請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22847完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林頌然 | |
| dc.contributor.author | Chien-Mei Yen | en |
| dc.contributor.author | 嚴千媚 | zh_TW |
| dc.date.accessioned | 2021-06-08T04:30:31Z | - |
| dc.date.copyright | 2010-01-21 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-12-28 | |
| dc.identifier.citation | Alsantali A, Shapiro J (2009) Androgens and hair loss. Curr Opin Endocrinol Diabetes Obes 16:246-253.
Barrandon Y, Green H (1987) Three clonal types of keratinocyte with different capacities for multiplication. Proc Natl Acad Sci U S A 84:2302-2306. Buhl AE, Waldon DJ, Conrad SJ, Mulholland MJ, Shull KL, Kubicek MF, et al. (1992) Potassium channel conductance: a mechanism affecting hair growth both in vitro and in vivo. J Invest Dermatol 98:315-319. Callen JP (1982) Chronic cutaneous lupus erythematosus. Clinical, laboratory, therapeutic, and prognostic examination of 62 patients. Arch Dermatol 118:412-416. Carey AH, Waterworth D, Patel K, White D, Little J, Novelli P, et al. (1994) Polycystic ovaries and premature male pattern baldness are associated with one allele of the steroid metabolism gene CYP17. Hum Mol Genet 3:1873-1876. Chen RS, Chen YJ, Chen MH, Young TH (2009) The behavior of rat tooth germ cells on poly(vinyl alcohol). Acta Biomater 5:1064-1074. Coulombe PA, Kopan R, Fuchs E (1989) Expression of keratin K14 in the epidermis and hair follicle: insights into complex programs of differentiation. J Cell Biol 109:2295-2312. Dallob AL, Sadick NS, Unger W, Lipert S, Geissler LA, Gregoire SL, et al. (1994) The effect of finasteride, a 5 alpha-reductase inhibitor, on scalp skin testosterone and dihydrotestosterone concentrations in patients with male pattern baldness. J Clin Endocrinol Metab 79:703-706. De Bartolo L, Morelli S, Bader A, Drioli E (2002) Evaluation of cell behaviour related to physico-chemical properties of polymeric membranes to be used in bioartificial organs. Biomaterials 23:2485-2497. Dillaha CJ, Rothman S (1952) Treatment of alopecia areata totalis and universalis with cortisone acetate. J Invest Dermatol 18:5-6. Drioli E, De Bartolo L (2006) Membrane bioreactor for cell tissues and organoids. Artif Organs 30:793-802. du Cros DL (1993) Fibroblast growth factor and epidermal growth factor in hair development. J Invest Dermatol 101:106S-113S. du Cros DL, LeBaron RG, Couchman JR (1995) Association of versican with dermal matrices and its potential role in hair follicle development and cycling. J Invest Dermatol 105:426-431. DuCharme DW, Freyburger WA, Graham BE, Carlson RG (1973) Pharmacologic properties of minoxidil: a new hypotensive agent. J Pharmacol Exp Ther 184:662-670. Ellis MJ, Chaudhuri JB (2007) Poly(lactic-co-glycolic acid) hollow fibre membranes for use as a tissue engineering scaffold. Biotechnol Bioeng 96:177-187. Ellis MJ, Chaudhuri JB (2008) Human bone derived cell culture on PLGA flat sheet membranes of different lactide:glycolide ratio. Biotechnol Bioeng 101:369-377. Foitzik K, Paus R, Doetschman T, Dotto GP (1999) The TGF-beta2 isoform is both a required and sufficient inducer of murine hair follicle morphogenesis. Dev Biol 212:278-289. Foty RA, Pfleger CM, Forgacs G, Steinberg MS (1996) Surface tensions of embryonic tissues predict their mutual envelopment behavior. Development 122:1611-1620. Foty RA, Steinberg MS (2005) The differential adhesion hypothesis: a direct evaluation. Dev Biol 278:255-263. Fujie T, Katoh S, Oura H, Urano Y, Arase S (2001) The chemotactic effect of a dermal papilla cell-derived factor on outer root sheath cells. J Dermatol Sci 25:206-212. Fukuda J, Khademhosseini A, Yeh J, Eng G, Cheng J, Farokhzad OC, et al. (2006) Micropatterned cell co-cultures using layer-by-layer deposition of extracellular matrix components. Biomaterials 27:1479-1486. Goodman LV, Ledbetter SR (1992) Secretion of stromelysin by cultured dermal papilla cells: differential regulation by growth factors and functional role in mitogen-induced cell proliferation. J Cell Physiol 151:41-49. Hardy MH (1992) The secret life of the hair follicle. Trends Genet 8:55-61. Havlickova B, Biro T, Mescalchin A, Tschirschmann M, Mollenkopf H, Bettermann A, et al. (2009) A human folliculoid microsphere assay for exploring epithelial- mesenchymal interactions in the human hair follicle. J Invest Dermatol 129:972-983. Headington JT (1996) Cicatricial alopecia. Dermatol Clin 14:773-782. Hohl D (1990) [A new star in the heavens of epidermal proteins: loricrin--what is it?]. Hautarzt 41:299-301. Ihara S, Watanabe M, Nagao E, Shioya N (1991) Formation of hair follicles from a single-cell suspension of embryonic rat skin by a two-step procedure in vitro. Cell Tissue Res 266:65-73. Ito M, Yang Z, Andl T, Cui C, Kim N, Millar SE, et al. (2007) Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature 447:316-320. Jahoda CA, Horne KA, Mauger A, Bard S, Sengel P (1992) Cellular and extracellular involvement in the regeneration of the rat lower vibrissa follicle. Development 114:887-897. Jahoda CA, Horne KA, Oliver RF (1984) Induction of hair growth by implantation of cultured dermal papilla cells. Nature 311:560-562. Jahoda CA, Oliver RF (1984) Vibrissa dermal papilla cell aggregative behaviour in vivo and in vitro. J Embryol Exp Morphol 79:211-224. Jahoda CA, Reynolds AJ (1996) Dermal-epidermal interactions. Adult follicle-derived cell populations and hair growth. Dermatol Clin 14:573-583. Jakab K, Neagu A, Mironov V, Markwald RR, Forgacs G (2004) Engineering biological structures of prescribed shape using self-assembling multicellular systems. Proc Natl Acad Sci U S A 101:2864-2869. Kalkoff KW, Macher E (1958) [Growing of hair in alopecia areata & maligna after intracutaneous hydrocortisone injection.]. Hautarzt 9:441-451. Kaufman KD (1996) Androgen metabolism as it affects hair growth in androgenetic alopecia. Dermatol Clin 14:697-711. Kaufman KD, Olsen EA, Whiting D, Savin R, DeVillez R, Bergfeld W, et al. (1998) Finasteride in the treatment of men with androgenetic alopecia. Finasteride Male Pattern Hair Loss Study Group. J Am Acad Dermatol 39:578-589. Kawakami H (2008) Polymeric membrane materials for artificial organs. J Artif Organs 11:177-181. Kenawy el R, Layman JM, Watkins JR, Bowlin GL, Matthews JA, Simpson DG, et al. (2003) Electrospinning of poly(ethylene-co-vinyl alcohol) fibers. Biomaterials 24:907-913. Khetani SR, Bhatia SN (2008) Microscale culture of human liver cells for drug development. Nat Biotechnol 26:120-126. Kishimoto J, Ehama R, Wu L, Jiang S, Jiang N, Burgeson RE (1999) Selective activation of the versican promoter by epithelial- mesenchymal interactions during hair follicle development. Proc Natl Acad Sci U S A 96:7336-7341. Krause K, Foitzik K (2006) Biology of the hair follicle: the basics. Semin Cutan Med Surg 25:2-10. Krugluger W, Rohrbacher W, Laciak K, Moser K, Moser C, Hugeneck J (2005) Reorganization of hair follicles in human skin organ culture induced by cultured human follicle-derived cells. Exp Dermatol 14:580-585. Kurosawa H (2007) Methods for inducing embryoid body formation: in vitro differentiation system of embryonic stem cells. J Biosci Bioeng 103:389-398. Lachgar S, Charveron M, Gall Y, Bonafe JL (1998) Minoxidil upregulates the expression of vascular endothelial growth factor in human hair dermal papilla cells. Br J Dermatol 138:407-411. Li Y, Li GQ, Lin CM, Cai XN (2005) One-step collagenase I treatment: an efficient way for isolation and cultivation of human scalp dermal papilla cells. J Dermatol Sci 37:58-60. Lin SJ, Hsiao WC, Jee SH, Yu HS, Tsai TF, Lai JY, et al. (2006) Study on the effects of nylon-chitosan-blended membranes on the spheroid-forming activity of human melanocytes. Biomaterials 27:5079-5088. Lin SJ, Jee SH, Hsaio WC, Lee SJ, Young TH (2005) Formation of melanocyte spheroids on the chitosan-coated surface. Biomaterials 26:1413-1422. Lu HF, Chua KN, Zhang PC, Lim WS, Ramakrishna S, Leong KW, et al. (2005) Three-dimensional co-culture of rat hepatocyte spheroids and NIH/3T3 fibroblasts enhances hepatocyte functional maintenance. Acta Biomater 1:399-410. Madani S, Shapiro J (2000) Alopecia areata update. J Am Acad Dermatol 42:549-566; quiz 567-570. Mann GB, Fowler KJ, Gabriel A, Nice EC, Williams RL, Dunn AR (1993) Mice with a null mutation of the TGF alpha gene have abnormal skin architecture, wavy hair, and curly whiskers and often develop corneal inflammation. Cell 73:249-261. Martz E, Phillips HM, Steinberg MS (1974) Contact inhibitions of overlapping and differential cell adhesion: a sufficient model for the control of certain cell culture morphologies. J Cell Sci 16:401-419. McElwee KJ, Kissling S, Wenzel E, Huth A, Hoffmann R (2003) Cultured peribulbar dermal sheath cells can induce hair follicle development and contribute to the dermal sheath and dermal papilla. J Invest Dermatol 121:1267-1275. Mikkola ML, Millar SE (2006) The mammary bud as a skin appendage: unique and shared aspects of development. J Mammary Gland Biol Neoplasia 11:187-203. Millar SE (2002) Molecular mechanisms regulating hair follicle development. J Invest Dermatol 118:216-225. Miyashita H, Hakamata Y, Kobayashi E, Kobayashi K (2004) Characterization of hair follicles induced in implanted, cultured rat keratinocyte sheets. Exp Dermatol 13:491-498. Mori O, Uno H (1990) The effect of topical minoxidil on hair follicular cycles of rats. J Dermatol 17:276-281. Mou C, Jackson B, Schneider P, Overbeek PA, Headon DJ (2006) Generation of the primary hair follicle pattern. Proc Natl Acad Sci U S A 103:9075-9080. Oliver RF (1966) Whisker growth after removal of the dermal papilla and lengths of follicle in the hooded rat. J Embryol Exp Morphol 15:331-347. Oliver RF (1967) The experimental induction of whisker growth in the hooded rat by implantation of dermal papillae. J Embryol Exp Morphol 18:43-51. Oliver RF, Jahoda CA (1988) Dermal-epidermal interactions. Clin Dermatol 6:74-82. Olsen EA, Weiner MS (1987) Topical minoxidil in male pattern baldness: effects of discontinuation of treatment. J Am Acad Dermatol 17:97-101. Orentreich N (1959) Autografts in alopecias and other selected dermatological conditions. Ann N Y Acad Sci 83:463-479. Osada A, Iwabuchi T, Kishimoto J, Hamazaki TS, Okochi H (2007) Long-term culture of mouse vibrissal dermal papilla cells and de novo hair follicle induction. Tissue Eng 13:975-982. Otberg N, Kang H, Alzolibani AA, Shapiro J (2008) Folliculitis decalvans. Dermatol Ther 21:238-244. Paus R, Foitzik K, Welker P, Bulfone-Paus S, Eichmuller S (1997) Transforming growth factor-beta receptor type I and type II expression during murine hair follicle development and cycling. J Invest Dermatol 109:518-526. Pellegrini G, Ranno R, Stracuzzi G, Bondanza S, Guerra L, Zambruno G, et al. (1999) The control of epidermal stem cells (holoclones) in the treatment of massive full-thickness burns with autologous keratinocytes cultured on fibrin. Transplantation 68:868-879. Peters EM, Liotiri S, Bodo E, Hagen E, Biro T, Arck PC, et al. (2007) Probing the effects of stress mediators on the human hair follicle: substance P holds central position. Am J Pathol 171:1872-1886. Pirotta T (1969) Hair-grafting: a practical possibility. Med J Aust 2:590-592. Price VH (1999) Treatment of hair loss. N Engl J Med 341:964-973. Qiao J, Turetsky A, Kemp P, Teumer J (2008) Hair morphogenesis in vitro: formation of hair structures suitable for implantation. Regen Med 3:683-692. Reddy S, Andl T, Bagasra A, Lu MM, Epstein DJ, Morrisey EE, et al. (2001) Characterization of Wnt gene expression in developing and postnatal hair follicles and identification of Wnt5a as a target of Sonic hedgehog in hair follicle morphogenesis. Mech Dev 107:69-82. Reynolds AJ, Jahoda CA (1992) Cultured dermal papilla cells induce follicle formation and hair growth by transdifferentiation of an adult epidermis. Development 115:587-593. Rheinwald JG, Green H (1975) Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6:331-343. Robins EJ, Breathnach AS (1969) Fine structure of the human foetal hair follicle at hair-peg and early bulbous-peg stages of development. J Anat 104:553-569. Ryan PL, Foty RA, Kohn J, Steinberg MS (2001) Tissue spreading on implantable substrates is a competitive outcome of cell-cell vs. cell-substratum adhesivity. Proc Natl Acad Sci U S A 98:4323-4327. Schlake T (2007) Determination of hair structure and shape. Semin Cell Dev Biol 18:267-273. Schmidt-Ullrich R, Paus R (2005) Molecular principles of hair follicle induction and morphogenesis. Bioessays 27:247-261. Schneider MR, Schmidt-Ullrich R, Paus R (2009) The hair follicle as a dynamic miniorgan. Curr Biol 19:R132-142. Shapiro J, Price VH (1998) Hair regrowth. Therapeutic agents. Dermatol Clin 16:341-356. Shimaoka S, Imai R, Ogawa H (1994) Dermal papilla cells express hepatocyte growth factor. J Dermatol Sci 7 Suppl:S79-83. Soma T, Tajima M, Kishimoto J (2005) Hair cycle-specific expression of versican in human hair follicles. J Dermatol Sci 39:147-154. Sperling LC, Winton GB (1990) The transverse anatomy of androgenic alopecia. J Dermatol Surg Oncol 16:1127-1133. Steinert P, Yuspa SH (1978) Biochemical evidence for keratinization by mouse epidermal cells in culture. Science 200:1491-1493. Sun T, Mai S, Norton D, Haycock JW, Ryan AJ, MacNeil S (2005) Self-organization of skin cells in three-dimensional electrospun polystyrene scaffolds. Tissue Eng 11:1023-1033. Tobin DJ, Orentreich N, Fenton DA, Bystryn JC (1994) Antibodies to hair follicles in alopecia areata. J Invest Dermatol 102:721-724. Wang XL, Du FG, Jiao J, Meng YZ, Li RK (2007) Preparation and properties of biodegradable polymeric blends from poly(propylene carbonate) and poly(ethylene-co-vinyl alcohol). J Biomed Mater Res B Appl Biomater 83:373-379. Wester RC, Maibach HI, Guy RH, Novak E (1984) Minoxidil stimulates cutaneous blood flow in human balding scalps: pharmacodynamics measured by laser Doppler velocimetry and photopulse plethysmography. J Invest Dermatol 82:515-517. Young TH, Hu WW (2003) Covalent bonding of lysine to EVAL membrane surface to improve survival of cultured cerebellar granule neurons. Biomaterials 24:1477-1486. Young TH, Lee CY, Chiu HC, Hsu CJ, Lin SJ (2008) Self-assembly of dermal papilla cells into inductive spheroidal microtissues on poly(ethylene-co-vinyl alcohol) membranes for hair follicle regeneration. Biomaterials 29:3521-3530. Young TH, Tu HR, Chan CC, Huang YC, Yen MH, Cheng NC, et al. (2009) The enhancement of dermal papilla cell aggregation by extracellular matrix proteins through effects on cell–substratum adhesivity and cell motility Biomaterials. Young TH, Yao CH, Sun JS, Lai CP, Chen LW (1998) The effect of morphology variety of EVAL membranes on the behavior of myoblasts in vitro. Biomaterials 19:717-724. Zheng Y, Du X, Wang W, Boucher M, Parimoo S, Stenn K (2005) Organogenesis from dissociated cells: generation of mature cycling hair follicles from skin-derived cells. J Invest Dermatol 124:867-876. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22847 | - |
| dc.description.abstract | 先前研究中指出,將毛囊之真皮乳突細胞培養於乙烯-乙烯醇共聚物poly(ethylene-co-vinyl alcohol) (EVAL),能使真皮乳突細胞自我聚集成立體微組織,並保有誘導毛囊新生之能力。而毛囊的生成時必須要有表皮細胞參與,因此植入的位置要非常精準地接近表皮才能成功誘導出毛囊,但這於臨床使用上是具有困難度的。
目前在毛囊再生的研究中,大多需以胚胎鼠或新生鼠做為細胞來源,才能誘導毛囊再生。但胚胎或新生細胞來源非常不易,且具有倫理道德上的爭議。而禿髮大多發生於成年人,目前利用成體細胞誘導毛囊生成是極困難的。因此本實驗構想為以成鼠的真皮乳突細胞與腳掌之角質細胞做為細胞來源,將此兩種細胞同時培養於EVAL,希望此兩種細胞能於EVAL上形成大量混合性微組織,並具有毛囊再生之能力,提供一個利用自體細胞生成大量毛囊狀微組織之方式,運用於毛囊再生。 由實驗結果中發現,真皮乳突細胞於EVAL上能形成許多球形微組織,角質細胞於EVAL不貼附,呈懸浮狀態。而將真皮乳突細胞與角質細胞共同培養於EVAL上也能形成許多混合性球形微組織。 進而針對混合性球形微組織做分析,其結構為真皮乳突細胞分佈於微組織中心而角質細胞分佈於外圍,形成類似毛囊構造 (folliculoid)。在培養後第一天與第三天,微組織內之細胞存活率仍保有九成,顯示細胞形成微組織後,依然具有其活性。在基因表現上,角質細胞朝向表皮分化的基因表現會下降 (keratin 1, loricrin),朝毛囊分化的基因表現會上升 (keratin 6)。功能上,這些微組織在植入動物體後能生成新的毛囊與髮幹構造。 我們進一步探討細胞於材料上貼附與移行之關係,推測微組織形成之機轉。真皮乳突細胞於EVAL具有中度的貼附率且有較高的移動速率。而角質細胞不易貼附於EVAL,但易貼附於真皮乳突細胞。藉由真皮乳突細胞於EVAL上形成微組織之同時,能帶動貼附於其上的角質細胞。可能由於真皮乳突細胞間黏著性大於角質細胞,因此真皮乳突細胞在移動形成微組織之同時會往細胞團中心聚集,角質細胞則被動地被推向微組織的外圍,最後會因微組織外圍的角質細胞不易貼附於EVAL,使原本貼附於EVAL的微組織離開基材表面,懸浮於培養液中。 利用此方式製造出的微組織,細胞間能直接互相接觸,提高細胞間交互作用,增加真皮乳突細胞將表皮的角質細胞誘導為毛囊中的角質細胞之機率,且能於短時間獲得大量微組織,因此更能實際運用於臨床研究上。 | zh_TW |
| dc.description.abstract | Dermal papilla cells can self-assemble into spheroidal microtissues on poly(ethylene-co-vinyl alcohol) (EVAL) membranes and these microtissues are able to induce hair follicle neogenesis in our previous study. However, epidermal cells are necessary for hair follicle neogenesis. Therefore, the dermal papilla microtissues should be precisely injected to the dermal-epidermal junction. However, it is extremely difficult in clinical practice.
According to the study of hair follicle regeneration so far, it is necessary to use embryonic or newborn cells as the source for successfully making the hair follicle in vitro. But it is hard and has provoked a great deal of controversy. Furthermore, the alopecia usually appears in adults. Therefore, using adult cells is difficult to induce hair follicle. The purpose of this study is to generate functional dermal papilla-keratinocyte hybrid microtissues by substratum-facilitated cell self-assembly using adult rat cells for hair follicle regeneration. We found that dermal papilla cells alone can attach and form spheroidal microtissues on EVAL membrane, but keratinocytes alone fail to attach and become suspended. When dermal papilla cells and keratinocytes are simultaneously seeded, they are able to form hybrid microtissues on EVAL membrane. Structurally, the hybrid microtissues have dermal papilla cells aggregated in the core and keratinocytes sorted to the surface, forming a structure mimicking bulbs. Cell viability remains as high as 90% in the microtissues. In gene expression, keratin 1 and loricrin are down regulated while keratin 6 is up regulated. Functionally, after being transplanted to nude mice, the microtissues are able to regenerate new hairs. Analyzing behavior reveals that keratinocytes tend to attach to dermal papilla cells. Consequently, the keratinocytes are carried by the motile dermal papilla cells on EVAL membrane and are pushed to the outside of microtissues by dermal papilla cells during the self-aggregation. Finally, the microtissues spontaneously detach from EVAL membrane. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T04:30:31Z (GMT). No. of bitstreams: 1 ntu-98-R96548060-1.pdf: 2168639 bytes, checksum: 2b9a643876c649a469077566e1947934 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 致謝 I
ABSTRACT III 中文摘要 IV 目錄 VI 圖目錄 VIII 第一章、序論 1 1.1. 禿髮與治療 1 1.2. 毛囊之結構 3 1.3. 毛囊之發育 5 1.4. 毛囊再生之研究 7 1.5. 高分子薄膜 9 1.6. 聚乙烯乙烯醇共聚物 10 1.7. 細胞於生醫材料上之行為 11 第二章、實驗目的與設計 12 2.1. 實驗目的 12 2.2. 實驗設計 15 第三章、材料與方法 16 3.1. 真皮乳突細胞之培養 16 3.2. 角質細胞之分離 16 3.3. 高分子材料之製備 17 3.4. 立體微組織之培養 17 3.5. 細胞密度 18 3.6. 混合性真皮乳突-角質細胞微組織內細胞之存活率 18 3.7. 混合性微組織之個數與直徑分佈 18 3.8. 細胞貼附 19 3.9. 角質細胞於TCPS與真皮乳突細胞之貼附 19 3.10. 細胞移行 19 3.11. 共軛焦顯微鏡之觀察 20 3.12. 懸滴培養 20 3.13. 免疫染色 20 3.14. RNA萃取 21 3.15. 逆轉錄聚合酶連鎖反應 21 3.16. 即時聚合酶連鎖反應 21 3.17. 動物實驗 22 3.18. 曠時攝影 23 第四章、實驗結果 24 4.1. 真皮乳突細胞與角質細胞培養於EVAL之形態 24 4.2. 細胞密度對混合性微組織形成之影響 28 4.3. 真皮乳突細胞與角質細胞於EVAL上之貼附能力 30 4.4. 真皮乳突細胞與角質細胞於EVAL上之移行能力 33 4.5. 真皮乳突細胞與角質細胞間之交互作用 36 4.6. 混合性微組織內細胞之存活率 40 4.7. 混合性微組織之形成數目與大小分佈 41 4.8. 混合性微組織之形態 44 4.9. 混合性微組織毛囊分化之表現 46 4.10. 毛囊再生 50 4.11. 混合性微組織之動態形成過程 52 第五章、討論 54 第六章、結論 56 第七章、參考文獻 58 圖目錄 圖1.2.1. 毛囊組織形態學 4 圖1.3. 毛囊之發育 6 圖1.4. POLY(ETHYLENE-CO-VINYL ALCOHOL) (EVAL)之結構 10 圖2.1. 真皮乳突細胞與角質細胞於材料上可能之細胞排列與形態 13 圖2.2. 實驗設計 15 圖4.1.1. 真皮乳突細胞與角質細胞於TCPS之形態 26 圖4.1.2. 真皮乳突細胞與角質細胞於EVAL之形態 27 圖4.2. 細胞密度對微組織形成之影響 29 圖4.3.1. 真皮乳突細胞與角質細胞於EVAL及TCPS之貼附率 31 圖4.3.2. 真皮乳突細胞與角質細胞於EVAL及TCPS之形態 32 圖4.4.1. 真皮乳突細胞與角質細胞之移行 34 圖4.4.2. 真皮乳突細胞與角質細胞移行之軌跡 35 圖 4.5.1. 真皮乳突細胞與角質細胞間之交互作用 38 圖 4.5.2.角質細胞於TCPS與真皮乳突細胞上之貼附性 39 圖 4.6.1. 混合性微組織內之細胞存活率 40 圖 4.7.1. 混合性微組織直徑大小之分佈 42 圖 4.7.2. 微組織直徑大小之分佈 (影像圖) 43 圖 4.8. 混合性微組織之結構 45 圖 4.9.1. 微組織之基因表現 (REAL-TIME PCR) 49 圖 4.9.2. 微組織之基因表現 (電泳圖) 47 圖 4.9.3. 混合性微組織KERATIN 6蛋白之表現 48 圖 4.10. 毛囊再生 51 圖4.11. 微組織之動態形成過程 53 圖6.1. 混合性微組織形成之推想模型 57 | |
| dc.language.iso | zh-TW | |
| dc.subject | 真皮乳突細胞 | zh_TW |
| dc.subject | 角質細胞 | zh_TW |
| dc.subject | 毛囊再生 | zh_TW |
| dc.subject | 乙烯-乙烯醇共聚物 | zh_TW |
| dc.subject | 微組織 | zh_TW |
| dc.subject | dermal papilla | en |
| dc.subject | hair follicle regeneration | en |
| dc.subject | microtissues | en |
| dc.subject | poly(ethylene-co-vinyl alcohol) | en |
| dc.subject | keratinocyte | en |
| dc.title | 於乙烯-乙烯醇共聚物上高效率製造可注射之毛囊狀真皮乳突-角質細胞混合性微組織應用於毛囊再生 | zh_TW |
| dc.title | High throughput production of injectable folliculoid dermal papilla-keratinocyte hybrid microtissues on poly(ethylene-co-vinyl alcohol) surface for hair follicle regeneration | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊台鴻,吳君泰,陳敏慧,林致廷 | |
| dc.subject.keyword | 真皮乳突細胞,角質細胞,乙烯-乙烯醇共聚物,微組織,毛囊再生, | zh_TW |
| dc.subject.keyword | dermal papilla,keratinocyte,poly(ethylene-co-vinyl alcohol),microtissues,hair follicle regeneration, | en |
| dc.relation.page | 66 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2009-12-29 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 2.12 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
