Holman, Heat transfer, 8th ed., McGraw-Hill Companies, New York 1997. [87] Y. A. Cengel, Thermodynamics, McGraw Hill, Boston, 1998. [88] J. Jayender, R. V. Patel, S. Nikumb, and M. Ostojic, 'Modelling and gain scheduled control of shape memory alloy actuators,' in Proceedings of IEEE Conference on Control Applications, CCA 2005, Toronto, Canada, pp. 767-772, Aug. 28-31, 2005. [89] J. Jayender, R. V. Patel, S. Nikumb, and M. Ostojic, 'H-infinity loop shaping controller for shape memory alloy actuators,' in 44th IEEE Conference on Decision Control/European Control Conference (CCD-ECC), Seville, SPAIN, pp. 653-658, Dec. 12-15, 2005. [90] 陳俊光, Study on S.M.A.Micro-actuator with Self-sensing mechanism, Master's thersis, National Taiwan University, 2000. [91] The MathWorks, MATLAB Curve Fitting Toolbox User's Guide, 2009. [92] G. F. Franklin, Feedback control of dynamic systems, 2nd ed., Addison-Wesley, Reading, Mass., 1991. [93] K. J. Astrom, Computer-controlled systems, Prentice Hall, Upper Saddle River, N.J., 1997. [94] K.-C. Shiu, Dynamic Analysis & Motion Control of a Bio-mimetic Robot, Master's thersis, National Taiwan University, 2005. [95] C.-C. Yang, Development of Embedded System Technology for a Six-legged Bio-mimicking Robot, Master's thersis, National Taiwan University, 2006. [96] Y.-T. Chen, Sensor fusion in a Six-legged Bio-mimicking Robot, Master's thersis, National Taiwan University, 2007. [97] N. Rode and A. P. Paplinski, 'Dynamic gait changing for hexapod walking robots,' in Proceedings of the fifth IASTED International Conference on Robotics and Manufacturing, Cancun, Mexico, pp. 37-40, May 29-31, 1997. [98] J. M. Porta and E. Celaya, 'Gait Analysis for Six-Legged Robots,' Institute of Robotics and Infromation Industrial, Barcelona, Technical Report, Mar. 1998. [99] R. H. Bishop, The mechatronics handbook. Mechatronic systems, sensors, and actuators : fundamentals and modeling, CRC Press, Boca Raton, FL, 2008. [100] E. O. Doebelin, Measurement systems, 5th ed., McGraw-Hill, New York, 2003. [101] KISTLER, Type 86XX PiezoBEAM Accelerometers, 2002. [102] Introduction of triaxial accelerometer AGB3_V2 http://www.robotsfx.com/robot/TriAxisSen.html [103] MEMSIC, Application Note an-00mx-007: Inclination Sensing with Thermal Accelerometers 2002. [104] R. J. Schilling, Fundamentals of robotics, Prentice Hall International, Englewood Cliffs, N.J., 1998. [105] T. Amasay, K. Zodrow, L. Kincl, J. Hess, and A. Karduna, 'Validation of tri-axial accelerometer for the calculation of elevation angles,' International Journal of Industrial Ergonomics, In Press, Corrected Proof. [106] Gyro Breakout Board - MLX90609 - 75 degree/sec, SparkFun Electronics http://www.sparkfun.com/commerce/product_info.php?products_id=8370 [107] M. S. Grewal, L. R. Weill, and A. P. Andrews, Global positioning systems, inertial navigation, and integration, John Wiley, New York, 2001. [108] A. Lawrence, Modern inertial technology : navagation, guidance, and control, Springer-Verlag, New York, 1993. [109] J. C. Lotters, J. Schipper, P. H. Veltink, W. Olthuis, and P. Bergveld, 'Procedure for in-use calibration of triaxial accelerometers in medical applications,' Sensors and Actuators A: Physical, vol. 68, no. 1-3, pp. 221-228, 1998. [110] FlexiForce Force Sensors, Tekscan Inc. http://www.tekscan.com/flexiforce/flexiforce.html [111] Parallax Inc., Hitachi HM55B Compass Module (#29123), 2005. [112] World megnetic intensity chart http://geomag.usgs.gov/charts/ig00f.pdf [113] Honeywell, Applications of Magnetic Sensors for Low Cost Compass Systems, 2007. [114] Philips Semiconductors, Application Note AN00022: Electric compass design using KMZ51 and KMZ52, 2000. [115] R. E. Kalman, 'A new approach to linear filtering and prediction problems,' ASME Journal of Basic Engineering, vol. 82, no. pp. 34-45, 1960. [116] M. S. Grewal and A. P. Andrews, Kalman filtering: theory and practice using MATLAB, Wiley, New York, 2001. [117] 'IEEE standard specification format guide and test procedure for single-axis interferometric fiber optic gyros,' IEEE Std 952-1997, 1998. [118] H. Kim, J. G. Lee, and G. P. Park, 'Performance Improvement of GPS/INS Integrated System Using Allan Variance Analysis,' in Proceedings of the 2004 International Symposium on GNSS/GPS, Sydney, Australia, Dec. 6-8, 2004. [119] H. Hou, Modeling Inertial Sensors Errors Using Allan Variance, Master's thesis, University of Calgary, 2004. [120] D. Simon, Optimal state estimation : Kalman, H∞ and nonlinear approaches, Wiley-Interscience, Hoboken, N.J., 2006. [121] R. G. Brown, Introduction to random signal analysis and Kalman filtering, Wiley, New York, 1983. [122] G. B. Thomas and R. L. Finney, Calculus and analytic geometry, 9th ed., Addison-Wesley, Reading, Mass. , 1996. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22871 | - |
dc.description.abstract | 本論文旨在對形狀記憶合金致動器進行控制,並對一個以形狀記憶合金為致動器的六足仿生機器人進行導航。我們深入研究形狀記憶合金致動器的自我感應特性,此特性源自形狀記憶合金致動器於致動過程中所產生的電阻變化。我們提出了一套方法來量測以脈波寬度調變進行驅動的形狀記憶合金致動器其自感應特性曲線,對此特性曲線進行建模後,不需額外安裝感測器,即可控制形狀記憶合金的長度。此外,針對形狀記憶合金致動器的遲滯現象,我們研發了一個反遲滯補償器以進行補償,並且提出了一個切換控制器架構,此控制器可於前饋反遲滯補償器及自感應回授PID控制器間進行切換。實驗結果證明此切換控制器的性能較PID回授控制器優越。我們製做了一台以形狀記憶合金為致動器的六足仿生機器人SMABOT IV,利用感測器融合技術估測機器人的姿態,所使用的感測器融合技術包含離散時間Kalman濾波器以及離散時間H∞濾波器。離散時間Kalman濾波器針對估測誤差的變異量進行最小化,而離散時間H∞濾波器則是針對最大誤差進行最小化。透過Allan變異量分析對感測器的雜訊進行識別並用以設計離散時間Kalman濾波器,使得離散時間Kalman濾波器擁有較佳的估測性能。將所估測的機器人姿態配合腳步測程法所得之里程加以運算進而估測機器人的位移。 | zh_TW |
dc.description.abstract | The major aim of the study is to control the SMA actuator, and implement the navigation of a shape memory alloy (SMA)-based hexapod biomimetic robot. We investigate the self-sensing property of the SMA actuator, which is due to the electric resistance variation during its actuating process. A procedure for obtaining the self-sensing characteristic curve of the SMA actuator driving by PWM signal is proposed. By modeling the self-sensing characteristic curve, we can control the displacement of the SMA actuator without using additional sensors. In addition, an inverse hysteresis compensator of the SMA actuator is developed to compensate its hysteresis phenomenon. We proposed a switching controller to control the displacement of the SMA actuator, which consists of a feedforward inverse hysteresis compensator and a PID feedback controller with self-sensing feedback. The experimental results indicate that the switch controller provides better tracking performance than the PID-controller. An SMA-based hexapod biomimetic robot, SMABOT IV, is built, and sensor fusion algorithms are used to estimate its attitude, which include a discrete-time Kalman filter that minimizes the estimation error variance, and a discrete-time H∞ filter that minimizes the worst-case estimation error. After identifying the noise characteristics of the sensors using Allan variance analysis, the Kalman filter provides the better performance. The displacement of the SMABOT IV is then estimated by incorporating the attitude data with the legged odometry. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T04:31:31Z (GMT). No. of bitstreams: 1 ntu-98-F91522807-1.pdf: 7924393 bytes, checksum: 0619468c58d3f76c2eb1fa0b2afde306 (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 口試委員會審定書 i
致謝 iii 摘要 v Abstract vii Contents ix List of Figures xiii List of Tables xxv List of Symbols xxvii List of Acronyms xxxii Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Literature review 3 1.2.1 Modeling and control of SMA actuator 3 1.2.2 Biomimetic robot 11 1.2.3 Inertial navigation 15 1.3 Contributions 16 1.4 Thesis structure 19 Chapter 2 Shape memory alloy actuator 21 2.1 Shape memory alloy 22 2.1.1 Temperature-induced phase transformations 24 2.1.2 Stress-induced phase transformations 25 2.1.3 Shape memory effect 29 2.2 SMA actuator 31 2.3 SMA actuator test platform 37 2.4 Driving the SMA actuator 43 2.5 Self-sensing property of SMA actuator 48 2.5.1 Electric resistance variation of the SMA actuator 49 2.5.2 Self-sensing characteristic curve 54 2.6 Summary 62 Chapter 3 Modeling of SMA actuator 64 3.1 Strain-temperature hysteresis modeling 67 3.1.1 What is hysteresis? 67 3.1.2 Duhem differential model 68 3.1.3 Strain-temperature hysteresis modeling of SMA actuator 72 3.2 Inverse strain-temperature hysteresis modeling of SMA actuator 86 3.3 Thermal dynamics modeling of SMA actuator 92 3.4 Elastic potential energy model 97 3.5 PWM duty ratio generator 99 3.6 Modeling of self-sensing characteristic curve 101 3.7 Summary 120 Chapter 4 Displacement control of SMA actuator 123 4.1 PID-controller with self-sensing feedback 124 4.2 Feedforward inverse hysteresis compensator 131 4.3 Switching controller 137 4.4 Summary 145 Chapter 5 SMA-based hexapod robots 147 5.1 SMABOT I 148 5.2 SMABOT II 150 5.3 SMABOT III 154 5.4 Gait for SMABOTs 156 5.5 SMABOT IV 159 5.5.1 Design concept of the SMABOT IV 159 5.5.2 Fabrication of the SMABOT IV 164 5.6 Turning of SMABOT IV 173 5.7 Summary 175 Chapter 6 Navigation of the SMABOT IV 177 6.1 Definition of coordinate frames 179 6.2 Sensors 181 6.2.1 Accelerometer 181 6.2.2 Gyroscope 187 6.2.3 Inertial measurement unit 187 6.2.4 Step touch sensor 195 6.2.5 Electric compass sensor 200 6.3 Kalman filter 208 6.3.1 How it come to be called a filter 209 6.3.2 Discrete-time Kalman filter algorithm 210 6.4 Allan variance analysis 211 6.4.1 Methodology 212 6.4.2 Representation of noise terms in Allan variance 214 6.4.3 Testing results 216 6.5 Discrete-time H∞ filter 224 6.6 Sensor fusion for the attitude of SMABOT IV 225 6.6.1 Attitude model 225 6.6.2 Experimental results 232 6.7 Legged odometry 239 6.8 Displacement of SMABOT IV 241 6.9 Summary 243 Chapter 7 Conclusions and future work 245 7.1 Conclusions 245 7.2 Future work 250 Appendix A Tables for calculating the convection heat-transfer coefficient 253 Appendix B Ziegler-Nichols tuning of PID-controller 256 Appendix C Derivation of discrete-time Kalman filter 258 Appendix D Representation of noise terms in Allan variance 263 Appendix E Derivative rule for inverses 269 References 270 | |
dc.language.iso | en | |
dc.title | 形狀記憶合金致動器的建模、控制及其在六足仿生機器人上之應用 | zh_TW |
dc.title | Modeling and Control of Shape Memory Alloy Actuator and its Application to a Hexapod Biomimetic Robot | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 胡竹生(Jwu-Sheng Hu),譚俊豪(Jiun-Hau Tarn),陳永耀(Yung-Yaw Chen),連豊力(Feng-Li Lian),陳明新(Min-Shin Chen),林沛群(Pei-Chun Lin) | |
dc.subject.keyword | 形狀記憶合金致動器,自感應,反遲滯補償器,六足仿生機器人,感測器融合,離散時間Kalman濾波器,離散時間H∞濾波器,Allan變異量分析,導航, | zh_TW |
dc.subject.keyword | shape memory alloy (SMA) actuator,self-sensing,inverse hysteresis compensator,hexapod biomimetic robot,sensor fusion,discrete-time Kalman filter,discrete-time H∞ filter,Allan variance analysis,navigation, | en |
dc.relation.page | 278 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2009-10-19 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 7.74 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。