Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22772
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李源弘
dc.contributor.authorMing-Shi Sungen
dc.contributor.author宋明熹zh_TW
dc.date.accessioned2021-06-08T04:27:37Z-
dc.date.copyright2010-02-11
dc.date.issued2010
dc.date.submitted2010-02-08
dc.identifier.citation1.Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks, R. P. H. Chang,Chem. Mater., 17(2005)1001.
2.P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, H. Choi, J. Adv. Funct.Mater., 12(2002)323.
3.B. Zhang, S.M. Zhou, B. Liu, H.C. Gong, X.T. Zhang. SCI CHINA SERE., 52(2009)883.
4.P.G. Ganesan, K. McGuire, H. Kim, N. Gothard, S. Mohan, A.M. Rao, G. Ramanath, J. Nanoscience Nanotechnology, 5(2005)1125.
5.L. Vayssieres, Adv. Mater. 15(2003)464.
6.C. Liu, H.Y. Li, W.Q. Jie, X.H. Zhang, P. Yu.,Materials Letters. 609(2006)1394.
7.Z. Fan, Y.Y. Wang, X.P. Peng, X.Q. Liu, Congmian Zhen.Materials Letters. 57(2003)4187.
8.C. Klingshirn, Phys. Status Solidi B. 1975,71,547.
9.Y. Chen, D. M. Bagnall, H. J. Koh, K. T. Park, K. Hiraga, Z. Zhu, and T. Yao, J. Appl. Phys. 84(1998)3912.
10.http://en.wikipedia.org/wiki/File:Wurtzite_polyhedra.png
11.http://www.scribd.com/doc/6853320/ZnO-properties
12.施堯尹, “利用常壓化學氣相沉積法製備同向一維氧化鋅奈米柱之研究”, 國立東華大學材料科學與工程研究所碩士論文, 2008.
13.蕭光哲, “以噴霧熱分解法製備鋅鋁氧奈米結構粉體及其特性之探討”, 國立東華大學材料科學與工程研究所碩士論文, 2005.
14.http://www.cermetinc.com/materials/ZnO_substrate_product_lit.pdf
15.S. F. Chichibu, T. Sota, G. Cantwell, D. B. Eason, C.W. Litton, J. Appl. Phys. 93(2003)756.
16.T. S. Kim, C. J. Youn, T. S. Jeong, J. Korean Phys. Soc. 38(2001)42.
17.C. H. Ho, Y. J. Chen, J. S. Li, J. Phys. D: Appl. Phys. 41(2008)165410-1.
18.S.H. Yi, S.K. Choi, J.M. Jang, J.A. Kim, W.G. Jung, J. colloid interface Sci., 313(2007)705.
19.Z.K. Tang, G.K.L. Wong, P. Yu, Appl. Phys. Lett., 72(1998)3270.
20.B.G. Streetman, S.J. Banerjee,Solid state electronic devices,2002,5ed.
21.F. Li , Z. Li, F.J. Jin, Mater. Lett., 61(2007)1876.
22.J. Zhao, A. Wang, M.A. Green, F. Ferrazza , Appl. Phys. Lett., 73(1998)1991.
23.R.P. Gale, R.W. McClelland, D.B. Dingle, J.V. Gormley, R.M. Burgess, N.P. Kim, R.A. Mickelsen, B.F. Stanbery, Conference Record, 21 st IEEE Photovoltaic Specialists Conference, 53(1990).
24.J. Meier, J. Stiznagel, U. Kroll, C. Bucher, S. Fay, T. Moriarty, A. Shah, Thin Solid Films, 451(2004)518.
25.K. Yamamoto, M. Toshimi, T. Suzuki, Y. Tawada, T. Okamoto, A. Nakajima, MRS Spring Meeting. 112(1998).
26.R.B. Bergmann, T.J. Rinke, C. Berge, J. Schmidt, J.H. Werner, Technical Digest, PVSEC-12, 11(2001).
27.I. Repins , M.A. Contreras , B. Egaas , C. Dehart , J. Scharf , C.L. Perkins , B. To, R. Noufi, Progress in Photovoltaics, 16(2006)235.
28.J. Kessler, M. Bodegard, J. Hedstrom, L. Stolt, Proceedings, 16th European Photovoltaic Solar Energy Conference, (2000)2057.
29.X. Wu, J.C. Keane, R.G. Dhere, C. Dehart, A. Duda, T.A. Gessert, S. Asher, D.H. Levi, P. Sheldon, Conf. Proceedings, 17th European Photovoltaic Solar Energy Conference, 22(2001)995.
30.W. J. E. Beek, M. M. Wienk, R. A. J. Janssen, Adv. Mater. 16(2004) 1009.
31.M. Law, L. E. Greene, J. C. Johnson, R. Saykally, P. Yang, Nature Mater., 4(2005)455.
32.A. Seker, S.H. Kim, A. Umar, Y.B. Hahn, Journal of Crystal Growth, 277(2005)471.
33.S. Minoru, Japanese Journal of Applied Physics, 38(1999)L586.
34.C.Y. Liu, H. Li, W. Jie, X.Z. Zhang, D.P. Yu, Mater. Lett., 60(2006)1394.
35.Y. Li, G.W. Meng, L.D. Zhang, Appl. Phys. Lett., 76(2000)2011.
36.L. Spanhel, M.A. Anderson, J. Am. Chem. Soc., 113(1991)2826.
37.L. Vayssieres, Pure Appl. Chem., 78(2006)1741.
38.K. Govender, D.S. Boyle, P.B. Kenway, P. O’Brien, J. Mater. Chem., 14(2004)2575.
39.R.W. Nosker, P. Mark, J.D. Levine, Surf. Sci., 19(1970)291.
40.L. Vayssieres, K. Keis, S.E. Lindquist, A. Hagfeldt, J. Phys. Chem. B., 105(2001)3350.
41.L. Vayssieres, K. Keis, A. Hagfeldt, S.E. Lindquist, Chem. Mater., 13(2001)4395.
42.L. Vayssieres, Adv. Mater., 15(2003)464.
43.C.H. Hung, W.T. Whang, Materials Chemistry and Physics. 82(2003)705.
44.M. Guo, P. Diao, X.D. Wang, S.G. Cai, Journal of Solid State Chemistry. 178(2005)3210.
45.Z.T. Chen, L. Gao, Journal of Crystal Growth. 293(2006)522.
46.Z.R. Tian, J.A. Voigt, J. Liu, B. Mckenzie, M.J. Mcdermott,J. Am. Chem. Soc., 124(2002)12954.
47.L.E. Greene, M. Law, J. Goldberger, F. Kim, J.C. Johnson, Y. Zhang, R.J. Saykally, P. Yang, Angew. Chem. Int., 42(2003)3031.
48.C.C. Lin, S.Y. Chen, S.Y. Cheng, Journal of Crystal Growth. 283(2005)141.
49.M. Guo, P. Diao, S. Cai, Appl. Surf. Sci., 249(2005)71.
50.Q. Li, V. Kumar, Y. Li, H. Zhang, T.J. Marks, and R.P.H. Chang, Chem. Mater., 17(2005)1001.
51.A. Yang, Z. Cui, Mate. Lett., 60(2006)2403.
52.Z. Chen, L. Gao, J. Cryst. Growth, 293(2006)522.
53.M. Wang, C.H. Ye, Y. Zhang, G.M. Hua, H.X. Wang, M.G. Kong, L.D. Zhang, J. Cryst. Growth, 291(2006)334.
54.F. Xu, Z.Y. Yuan, G.H. Du, T.Z. Ren, C. Volcke, P. Thiry, B.L. Su, J. Non-Cryst. Solids, 352(2006)2569.
55.A. Wei, X.W. Sun, C.X. Xu, Z.L. Dong, Y. Yang, S.T. Tan, W. Huang, Nanotechnology, 17(2006)1740.
56.C. Liu, Y. Masuda, Y. Wu, O. Takai, Thin Solid Films, 503(2006)110.
57.D. Vernardou, G. Kenanakis, S. Couris, A.C. Manikas, G.A. Voyiatzis, M.E. Pemble, E. Koudoumas, N. Katsarakis, Journal of Crystal Growth, 308(2007)105.
58.http://www.jesuitnola.org/upload/clark/Refs/red_pot.htm
59.J. Yahiro, T. Kawano, H. Imai, Journal of Colloid and Interface Science, 310(2007)302.
60.Y. Masuda, N. Kinoshita, K. Koumoto, Electrochimica Acta, 53(2007)171.
61.W. Nawrocki, Journal of Physics: Conference Series, 129(2008)012023.
62.A.P. Alivisatos, J. Phys. Chem., 100(1996)13226.
63.K. Vanheusden, C.H. Seager, W.L. Warren, D.R. Tallant, J.A. Voigt, Appl. Phys. Lett., 68(1996)403.
64.X.M. Sui. Chemical Physics Letters, 424(2006)340.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22772-
dc.description.abstract氧化鋅是一種很重要的II–VI半導體,其直接能隙為3.37 eV,激子束縛能為60 meV。一般製備氧化鋅奈米結構製程需要複雜的反應或是昂貴的設備;而我們使用的是一種簡單的化學溶液法製程,它只需要在低溫下進行氧化還原反應,就可以很容易的製備出氧化鋅奈米結構。其最終目的為提高氧化鋅結構的表面積,並應用於染料敏化太陽能電池。
本研究使用化學溶液法,在黏貼金屬島的ITO導電玻璃上,自組裝氧化鋅的微奈米結構。本實驗不需在基材上沉積一層氧化鋅晶種層,而是以黏貼金屬島在基材上,提供電子吸引鋅離子在基材上成核,藉由改變還原液濃度、反應溫度、反應時間及添加界面活性劑等參數,控制氧化鋅的形貌與尺寸,並推論出氧化鋅微奈米結構之成長機制。
由實驗結果可得知,氧化鋅的形貌主要為六角棒狀,且醋酸鋅濃度增加與增加PVP添加量,都會使棒狀氧化鋅的長寬比降低;而反應溫度與反應時間增加則會使棒狀氧化鋅的長寬比增加。在醋酸鋅濃度為100 ppm,反應溫度為90℃,反應時間為15小時,可製備出氧化鋅長寬比的最佳參數,長度可成長至9μm且長寬比為18。由TEM分析顯示氧化鋅微奈米柱成長方向為<0001>。在醋酸鋅溶液濃度為100 ppm、反應溫度70oC 、反應6小時,可得到最佳的PL發光性質。在特定參數下,可製備出特殊形貌的氧化鋅,如花狀、星型、薄膜狀、釘子狀與中空六角柱等。
zh_TW
dc.description.abstractZnO is an II-VI semiconductor. It has a wide band gap of 3.37 eV and a large exciton binding energy of 60 meV. Generally, the growth of ZnO nanostructures requires complicated reaction and expensive equipments. But in this paper, we use a simple solution chemical method to prepare ZnO nanostructures at low temperatures. And our objective is enhance the surface area of ZnO which makes it available in dye-sensitized solar cells application.
In this study , the ZnO nanostructure are fabricated by simple solution chemical method. Differently, we paste the metal-island on the substrate instead of ZnO coated seed surfaces. In this novel method, the metal-island play as electron provider, and were further providing the nucleation sites on ITO surface by electrons transmit between the metal-island and conducting substrates. Varies parameters as solution concentration, working temperature, reaction time and surfactants were help us to construction the growth mechanism of ZnO nanostructure ,and we can control the size and morphology of self-assembled ZnO by adjust those parameters.
According to our research, the morphologies of ZnO are usually hexagonal rod. The aspect ratio of ZnO Micro-rod is reduced with an increase of the concentration of zinc acetate solution and added surfactants. However, the aspect ratio of ZnO micro-rod is increased with an increase of the reaction temperature and time. Using 100 ppm zinc acetate solution at 90℃ for 15 hours, we can obtain the largest aspect ratio 18 with a 9 μm length ZnO mirco-rod. TEM analysis reveals that the ZnO nanorod grows along the <0001> direction. The best PL light emission properties were achieved by the reaction in 100ppm Zinc acetate solution at 70℃for 6 h. And we have demonstrated that under the specific condition, the special morphology of ZnO products like flower, star, film, nail and hollow-center hexagonal rod were be successfully fabricated.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:27:37Z (GMT). No. of bitstreams: 1
ntu-99-R96527012-1.pdf: 5348235 bytes, checksum: 18ccca39e4085df1ea75e05684245bd1 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents摘 要 I
Abstract II
目 錄 IV
圖目錄 VII
表目錄 X
第一章 緒 論 - 1 -
1-1前言 - 1 -
1-2 氧化鋅奈米結構的應用 - 1 -
1-3研究動機 - 2 -
第二章 理論基礎與文獻回顧 - 3 -
2-1 氧化鋅介紹 - 3 -
2-1-1 氧化鋅的結構與基本性質 - 3 -
2-1-2 氧化鋅的螢光特性 - 5 -
2-1-3 氧化鋅於染料敏化太陽能電池之應用 - 5 -
2-2 氧化鋅的製備方法 - 6 -
2-2-1 氣相蒸鍍法 - 6 -
2-2-2 化學氣相沈積法 - 7 -
2-2-3 水熱法 - 7 -
2-2-4 模板法 - 7 -
2-2-5 化學溶液法 - 8 -
2-3 化學溶液法合成氧化鋅之理論架構與文獻回顧 - 9 -
2-3-1 化學溶液法合成氧化鋅的成長機制 - 9 -
2-3-1 化學溶液法合成氧化鋅之演進 - 10 -
第三章 實驗方法與步驟 - 18 -
3-1 實驗藥品與設備 - 18 -
3-2 分析儀器 - 19 -
3-3實驗方法 - 19 -
3-3-1 ZnO微奈米結構之製備 - 19 -
3-4 分析方法 - 22 -
3-4-1 X-ray 繞射分析(XRD) - 22 -
3-4-2 掃描式電子顯微鏡(SEM) - 22 -
3-4-3 X光能量散佈光譜分析(EDS) - 23 -
3-4-4 場發射掃描式電子顯微鏡 (FE-SEM) - 23 -
3-4-5 穿透式電子顯微鏡(TEM) - 23 -
3-4-5 光子激發光光譜分析 (PL) - 24 -
3-4-6 紫外光-可見光吸收光譜分析 (UV-Vis.) - 25 -
第四章 結果與討論 - 26 -
4-1 反應機制之探討 - 26 -
4-1-1 基材的影響 - 26 -
4-1-2 金屬島的影響 - 27 -
4-1-3 試片表面的氧化鋅分布情形 - 29 -
4-1-4 反應溶液的影響 - 33 -
4-1-5 反應機制 - 35 -
4-2 醋酸鋅溶液濃度的影響 - 36 -
4-2-1 SEM分析 - 36 -
4-2-2 XRD分析 - 40 -
4-2-3 UV-Vis.分析 - 42 -
4-2-4 PL分析 - 45 -
4-3 時間的影響 - 48 -
4-3-1 SEM分析 - 48 -
4-3-2 XRD分析 - 51 -
4-3-3 UV-Vis.分析 - 52 -
4-3-4 PL分析 - 54 -
4-4 溫度的影響 - 57 -
4-4-1 SEM分析 - 57 -
4-4-2 XRD分析 - 60 -
4-4-3 UV-Vis.分析 - 61 -
4-4-4 PL分析 - 63 -
4-5 TEM分析 - 65 -
4-6 界面活性劑的影響 - 66 -
4-7 不同形貌的氧化鋅微奈米結構 - 68 -
第五章 結論 - 69 -
參考文獻 - 71 -
dc.language.isozh-TW
dc.title以化學溶液法製備氧化鋅微奈米結構之研究zh_TW
dc.titlePreparation of ZnO Micro/Nano Structures by Chemical Solution Methoden
dc.typeThesis
dc.date.schoolyear98-1
dc.description.degree碩士
dc.contributor.coadvisor張文固
dc.contributor.oralexamcommittee林峰輝,陳克紹,吳玉祥
dc.subject.keyword醋酸鋅,氧化鋅,自組裝,化學溶液法,微奈米結構,zh_TW
dc.subject.keywordzinc acetate,ZnO,self-assembly,chemical solution method,Mirco/Nano structures,en
dc.relation.page73
dc.rights.note未授權
dc.date.accepted2010-02-08
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
5.22 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved