Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22814
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林宗賢(Tzong-Shyan Lin)
dc.contributor.authorChia-Yun Pingen
dc.contributor.author平嘉雲zh_TW
dc.date.accessioned2021-06-08T04:29:14Z-
dc.date.copyright2010-02-04
dc.date.issued2010
dc.date.submitted2010-01-22
dc.identifier.citation1.米田和夫. 2007. 蝴蝶蘭. 國立中興大學農業暨自然資源學院農業推廣中心.
2.李哖. 2005. 蝴蝶蘭, p. 899-902. 刊於:方怡丹、林鈴娜和黃美華主編. 台灣農家要覽農作篇(二) 增修訂三版. 行政院農業委員會. 台北市.
3.李嘉慧、李哖. 1991. 臺灣蝴蝶蘭根和葉的形態與解剖的特性. 中國園藝37: 237-248.
4.林讚標. 1977. 台灣蘭科植物(第二冊). 南天書局. 台北市.
5.涂美智. 1986. 蝴蝶蘭白花雜交種果莢發育與培養基成分對種子發芽及幼苗生長之影響. 國立臺灣大學園藝學研究所碩士論文.
6.郭瑋君. 1999. 蝴蝶蘭光合作用特性之研究. 國立臺灣大學園藝學研究所碩士論文.
7.陳怡靜. 2001. 蝴蝶蘭與文心蘭類瓶苗瓶內二氧化碳和乙烯濃度之日變化與光合特性之研究. 國立臺灣大學園藝學研究所碩士論文.
8.陳怡靜、李哖. 2002. 台灣蝴蝶蘭瓶苗內二氧化碳及有機酸含量之日韻律變化. 中國園藝48: 157-166.
9.陳世賢. 2007. 台灣蝴蝶蘭產業競爭力分析. 國立臺灣大學管理學院碩士在職專班高階公共管理組碩士論文.
10.張耀乾. 2007. 蝴蝶蘭的生育環境, p.1-6. 刊於:沈再木和徐善德主編. 蝴蝶蘭栽培. 國立嘉義大學.
11.蘇鴻傑. 1974. 台灣的野生蘭. 豐年社. 台北市.
12.Adams, P., D. E. Nelson, S. Yamada, W. Chmara, R. G. Jensen, H. J. Bohnert, and H. Griffiths. 1998. Growth and development of Mesembryanthemum crystalinum (Aizoaceae). New Phytol. 138: 171-190.
13.Arditti, J. 1992. Physiology, p. 159-181. In: J. Arditti (ed.). Fundamentals of orchid biology. Wiley, New York.
14.Aschan, G. and H. Pfanz. 2003. Non-foliar photosynthesis-a strategy of additional carbon acquisition. Flora 198: 81-97.
15.Bastide, B., D. Sipes, J. Hann, and I. P. Ting. 1993. Effect of severe water stress on aspects of crassulacean acid metabolism in Xerosicyos. Plant Physiol. 103: 1089-1096.
16.Benzing, D. H., D. W. Ott, and W. E. Friedmann. 1982. Roots of Sorbralia macrantha (Orchidaceae): structure and function of the velamen-exodermis complex. Amer. J. Bot. 69: 608-614.
17.Benzing, D. H., W. E. Friedman, G. Peterson, and A. Renfrow. 1983. Shootlessness, velamentous roots, and the pre-eminence of Orchidaceae in the epiphytic biotope. Amer. J. Bot. 70: 121-133.
18.Black, C. C. 1973. Photosynthetic carbon fixation in relation to net CO2 uptake. Annu. Rev. Plant Physiol. 24: 253-286.
19.Black, C. C. and C. B. Osmond. 2003. Crassulacean acid metabolism photosynthesis: ‘working the night shift’. Photosynth. Res. 76: 329-341.
20.Bloom, A. J. 1979. Salt requirement for crassulacean acid metabolism in the annual succulent Mesembryanthemum crystallinum. Plant Physiol. 63: 749-753.
21.Borland, A. M. 1996. A model for the portioning of photosynthetically fixed carbon during the C3-CAM transition in Sedum telephium. New Phytol. 134: 433-444.
22.Borland, A. M. and H. Griffiths. 1997. A comparative study on the regulation of C3 and C4 carboxylation processes in the constitutive crassulacean acid metabolism (CAM) plant Kalanchoe diagremontiana and the C3-CAM intermediate Clusia minor. Planta 201: 368-378.
23.Borland, A. M., J. Hartwell, G. I. Jenkins, M. B. Wilkins, and H. G. Nimmo. 1999. Metabolite control overrides circadian regulation of phosphoenolpyruvate carboxylase kinase and CO2 fixation in crassulacean acid metabolism. Plant Physiol. 121: 889-896.
24.Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities utilizing the principle of protein dye binding. Anal Biochem 72: 248-54.
25.Broetto, F., H. M. Duarte, and U. Luttge. 2007. Responses of chlorophyll fluorescence parameters of the facultative halophyte and C3-CAM intermediate species Mesembryanthemum crystallinum to salinity and high irradiance stress. J. Plant Physiol. 164: 904-912.
26.Carter, P. J., H. G. Nimmo, C. A. Fewson, and M. B. Wilkins. 1991. Circadian rhythms in the activeity of a plant protein kinase. EMBO J. 10: 2063-2068.
27.Ceusters, J., A. M. Borland, V. Verdoodt, C. Godts, and M. P. De Proft. 2008. Diel shifts in carboxylation pathway and metabolite dynamics in the CAM bromeliad Aechmea ‘Maya’ in response to elevated CO2. Ann. Bot. 102: 389-397.
28.Chen, L. S., Q. Lin, and A. Nose. 2002. A comparative study on diurnal changes in metabolite levels in the leaves of the three CAM species, Ananas comosus, K. daigremontiana and K. pinnata. J. Exp. Bot. 53: 341-350.
29.Chollet, R., J. Vidal, and M. H. O’Leary. 1996. Phosphoenolpyruvate carboxylase: a ubiquitous, highly regulated enzyme in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 273-298.
30.Christenson, E. A. 2001. Ecology and distributeion, p. 19-25. Phalaenopsis: a monograph. Timber Press, U.S.A.
31.Cui, Y. Y., D. M. Pandey, E. J. Hahn, and K. Y. Paek. 2004. Effect of drought on physiological aspects of crassulacean acid metabolism in Doritaenopsis. Plant Sci. 167: 1219-1226.
32.Cockburn, W., C. J. Goh, and P. N. Avadhani. 1985. Photosynthetic carbon assimilation in a shootless orchid, Chiloschista usneoides (DON) LDL. Plant Physiol. 77: 83-86.
33.Cockburn, W., I. P. Ting, and L. O. Sternberg. 1979. Relationships between stomatal behavior and internal carbon dioxide concentration in crassulacean acid metabolism plants. Plant Physiol. 63: 1029-1032.
34.Cushman, J. C. 1993. Molecular cloning and expression of chloroplast NADP-malate dehydrogenase during crassulacean acid metabolism induction by salt stress. Photosynth. Res. 35: 12-27.
35.Cushman, J. C. and A. M. Borland. 2002. Induction of crassulacean acid metabolism by water limitation. Plant Cell Envior. 25: 295-310.
36.Cushman, J. C. and H. J. Bohnert. 1996. Transcription activation of CAM genes during development and environmental stress, p. 135-158. In: K. Winter and J. A. C. Smith (eds.). Crassulacean acid metabolism: biochemistry, ecophysiology and evolution. Springer-Verlag, New York.
37.Cushman, J. C. and H. J. Bohnert. 1997. Molecular genetics of crassulacean acid metabolism. Plant Physiol. 113: 667-676.
38.Cushman, J. C., C. B. Michalowski, and H. J. Bohnert. 1990. Developmental control of CAM inducibility by salt stress in the common ice plant. Plant Physiol. 94: 1173-1142.
39.Cushman, J. C., G. Meyer, C. B. Michalowski, J. M. Schmitt, and H. J. Bohnert. 1989. Salt stress leads to differential expression of two isogenes of phosphoenolpyruvate carboxylase during crassulacean acid metabolism induction in the common ice plant. Plant Cell 1: 715-725.
40.Cushman, J. C., S. Agarie, R. L. Albion, S. M. Elliot, T. Taybi, and A. M. Borland. 2008. Isolation and characterization of mutants of common ice plant deficient in crassulacean acid metabolism. Plant Physiol. 147: 228-238.
41.Dodd, A. N., A. M. Borland, R. P. Haslam, H. Griffiths, and K. Maxwell. 2002. Crassulacean acid metabolism: plastic, fantastic. J. Exp. Bot. 53: 569-580.
42.Drennan, P. M. and P. S. Nobel. 2000. Responses of CAM species to increasing atmospheric CO2 concentrations. Plant Cell Environ. 23: 767-781.
43.Dycus, A. M. and L. Knudson. 1957. The role of the velamen of the aerial roots of orchids. Bot. Gaz. 199: 78-87.
44.Edwards, G. E., Z. Dai, S. H. Cheng, and M. S. B. Ku. 1996. Factors affecting the induction of crassulacean acid metabolism in Mesembryanthemum crystalinum, p. 119-134. In: K. Winter and J. A. C. Smith (eds.). Crassulacean acid metabolism: biochemistry, ecophysiology, and evolution. Springer-Verlag, New York.
45.Ernst, K. and P. Westhoff. 1997. The phosphoenolpyruvate carboxylase (ppc) gene family of Flaveria trinervia (C4) and F. pringlei (C3): molecular characterization and expression analysis of the ppcB and ppcC genes. Plant Mol. Biol. 34: 427-443.
46.Fontaine, V., J. Hartwell, G. I. Jenkins, and H. G. Nimmo. 2002. Arabidopsis thaliana contains two phosphoenolpyruvate carboxylase kinase genes with different expression patterns. Plant Cell Environ. 25: 115-122.
47.Forsthoefel, N. R., M. A. F. Cushman, and J. C. Cushman. 1995. Posttranscriptional and posttranslational control of enolase expression in the facultative crassulacean acid metabolism plant Mesembryanthemum crystallinum L. Plant Physiol. 108: 1185-1195.
48.Foster, J. C., G. E. Edwards, and K. Winter. 1982. Changes in the levels of phosphoenolpyruvate carboxylase with induction of CAM in M. crystallinum L. Plant Cell Physiol. 23: 585-594.
49.Fu, C. F. and C. S. Hew. 1982. Crassulacean acid metabolism in orchids under water stress. Bot. Gaz. 143: 294-297.
50.Fukayama, H., T. Tamai, Y. Taniguchi, S. Sullivan, M. Miyao, and H. G. Nimmo. 2006. Characterization and functional analysis of phosphoenolpyruvate carboxylase kinase genes in rice. Plant J. 47: 258-268.
51.Gehrig, H., K. Faist, and M. Kluge. 1998. Identification of phosphoenolpyruvate carboxylase isoforms in leaf, stem and roots of the obligate CAM plant Vanilla planifolia Salib. (Orchidaceae): a physiological and molecular approach. Plant Mol. Biol. 38: 1215-1223.
52.Gehrig, H., V. Heute, and M. Kluge. 2001. New partial sequences of phosphoenolpyruvate carboxylase as molecular phylogenetic markers. Mol. Phylogenet. Evol. 20: 262-274.
53.Gehrig, H., T. Taybi, M. Kluge, and J. Brulfert. 1995. Identification of multiple PEPC isogenes in leaves of the facultative crassulacean acid metabolism (CAM) plant Kalanchoe blossfeldiana Poelln. cv. Tom Thumb. FEBS Lett. 377: 399-402.
54.Goh, C. J., J. Arditti, and P. N. Avadhani. 1983. Carbon fixation in orchid aerial roots. New Phytol. 95: 367-374.
55.Goh, C. J., Wara-Aswapati, and P. N. Avadhami. 1984. Crassulacean acid metabolism in young orchid leaves. New Phytol. 96: 519-526.
56.Griffiths, H., M. S. J. Broadmeadow, A. M. Borland, and C. S. Hetherington. 1990. Short-term changes in carbon isotope discrimination identify transitions between C3 and C4 carboxylation during crassulacean acid metabolism. Planta 181: 604-610.
57.Guo, W. J. and N. Lee. 2006. Effect of leaf and plant age, and day/night temperature on net CO2 uptake in Phalaenopsis amabilis var. formosa. J. Amer. Soc. Hort. Sci. 131: 320-326.
58.Haag-Kerwer, A., A. C. Franco, and U. Luttge. 1992. The Effect of Temperature and Light on Gas Exchange and Acid Accumulation in the C3-CAM Plant Clusia minor L. J. Exp. Bot. 43: 345-352.
59.Hall, T. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95-98.
60.Hartwell, J., L. H. Smith, M. B. Wilkins, G. I. Jenkins, and H. G. Nimmo. 1996. Higher plant phosphoenolpyruvate carboxylase kinase is regulated at the level of translatable mRNA in response to light or a circadian rhythm. Plant J. 10: 1071-1078.
61.Hartwell, J., A. Gill, G. A. Nimmo, M. B. Wilkins, G. I. Jenkins, and H. G. Nimmo. 1999. Phosphoenolpyruvate carboxylase kinase is a novel protein kinase regulated at the level of expression. Plant J. 20: 333-342.
62.Hew, C. S. and J. W. H. Yong. 2004. Photosynthesis, p. 37-92. In: C. S. Hew and J. W. H. Yong (eds.).The physiology of tropical orchids in relation to the industry, Second Ed. World Scientific Pub., Singapore.
63.Hew, C. S. and S. I. Khoo. 1980. Photosynthesis of young orchid seedlings. New Phytol. 86: 349-357.
64.Hew, C. S., Y. W. Ng, S. C. Wong, H. H. Yeoh, and K. K. Ho. 1984. Carbon dioxide fixation in orchid aerial roots. Physiol. Plant. 60: 154-158.
65.Ho, K. K., H. H. Yeoh, and C. S. Hew. 1983. The presence of photosynthetic machinery in aerial roots of leaf orchids. Plant Cell Physiol. 24: 1317-1321.
66.Hofner, R., L. Vasquez-Moreno, K. Winter, H. J. Bohnert, and J. M. Schmitt. 1987. Induction of Crassulacean acid metabolism in Mesembryanthemum crystallinum by high salinity: mass increase and de novo synthesis of PEP carboxylase. Plant Physiol. 83: 915-919.
67.Holthe, P. A., L. da S. L. Sternberg, and I. P. Ting. 1987. Developmental control of CAM in Peperomia scandens. Plant Physiol. 84: 743-747.
68.Holtum, J. A. M. and K. Winter. 1982. Activity of enzymes of carbon metabolism during the induction of crassulacean acid metabolism in Mesembryanthemum crystallinum L. Planta 155: 8-16.
69.Huerta, A. J. and I. P. Ting. 1988. Effects of various levels of CO2 on the induction of crassulacean acid metabolism in Portulacaria afra (L) Jacq. Plant Physiol 88:183-188.
70.Israel, A. A. and P.S. Nobel. 1994. Activities of carboxylating enzymes in the CAM species Opuntia ficus-indica grown under current and elevated CO2 concentrations. Photosynth. Res. 40: 223-229.
71.Izui, K., H. Matsumura, T. Furumoto, and Y. Kai. 2004. Phosphoenolpyruvate carboxylase: a new era of structural biology. Annu. Rev. Plant Biol. 55: 69-84.
72.Jones, M. B. 1975. The effect of leaf age on leaf resistance and CO2 exchange of the CAM plant Bryophyllum fedtschenkoi. Planta 123: 91-96.
73.Kawamura, T., K. Shigesada, S. Yanagisawa, andK. Izui. 1990. Phosphoenolpyruvate carboxylase prevalent in maize roots: isolation of a cDNA clone and its use for analyses of the gene and gene expression. J. Biochem. 107: 165-168.
74.Kluge, M. and I. P. Ting. 1987. Crassulacean acid metabolism: analysis of an ecological adaptation. Ecological studies. V. 30. Springer-Verlag, New York.
75.Kromer, S., P. Gardestrom, and G. Samuelsson. 1996. Regulation of the supply of cytosolic oxaloacetate for mitochondrial metabolism via phosphoenolpyruvate carboxylase in barley leaf protoplasts I. The effect of covalent modification on PEPC activeity, pH response, and kinetic propertyes. Biochim. Biophys. Acta 1289: 343-350.
76.Ku, M. S. B., S. Agarie, M. Nomura, H. Fukayama, H. Tsuchida, K. Ono, S. Hirose, S. Toki, M. Miyao, and M. Matsuoka. 1999. High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nat. Biotechnol. 17: 76-80.
77.Lee, Y. I., E. C. Yeung, and M. C. Chung. 2007. Embryo development of orchids, p. 23-45. In: W. H. Chen and H. H. Chen (eds.). Orchid Biotechnology. World Scientific Pub., Singapore.
78.Lee, Y. I., E. C. Yeung, N. Lee, and M. C. Chung. 2008. Embryology of Phalaenopsis amabilis var. formosa: embryo development. Bot. Stud. 49: 139-146.
79.Lepiniec, L., J. Vidal, R. Chollet, P. Gadal, and C. Cretin. 1994. Phosphoenolpyruvate carboxylase: structure, regulation and evolution. Plant Sci. 99: 111-124.
80.Li, B. and R. Chollet. 1994. Salt induction and the partial purification/characterization of phosphoenolpyruvate carboxylase protein-serine kinase from an inducible crassulacean-acid-metabolism (CAM) plant, Mesembryanthemum crystallinum L. Arch. Biochem. Biophys. 314: 247-254.
81.Li, C. R., X. B. Zhang, and C. S. Hew. 2003. Molecular cloning of a phosphoenolpyruvate carboxylase cDNA from tropical epiphytic CAM orchid. Biol. Plant. 47: 635-636.
82.Malda, G., R. A. Backhaus, and C. Martin. 1999. Alterations in growth and crassulacean acid metabolism (CAM) activity of in vitro cultured cactus. Plant Cell Tissue Organ Cult. 58: 1-9.
83.Mansfield, T. A., A. M. Hetherington, and C. J. Atkinson. 1990. Some current aspects of stomatal physiology. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41: 55-75.
84.Marsh, J. T., S. Sullivan, J. Hartwell, and H. G. Nimmo. 2003. Structure and expression of phosphoenolpyruvate carboxylase kinase genes in Solanaceae. A novel gene exhibits alternative splicing. Plant Physiol. 133: 1-8.
85.Martin, C. E. 1996. Putative causes and consequences of recycling CO2 via crassulacean acid metabolism, p. 192-203. In: K. Winter and J. A. C. Smith (eds.). Crassulacean acid metabolism: biochemistry, ecophysiology, and evolution. Springer-Verlag Press, New York.
86.McElwain, E. F., H. J. Bohnet, and J. C. Thomas. 1992. Light moderates the induction of phosphoenolpyruvate carboxylase by NaCl and abscisic acid in Mesembryanthemum crystallinum. Plant Physiol. 99: 1261-1264.
87.McWilliams, E. L. 1970. Comparative rates of dark CO2 uptake and acidification in the Bromeliaceae, Orchidaceae, and Euphorbiaceae. Bot. Gaz. 131:285-290.
88.Meinzer, F. C. and P. W. Rundel. 1973. Crassulacean acid metabolism and water use efficiency in Echeveria pumila. Photosynthetica 7: 358-364.
89.Melzer, E. and M. H. O’Leary. 1987. Anapleurotic CO2 fixation by phosphoenolpyruvate carboxylase in C3 plants. Plant Physiol. 84: 58-60.
90.Michalowski, C. B, S. W. Olson, M. Piepenbrock, J. M. Schmitt, and H. J. Bohnert. 1989. Time course of mRNA induction elicited by salt stress in the common ice plant (M. crystallinum). Plant Physiol. 89: 811-816.
91.Mollering, H. 1974. L (-) Malat, p. 1636-1639. In: H. U. Bergmeyer (ed.). Methoden der enzymatischen Analyse. Vol. 2, Verlag Chemie Press, Weinheim.
92.Morison, J. I. L. 1985. Sensitivity of stomata and water use efficiency to high CO2. Plant Cell Environ. 8: 467-74.
93.Motomura, H., A. Kagawa, and T. Yukawa. 2008. Carbon isotope ratios and the variation in the diurnal pattern of malate accumulation in aerial roots of CAM species of Phalaenopsis (Orchidaceae). Photosynthetica 46: 531-536.
94.Mott, K. A. 1990. Sensing of atmospheric CO2 by plants. Plant Cell Environ. 13: 731-737.
95.Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 15: 473-497.
96.Neales, T. F. and C. S. Hew. 1975. Two types of carbon assimilation in tropical orchids. Planta 123: 303-306.
97.Nimmo, G. A., H. G. Nimmo, I. D. Hamilton, C. A. Fewson, and M. B. Wilkins. 1986. Purification of the phosphorylated night form and dephosphorylated day form of phosphoenolpyruvate carboxylase from Bryophyllum fedtschenkoi. Biochem. J. 239: 213-220.
98.Nimmo, G. A., H. G. Nimmo, I. D. Hamilton, C. A. Fewson, and M. B. Wilkins. 1987. Persistant circadian rhythms in the phosphorylation state of hosphoenolpyruvate carboxylase from Bryophyllum fedtschenkoi leaves and in its sensitivity to inhibition by malate. Planta 170: 408-415.
99.Nimmo, H. G. 2000. The regulation of phosphoenolpyruvate carboxylase in CAM plants. Trends Plant Sci. 5: 75-80.
100.Nobel, P. S., A. A. Israel, and N. Wang. 1996. Growth, CO2 uptake, and responses of the carboxylating enzymes to inorganic carbon in two highly productive CAM species at current and doubled CO2 concentrations. Plant Cell Environ. 19: 585-592.
101.Nobel, P. S., M. Cui, and A. A. Israel. 1994. Light, chlorophyll, carboxylase activity and CO2 fixation at various depths in the chlorenchyma of Opuntia ficus-indica (L.) Miller under current and elevated CO2. New Phytol. 128: 315-322.
102.Nogues, S., I. Aranjuelo, A. Pardo, and J. Azcon-Bieto. 2008. Assessing the stable carbon isotopic composition of intercellular CO2 in a CAM plant using gas chromatography-combustion-isotope ratio mass spectrometry. Rapid Commun. Mass Spectrom. 22: 1017-1022.
103.Nowak, E. J. and C. E. Martin. 1997. Physiological and anatomical responses to water deficits in the CAM epiphyte Tillandsia ionantha (Bromeliaceae). Int. J. Plant Sci. 158: 818-826.
104.Osmond, C. B. 1978. Crassulacean acid metabolism: a curiosity in context. Annu. Rev. Plant Physiol. 29: 379-414.
105.Ostrem, J. A., S. W. Olson, J. M. Schmitt, and H. J. Bohnert. 1987. Salt stress increases the level of translatable mRNA for phosphoenolpyruvate carboxylase in mesembryanthemum crystallinum. Plant Physiol. 84: 1270-1275.
106.Rayder, L. and I. P. Ting. 1981. Carbon metabolism in two species of Pereskia (Cactaceae). Plant Physiol. 18: 139-142.
107.Rayder, L. and I. P. Ting. 1983. CAM-idling in Hoya carnosa (Asclepiadaceae). Photosynth. Res. 4: 203-211.
108.Sanchez, R., A. Flores, and F. J. Cejudo. 2006. Arabidopsis phosphoenolpyruvate carboxylase genes encode immunologically unrelated polypeptides and are differentially expressed in response to drought and salt stress. Planta 223: 901-909.
109.Santamaria, J. M.and G. Kerstiens. 1994. The lack of control of water loss in micropropagated plants is not related to poor cuticle development. Physiol. Plant. 91: 191-195.
110.Seeni, S. and A. Gnanam. 1980. Photosynthesis in cell suspension cultures on the CAM plant Chamaecereus sylvestrii (Cactaceae). Physiol. Plantarum 49: 465-472.
111.Shenton, M., V. Fontaine, J. Hartwell, J. T. Marsh, G. I. Jenkins, and H. G. Nimmo. 2006. Distinct patterns of control and expression amongst members of the PEP carboxylase kinase gene family in C4 plants. Plant J. 48: 45-53.
112.Silvera, K., L. S. Santiago, K. Winter. 2005. Distribution of crassulacean acid metabolism in orchids of Panama: evidence of selection for weak and strong modes. Funct. Plant Biol. 32: 397-407.
113.Sipes, D. L. and I. P. Ting. 1985. Crassulacean acid metabolism and crassulacean acid metabolism modifications in Peperomia camptotricha. Plant Physiol. 77: 59-63.
114.Sullivan, S., G. I. Jenkins, and H. G. Nimmo. 2004. Roots, cycles and leaves. Expression of the phosphoenolpyruvate carboxylase kinase gene family in soybean. Plant Physiol. 135: 2078-2087.
115.Sutter, E. 1988. Stomatal and cuticular water loss after removal from in vitro culture. J. Am. Soc. Hortic. Sci. 113: 234-238.
116.Szarek, S. R., H. B. Johnson, and I. P. Ting. 1973. Drought adaptation in Opuntia basilaris. Significance of recycling carbon through crassulacean acid metabolism. Plant Physiol. 52: 539-541.
117.Taybi, T. and J. C. Cushman. 1999. Signaling events leading to crassulacean acid metabolism induction in the common ice plant. Plant Physiol. 121: 545-555.
118.Theng, V., S. Agarie, and A. Nose. 2007. Regulatory properties of phosphoenolpyruvate carboxylase in crassulacean acid metabolism plants: diurnal changes in phosphorylation state and regulation of gene expression. Plant Prod. Sci. 10: 171-181.
119.Theng, V., S. Agarie, and A. Nose. 2008. Regulatory phosphorylation of phosphoenolpyruvate carboxylase in the leaves of Kalanchoe pinnata, K. daigremontiana and Ananas comosus. Biol. Plant. 52: 281-290.
120.Thomas, J. C., R. L. De Armond, and H. J. Bohnert. 1992. Influence of NaCl on growth, proline, and phosphoenolpyruvate carboxylase levels in Mesembryanthemum crystallinum suspension cultures. Plant Physiol. 98: 626-631.
121.Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignments through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680.
122.Ting, I. P. 1985. Crassulacean acid metabolism. Annu. Rev. Plant Physiol. 36: 595-622.
123.Ting, I. P., A. Patel, S. Kaur, J. Hann, and L.Walling. 1996. Ontogenetic development of crassulacean acid metabolism as modified by water stress in Peperomia, p. 204-215. In: K. Winter and J. A. C. Smith (eds.). Crassulacean acid metabolism: biochemistry, ecophysiology, and evolution. Springer-Verlag, New York.
124.Vera-Estrella, R., B. J. Barkla, H. J. Bohnert, and O. Pantoja. 1999. Salt-stress in Mesembryanthemum crystallinum L. cell suspensions activates adaptive mechanisms similar to those observed in the whole plant. Planta 207: 426-435.
125.Vidal, J. and R. Chollet. 1997. Regulatory phosphorylation of C4 PEP carboxylase. Trends Plant Sci. 2: 230-237.
126.Weigend, M. 1994. In vivo phosphorylation of phosphoenolpyruvate carboxylase from the facultative CAM plant Mesembryanthemum crystallinum. J. Plant Physiol. 144:654-660.
127.Winter K. 1978. Phosphoenolpyruvate carboxylase from Mesembryanthemum crystallinum: its isolation and inactivation in vitro. J. Exp. Bot. 29: 539-546.
128.Winter, K. and J. A. M. Holtum. 2007. Environment or development? Lifetime net CO2 exchange and control of the expression of crassulacean acid metabolism in Mesembryanthemum crystallinum. Plant Physiol. 143: 98-107.
129.Winter, K. and J. A. C. Smith. 1996. An introduction to crassulacean acid metabolism biochemical principles and ecological diversity, p. 1-13. In: K. Winter and J. A. C. Smith (eds.). Crassulacean acid metabolism: biochemistry, ecophysiology, and evolution. Springer-Verlag, New York.
130.Winter, K., J. Aranda, and J. A. M. Holtum. 2005. Carbon isotope composition and water-use efficiency in plants with crassulacean acid metabolism. Func. Plant Biol. 32: 381-388.
131.Winter, K., U. Luttge, E. Winter, and J. M. Troughton. 1978. Seasonal shift from C3 photosynthesis to crassulacean acid metabolism in Mesembryanthemum crystallinum growing in its natural environment. Oecologia 34: 225-237.
132.Yen, H. E., H. D. Grimes, and G. E. Edwards. 1995. The effects of high salinity, water deficit, and abscisic acid on phosphoenolpyruvate carboxylase activity and proline accumulation in Mesembryanthemum crystallinum cell cultures. J. Plant Physiol. 145: 557-564.
133.Zotz, G. and K. Winter. 1996. Seasonal changes in daytime versus nighttime CO2 fixation of Clusia uvitana in situ, p.312-323. In: K. Winter and J. A. C. Smith (eds.). Crassulacean acid metabolism: biochemistry, ecophysiology, and evolution. Springer-Verlag, New York.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22814-
dc.description.abstract成熟的蝴蝶蘭是一種典型的CAM植物,會於夜晚打開氣孔,利用PEPC固碳成有機酸儲存,具可滴定酸日韻律變化。然而,根據前人研究指出,CAM蘭花在原球體時期沒有顯著的可滴定酸變化,因而推測其光合作用型態可能為C3。為此本研究目的在證明CAM蘭花光合型態會隨著發育過程而從C3轉變成CAM,試驗以白花原生種的臺灣蝴蝶蘭為材料,依組織型態將臺灣蝴蝶蘭從種子至成熟大苗分為七個發育階段,藉由分析CO2吸收率、蘋果酸含量、PEPC活性以及PEPC、PPCK的基因表達來探究蝴蝶蘭在發育階段中的光合作用型態轉變。
從種子發芽至未長葉的原球體階段,CO2於白天吸收、夜晚釋放的特性以及蘋果酸與PEPC活性沒有日夜變化,顯示原球體時期的光合作用型態不具CAM特性而傾向C3。當原球體長出第一片葉後,葉片中的蘋果酸含量與PEPC活性開始出現CAM的日夜韻律變化,但仍維持白天吸收CO2的特性;隨著葉片發育越成熟,CAM生理特徵越明顯,準備出瓶的瓶苗葉片已展現絕對性CAM的日夜變化。觀察PEPC基因PPC的表現量,在各發育時期及各器官中都有表現,且無明顯日夜變化,顯示PEPC在CAM個體發育中不扮演重要調控角色。本研究更進一步選殖出調控PEPC活性的PPCK基因PaPPCK,PaPPCK在各發育階段的表現量與上述各發育時期的CAM特徵相吻合。
因此我們結論蝴蝶蘭從原球體發育至瓶苗的過程中,光合型態會由C3轉變為CAM。在轉變的過程中,PaPPCK是CAM光合型態展現的主要關鍵。原球體長出第一片葉是轉變過程的關鍵時期,表現CAM-cycling光合型態,此時期清楚區隔原球體之前的時期和成熟植株。
zh_TW
dc.description.abstractMature Phalaenopsis is a typical CAM plant, which is characterized by opening stomata during the night and fixing CO2 by PEPC and thus showing a diurnal fluctuation of titratable acids. However, no remarkable day/night titratable acidity rhythm was detected during the protocorm stages, which suggested that the protocorm stages of Phalaenopsis may not undergo the CAM photosynthesis pathway but C3 pathway. Therefore, the objective of this study is to prove the existence of a photosynthetic transition from C3 to CAM coping with the ontogenetic development in the CAM orchids. Phalaenopsis aphrodite subsp. formosana were prepared according to the seven developmental stages we defined, and the CO2 uptake, malate accumulation, PEPC activity, PEPC and PEPC kinase were investigated.
Stages before generation of the primary leaf from protocorm, no net CO2 uptake during the night but the day, and no significant daily change in malate accumulation and PEPC activity indicated that the stages was without CAM characters and behaved nearly-C3. As the protocorm developed the first leaf, the day/night malate change and PEPC activity were first observed; however, the gas exchange remained like the C3 pattern. The CAM characters were getting much more typical along with the leaf maturation, and the seedling ready to transfer out from the flask had turned into an obligate CAM plant just as the mature plant.
The expression of PPC, encoded for PEPC, revealed a constitutional pattern in all organs at all developmental stages indicated that the PEPC did not play an important role in the CAM ontogenetic development. Moreover, the expression patterns of PaPPCK, encoded for PPCK (PEPC kinase) were in agreement with the physiological characters just mentioned above.
Therefore, we conclude that the photosynthesis shift from C3 to CAM during the ontogenetic development in Phalaenopsis and PaPPCK played a key role in transition. CAM-cycling occurred in the critical stage, protocorm with the primary leaf, which spaced the protocorm and mature plant.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:29:14Z (GMT). No. of bitstreams: 1
ntu-99-R96628110-1.pdf: 2983841 bytes, checksum: 49c62c3df94ea1283c1a205c6e44634f (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents目錄..................................................i
表目錄................................................iv
圖目錄................................................v
誌謝..................................................1
摘要..................................................2
Abstract..............................................3
縮寫對照表............................................5
第一章 前人研究.....................................6
一、蝴蝶蘭簡介..................................6
二、蘭花的光合作用型態..........................7
三、景天酸代謝..................................8
四、CAM的變型與兼性CAM植物......................9
五、酵素系統與基因表現和光合型態轉變的關連性....10
(一)PEPC...................................11
(二)PPCK...................................13
六、影響CAM光合特性表現與轉變的因子.............14
(一)生理成熟度.............................14
(二)環境因子...............................16
七、蘭花的光合作用器官..........................20
(一)葉片的CAM日韻律........................21
(二)根部的光合型態研究.....................21
八、研究目的....................................22
第二章 臺灣蝴蝶蘭各發育階段的光合特性表現...........23
一、前人研究....................................23
二、材料與方法..................................24
(一)植物材料與生長環境.....................24
(二)CO2吸收率與細胞間CO2濃度測定...........24
(三)蘋果酸含量測定.........................25
(四)PEPC活性測定...........................26
三、結果........................................27
(一)CO2淨吸收率與細胞間CO2濃度的日變化.....27
(二)蘋果酸與PEPC活性的日夜韻律.............27
四、討論........................................40
第三章 PEPC與PEPC KINASE之基因表現和光合型態轉變的關連
性...........................................44
一、前人研究....................................44
二、材料與方法..................................46
(一)植物材料與生長環境.....................46
(二)抽取植物組織總RNA......................46
(三)臺灣蝴蝶蘭PPCK的選殖...................47
(四)RT-PCR.................................48
三、結果........................................49
(一)PPC在台灣蝴蝶蘭各器官間的日夜表現......49
(二)臺灣蝴蝶蘭PPCK的選殖與表達圖譜.........50
四、討論........................................58
第四章 結論.........................................61
參考文獻..............................................63
附錄..................................................77
dc.language.isozh-TW
dc.subject景天酸代謝zh_TW
dc.subjectPEPC kinasezh_TW
dc.subjectPEPC活性zh_TW
dc.subject蝴蝶蘭zh_TW
dc.subject蘋果酸日夜韻律zh_TW
dc.subject個體發生zh_TW
dc.subject光合型態轉變zh_TW
dc.subjectontogenetic developmenten
dc.subjectphotosynthesis transitionen
dc.subjectcrassulacean acid metabolismen
dc.subjectPhalaenopsisen
dc.subjectmalate diurnal rhythmen
dc.subjectPEPC activityen
dc.subjectPEPC kinaseen
dc.title臺灣蝴蝶蘭各發育階段之景天酸代謝zh_TW
dc.titleCrassulacean Acid Metabolism in Phalaenopsis aphrodite subsp. formosana during Different Developmental Stagesen
dc.typeThesis
dc.date.schoolyear98-1
dc.description.degree碩士
dc.contributor.coadvisor楊雯如(Wen-Ju Yang),李勇毅(Yung-I Lee)
dc.contributor.oralexamcommittee#VALUE!
dc.subject.keyword蝴蝶蘭,景天酸代謝,光合型態轉變,個體發生,蘋果酸日夜韻律,PEPC活性,PEPC kinase,zh_TW
dc.subject.keywordPhalaenopsis,crassulacean acid metabolism,photosynthesis transition,ontogenetic development,malate diurnal rhythm,PEPC activity,PEPC kinase,en
dc.relation.page84
dc.rights.note未授權
dc.date.accepted2010-01-22
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝學研究所zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
2.91 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved