Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22770
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃義侑(Yi-You Huang)
dc.contributor.authorTe-Hsuen Chenen
dc.contributor.author陳德軒zh_TW
dc.date.accessioned2021-06-08T04:27:32Z-
dc.date.copyright2010-02-24
dc.date.issued2010
dc.date.submitted2010-02-08
dc.identifier.citation1. Robert WB, Barry RM. Nonlinear Optics, Third Edition. In Journal of Biomedical Optics,vol 14. 029902; 2009.
2. Franken PA, Hill AE, Peters CW, Weinreich G. Generation of Optical Harmonics. Physical Review Letters 7(4): 118, 1961.
3. Freund I, Deutsch M, Sprecher A. Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon. Biophys J 50(4): 693-712, 1986.
4. Chu SW, Chen IH, Liu TM, Sun CK, Lee SP, Lin BL, Cheng PC, Kuo MX, Lin DJ, Liu HL. Nonlinear bio-photonic crystal effects revealed with multimodal nonlinear microscopy. J Microsc 208(Pt 3): 190-200, 2002.
5. Dombeck DA, Kasischke KA, Vishwasrao HD, Ingelsson M, Hyman BT, Webb WW. Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy. Proc Natl Acad Sci U S A 100(12): 7081-6, 2003.
6. Denk W, Strickler JH, Webb WW. Two-photon laser scanning fluorescence microscopy. Science 248(4951): 73-6, 1990.
7. Provenzano PP, Eliceiri KW, Keely PJ. Multiphoton microscopy and fluorescence lifetime imaging microscopy (FLIM) to monitor metastasis and the tumor microenvironment. Clin Exp Metastasis 2008.
8. Huang P, McKee TD, Jain RK, Fukumura D. Green fluorescent protein (GFP)-expressing tumor model derived from a spontaneous osteosarcoma in a vascular endothelial growth factor (VEGF)-GFP transgenic mouse. Comp Med 55(3): 236-43, 2005.
9. Park J, Estrada A, Sharp K, Sang K, Schwartz JA, Smith DK, Coleman C, Payne JD, Korgel BA, Dunn AK, Tunnell JW. Two-photon-induced photoluminescence imaging of tumors using near-infrared excited gold nanoshells. Opt Express 16(3): 1590-9, 2008.
10. Larson DR, Zipfel WR, Williams RM, Clark SW, Bruchez MP, Wise FW, Webb WW. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300(5624): 1434-6, 2003.
11. Chang CF, Chen CY, Chang FH, Tai SP, Chen CY, Yu CH, Tseng YB, Tsai TH, Liu IS, Su WF, Sun CK. Cell tracking and detection of molecular expression in live cells using lipid-enclosed CdSe quantum dots as contrast agents for epi-third harmonic generation microscopy. Opt Express 16(13): 9534-48, 2008.
12. Campagnola PJ, Clark HA, Mohler WA, Lewis A, Loew LM. Second-harmonic imaging microscopy of living cells. J Biomed Opt 6(3): 277-86, 2001.
13. Cox G, Moreno N, Feijo J. Second-harmonic imaging of plant polysaccharides. J Biomed Opt 10(2): 024013, 2005.
14. Bouevitch O, Lewis A, Pinevsky I, Wuskell JP, Loew LM. Probing membrane potential with nonlinear optics. Biophys J 65(2): 672-9, 1993.
15. Dombeck DA, Blanchard-Desce M, Webb WW. Optical recording of action potentials with second-harmonic generation microscopy. J Neurosci 24(4): 999-1003, 2004.
16. Gualda EJ, Filippidis G, Mari M, Voglis G, Vlachos M, Fotakis C, Tavernarakis N. In vivo imaging of neurodegeneration in Caenorhabditis elegans by third harmonic generation microscopy. J Microsc 232(2): 270-5, 2008.
17. Yelin D, Silberberg Y. Laser scanning third-harmonic-generation microscopy in biology. Opt Express 5(8): 169-75, 1999.
18. Schaller RD, Johnson JC, Saykally RJ. Nonlinear chemical imaging microscopy: near-field third harmonic generation imaging of human red blood cells. Anal Chem 72(21): 5361-4, 2000.
19. Sun CK, Chu SW, Chen SY, Tsai TH, Liu TM, Lin CY, Tsai HJ. Higher harmonic generation microscopy for developmental biology. J Struct Biol 147(1): 19-30, 2004.
20. Tsai TH, Tai SP, Lee WJ, Huang HY, Liao YH, Sun CK. Optical signal degradation study in fixed human skin using confocal microscopy and higher-harmonic optical microscopy. Opt Express 14(2): 749-58, 2006.
21. Alexander R, Xie J, Fried D. Selective removal of residual composite from dental enamel surfaces using the third harmonic of a Q-switched Nd:YAG laser. Lasers Surg Med 30(3): 240-5, 2002.
22. Tai SP, Lee WJ, Shieh DB, Wu PC, Huang HY, Yu CH, Sun CK. In vivo optical biopsy of hamster oral cavity with epi-third-harmonic-generation microscopy. Opt Express 14(13): 6178-87, 2006.
23. Debarre D, Beaurepaire E. Quantitative characterization of biological liquids for third-harmonic generation microscopy. Biophys J 92(2): 603-12, 2007.
24. Debarre D, Supatto W, Pena AM, Fabre A, Tordjmann T, Combettes L, Schanne-Klein MC, Beaurepaire E. Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy. Nat Methods 3(1): 47-53, 2006.
25. Cox G, Kable E, Jones A, Fraser I, Manconi F, Gorrell MD. 3-dimensional imaging of collagen using second harmonic generation. J Struct Biol 141(1): 53-62, 2003.
26. Fu-Jen K. The use of optical parametric oscillator for harmonic generation and two-photon UV fluorescence microscopy. Microscopy Research and Technique 63(3): 175-181, 2004.
27. Both M, Vogel M, Friedrich O, von Wegner F, Kunsting T, Fink RH, Uttenweiler D. Second harmonic imaging of intrinsic signals in muscle fibers in situ. J Biomed Opt 9(5): 882-92, 2004.
28. Chu SW, Chen SY, Chern GW, Tsai TH, Chen YC, Lin BL, Sun CK. Studies of chi(2)/chi(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy. Biophys J 86(6): 3914-22, 2004.
29. Fu Y, Wang H, Shi R, Cheng JX. Second harmonic and sum frequency generation imaging of fibrous astroglial filaments in ex vivo spinal tissues. Biophys J 92(9): 3251-9, 2007.
30. Lee JY, Kim SH, Moon DW, Lee ES. Three-color multiplex CARS for fast imaging and microspectroscopy in the entire CHn stretching vibrational region. Opt Express 17(25): 22281-95, 2009.
31. Nan X, Cheng JX, Xie XS. Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy. J Lipid Res 44(11): 2202-8, 2003.
32. Chen H, Wang H, Slipchenko MN, Jung Y, Shi Y, Zhu J, Buhman KK, Cheng JX. A multimodal platform for nonlinear optical microscopy and microspectroscopy. Opt Express 17(3): 1282-90, 2009.
33. Moreaux L, Sandre O, Blanchard-Desce M, Mertz J. Membrane imaging by simultaneous second-harmonic generation and two-photon microscopy. Opt Lett 25(5): 320-2, 2000.
34. Campagnola PJ, Wei MD, Lewis A, Loew LM. High-resolution nonlinear optical imaging of live cells by second harmonic generation. Biophys J 77(6): 3341-9, 1999.
35. Campagnola PJ, Millard AC, Terasaki M, Hoppe PE, Malone CJ, Mohler WA. Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues. Biophys J 82(1 Pt 1): 493-508, 2002.
36. Stoothoff WH, Bacskai BJ, Hyman BT. Monitoring tau-tubulin interactions utilizing second harmonic generation in living neurons. J Biomed Opt 13(6): 064039, 2008.
37. Moreaux L, Sandre O, Charpak S, Blanchard-Desce M, Mertz J. Coherent scattering in multi-harmonic light microscopy. Biophys J 80(3): 1568-74, 2001.
38. Chen WL, Huang CH, Chiou LL, Chen T, Huang YY, Jiang CC, Lee HS, Dong CY. Multiphoton Imaging and Quantitative Analysis of Collagen Production by Chondrogenic Human Mesenchymal Stem Cells Cultured in Chitosan Scaffold. Tissue Eng Part C Methods 2009.
39. Barille R, Canioni L, Rivet S, Sarger L, Vacher P, Ducret T. Visualization of intracellular Ca[sup 2 + ] dynamics with simultaneous two-photon-excited fluorescence and third-harmonic generation microscopes. Applied Physics Letters 79(24): 4045-4047, 2001.
40. Chu S-W, Chen S-Y, Tsai T-H, Liu T-M, Lin C-Y, Tsai H-J, Sun C-K. In vivo developmental biology study using noninvasive multi-harmonic generation microscopy. Opt. Express 11(23): 3093-3099, 2003.
41. Le TT, Rehrer CW, Huff TB, Nichols MB, Camarillo IG, Cheng JX. Nonlinear optical imaging to evaluate the impact of obesity on mammary gland and tumor stroma. Mol Imaging 6(3): 205-11, 2007.
42. Barzda V, Greenhalgh C, Aus der Au J, Elmore S, van Beek J, Squier J. Visualization of mitochondria in cardiomyocytes by simultaneous harmonic generation and fluorescence microscopy. Opt Express 13(20): 8263-76, 2005.
43. S. Kumara NN, T. Ghosha, P. K. Duttaa, S.P. Singhb, P. K. Dattab, L. Anc, Shic TF. Preparation, characterization and optical properties of a novel azo-based chitosan biopolymer. 2009.
44. Saito H, Tabeta R, Ogawa K. High-resolution solid-state carbon-13 NMR study of chitosan and its salts with acids: conformational characterization of polymorphs and helical structures as viewed from the conformation-dependent carbon-13 chemical shifts. Macromolecules 20(10): 2424-2430, 1987.
45. Xu J, Bao J, Guo B-H, Ma H, Yun T-L, Gao L, Chen G-Q, Iwata T. Imaging of nonlinear optical response in biopolyesters via second harmonic generation microscopy and its dependence on the crystalline structures. Polymer 48(1): 348-355, 2007.
46. Fukumoto S, Fujimoto T. Deformation of lipid droplets in fixed samples. Histochem Cell Biol 118(5): 423-8, 2002.
47. Schaffler A, Muller-Ladner U, Scholmerich J, Buchler C. Role of Adipose Tissue as an Inflammatory Organ in Human Diseases. Endocr Rev 27(5): 449-467, 2006.
48. Stoller P, Reiser KM, Celliers PM, Rubenchik AM. Polarization-modulated second harmonic generation in collagen. Biophys J 82(6): 3330-42, 2002.
49. Yasui T, Tohno Y, Araki T. Determination of collagen fiber orientation in human tissue by use of polarization measurement of molecular second-harmonic-generation light. Appl Opt 43(14): 2861-7, 2004.
50. Stoller P, Kim BM, Rubenchik AM, Reiser KM, Da Silva LB. Polarization-dependent optical second-harmonic imaging of a rat-tail tendon. J Biomed Opt 7(2): 205-14, 2002.
51. Odin C, Guilbert T, Alkilani A, Boryskina OP, Fleury V, Le Grand Y. Collagen and myosin characterization by orientation field second harmonic microscopy. Opt Express 16(20): 16151-65, 2008.
52. Arimoto H. Estimation of water content distribution in the skin using dualband polarization imaging. Skin Res Technol 13(1): 49-54, 2007.
53. Yasui T, Takahashi Y, Fukushima S, Ogura Y, Yamashita T, Kuwahara T, Hirao T, Araki T. Observation of dermal collagen fiber in wrinkled skin using polarization-resolved second-harmonic-generation microscopy. Opt Express 17(2): 912-23, 2009.
54. Mansfield JC, Winlove CP, Moger J, Matcher SJ. Collagen fiber arrangement in normal and diseased cartilage studied by polarization sensitive nonlinear microscopy. J Biomed Opt 13(4): 044020, 2008.
55. Wang M, Reiser KM, Knoesen A. Spectral moment invariant analysis of disorder in polarization-modulated second-harmonic-generation images obtained from collagen assemblies. J Opt Soc Am A Opt Image Sci Vis 24(11): 3573-86, 2007.
56. Kwan AC, Dombeck DA, Webb WW. Polarized microtubule arrays in apical dendrites and axons. Proc Natl Acad Sci U S A 105(32): 11370-5, 2008.
57. Kwan AC, Duff K, Gouras GK, Webb WW. Optical visualization of Alzheimer's pathology via multiphoton-excited intrinsic fluorescence and second harmonic generation. Opt Express 17(5): 3679-89, 2009.
58. Filippidis G, Kouloumentas C, Voglis G, Zacharopoulou F, Papazoglou TG, Tavernarakis N. Imaging of Caenorhabditis elegans neurons by second-harmonic generation and two-photon excitation fluorescence. J Biomed Opt 10(2): 024015, 2005.
59. Huang W-C, Kuo W-C, Cherng J-H, Hsu S-H, Chen P-R, Huang S-H, Huang M-C, Liu J-C, Cheng H. Chondroitinase ABC promotes axonal re-growth and behavior recovery in spinal cord injury. Biochemical and Biophysical Research Communications 349(3): 963-968, 2006.
60. Su PJ, Chen WL, Hong JB, Li TH, Wu RJ, Chou CK, Chen SJ, Hu C, Lin SJ, Dong CY. Discrimination of collagen in normal and pathological skin dermis through second-order susceptibility microscopy. Opt Express 17(13): 11161-71, 2009.
61. Pekny M, Pekna M. Astrocyte intermediate filaments in CNS pathologies and regeneration. J Pathol 204(4): 428-37, 2004.
62. Psilodimitrakopoulos S, Petegnief V, Soria G, Amat-Roldan I, Artigas D, Planas AM, Loza-Alvarez P. Estimation of the effective orientation of the SHG source in primary cortical neurons. Opt Express 17(16): 14418-25, 2009.
63. Psilodimitrakopoulos S, Artigas D, Soria G, Amat-Roldan I, Planas AM, Loza-Alvarez P. Quantitative discrimination between endogenous SHG sources in mammalian tissue, based on their polarization response. Opt Express 17(12): 10168-76, 2009.
64. Andrews MD. Cryosurgery for common skin conditions. Am Fam Physician 69(10): 2365-72, 2004.
65. Sabel MS, Arora A, Su G, Chang AE. Adoptive immunotherapy of breast cancer with lymph node cells primed by cryoablation of the primary tumor. Cryobiology 53(3): 360-6, 2006.
66. Abramovits W, Losornio M, Marais G, Perlmutter A. Cutaneous cryosurgery. Dermatol Nurs 18(5): 456-9, 2006.
67. Gage AA, Baust J. Mechanisms of tissue injury in cryosurgery. Cryobiology 37(3): 171-86, 1998.
68. Lin MG, Yang TL, Chiang CT, Kao HC, Lee JN, Lo W, Jee SH, Chen YF, Dong CY, Lin SJ. Evaluation of dermal thermal damage by multiphoton autofluorescence and second-harmonic-generation microscopy. J Biomed Opt 11(6): 064006, 2006.
69. Sun Y, Chen WL, Lin SJ, Jee SH, Chen YF, Lin LC, So PT, Dong CY. Investigating mechanisms of collagen thermal denaturation by high resolution second-harmonic generation imaging. Biophys J 91(7): 2620-5, 2006.
70. Lin SJ, Hsiao CY, Sun Y, Lo W, Lin WC, Jan GJ, Jee SH, Dong CY. Monitoring the thermally induced structural transitions of collagen by use of second-harmonic generation microscopy. Opt Lett 30(6): 622-4, 2005.
71. Teng S-W, Tan H-Y, Peng J-L, Lin H-H, Kim KH, Lo W, Sun Y, Lin W-C, Lin S-J, Jee S-H, So PTC, Dong C-Y. Multiphoton Autofluorescence and Second-Harmonic Generation Imaging of the Ex Vivo Porcine Eye. Invest. Ophthalmol. Vis. Sci. 47(3): 1216-1224, 2006.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22770-
dc.description.abstract非線性光學顯微術藉由多光子激發搭配其它的非線性光學對比機制,已發展成為研究生物樣本的三維結構之利器。雙光子搭配高頻倍頻顯微術可以同時擷取自發螢光、二倍頻訊號和三倍頻訊號,即時觀測生物樣本。無需繁複的樣本製備和染色,因此多模態非線性光顯微術適合研究複雜的生物系統。
在本論文中的第一部分,我們先量測不同的生物支架材料的非線性光學特性,得知在1230 nm激發下,幾丁聚醣具有自發螢光、二倍頻訊號和三倍頻訊號;聚己內酯(PCL)具有二倍頻和三倍頻訊號;聚乳酸(PDLLA)有很強的三倍頻。第二部分為該技術在脂肪組織工程和神經組織工程的應用。在脂肪組織工程的部分,利用脂肪油滴的三倍頻訊號、膠原蛋白的二倍頻訊號和細胞的自發螢光訊號,觀察到誘導分化條件下,脂肪前驅細胞培養在膠原蛋白水膠中,分化成成熟的脂肪細胞,而不需繁複的樣本處理步驟即可監測脂肪前驅細胞的分化過程。而在神經組織工程的應用,藉由偏振二倍頻技術區別在大鼠脊髓冷凍切片樣本中的二倍頻訊號,且可細分其訊號來源為星狀膠質纖維或膠原蛋白纖維。最後將非線性光學技術應用在活體即時皮膚凍傷觀測的研究,藉由分析細胞自發螢光和膠原蛋白二倍頻訊號,評估皮膚受到冷凍破壞後細胞和膠原蛋白的變化過程。
zh_TW
dc.description.abstractNonlinear optical microscopy has been developed as a powerful tool to investigate biological samples in 3-Dimensional scale, utilizing multiphoton excitation in conjunction with other nonlinear contrast mechanism. Two-photon together with high harmonic microscopy can simultaneously observe the autofluorescence, second and third harmonic signals for real time sampling. The advantage of such technique provides hassle-free sample preparation and staining, and also can be applied for multi-mode nonlinear microscopy for a complex biological system.
In this research investigation, we measured the nonlinear optical characteristics of different biodegradable materials for tissue engineering application. Under the near-infrarad excitation of 1230nm, chitosan was observed with strong autofluorescnece, as well as second and third harmonic signals. In contrast, polycaprolactone (PCL) exhibited only second and third harmonic signals, and the Poly(dl-lactic acid) (PDLLA) possessed only strong third harmonic signal.
Multi-modal microscopy techniques were also applied for in vitro adipose tissue engineering and neural tissue engineering. The third harmonic signals of adipocyte lipid droplet, collagen second harmonic signals, and cellular autofluorescence allows clear observation of the process where pre-adipocyte differentiate to mature adipocyte cultured in collagen gel. In addition, polarization second harmonic signals can also apply to neural tissue engineering by differentiating the astrogliar filament and the collagen fibrils.
For in vivo application, nonlinear optical microscopy can analyze in real-time of the nonlinear optical signalsresulting from cellular autofluoescence and collagen fibrils to monitor the cells and collagen after cryoinjury.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:27:32Z (GMT). No. of bitstreams: 1
ntu-99-F91548025-1.pdf: 5923403 bytes, checksum: 85998ca11a0539d247d28ff28c8d6dbd (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents中文摘要 I
英文摘要 II
目錄 IV
圖目錄 VII
表目錄 XI
第一章 緒論 1
第二章 文獻回顧 3
2.1 非線性光學簡介 3
2.2 雙光子顯微術原理 5
2.3 二倍頻顯微術原理 13
2.4 三倍頻顯微術原理 15
2.5 非線性光學於生物醫學之應用 17
雙光子螢光(Two Photon Fluorescence, TPF)顯微鏡 17
二倍頻顯微鏡(SHG microscopy) 19
三倍頻顯微鏡(THG microscopy) 20
同調反司托克拉曼散射(Coherent anti-Stoke Raman Scattering, CARS) 20
多模態顯微鏡 21
第三章 實驗儀器裝置 22
3.1 正立式顯微鏡系統 22
3.2 倒立式顯微鏡系統 24
第四章 生醫材料之非線性光學特性 26
4.1 簡介 26
4.2 實驗材料與方法 28
4.2.1 實驗材料和方法 28
4.2.2 顯微系統 29
4.3 實驗結果與討論 30
4.3.1 幾丁聚醣之非線性光學特性 30
4.3.2 聚乳酸(PDLLA)非線性光學特性 31
4.3.3 聚己內酯(PCL)非線性光學特性 33
4.4 結論 36
第五章 非線性光學於脂肪組織工程之應用 37
5.1 簡介 37
5.2 實驗材料與方法 38
5.2.1 動物來源 38
5.2.2 脂肪前驅細胞初代培養 38
5.2.3 膠原蛋白膠體製備 40
5.2.4 微球體支架製備 41
5.2.5 非線性光學影像系統 42
5.3 實驗結果與討論 43
5.3.1 膠原蛋白膠體影像 43
5.3.2 微球體支架影像 43
5.3.3 大鼠皮下組織影像 45
5.3.4 小鼠白色脂肪組織 45
5.3.5 In vitro 脂肪細胞油滴 46
5.4 結論 50
第六章 非線性光學於神經組織工程之應用 51
6.1 簡介 51
6.2 實驗材料與方法 52
6.2.1 建立大鼠脊髓損傷模型 52
6.2.2 影像系統 53
6.2.3 影像處理和分析 53
6.3 實驗結果與討論 56
6.3.1 脊髓損傷模型非線性光學影像 56
6.3.2 偏振二倍頻(PSHG)實驗 57
6.4 結論 68
第七章 非線性光學於皮膚凍傷之研究 69
7.1 簡介 69
7.2 實驗材料與方法 72
7.2.1 體外(ex vivo)和活體實驗 72
7.2.2 動物實驗 72
7.2.3 活體(in vivo)觀測視窗夾具(window chamber)手術 72
7.3 實驗結果與討論 75
7.3.1 體外(ex vivo)測試結果 75
7.3.2 活體觀測裸鼠正常皮膚 76
7.3.3 正常與凍傷背部皮膚的活體觀測 77
7.3.4 連續活體觀察的數據分析 78
7.4 結論 82
第八章 總結 83
參考文獻…………… 84
dc.language.isozh-TW
dc.subject三倍頻zh_TW
dc.subject非線性光學顯微術zh_TW
dc.subject組織工程zh_TW
dc.subject二倍頻zh_TW
dc.subject偏振二倍頻zh_TW
dc.subjectsecond harmonic generation (SHG)en
dc.subjectnonlinear optical microscopy (NLOM)en
dc.subjectthird harmonic generation (THG)en
dc.subjectpolarization-second haemonic generation (P-SHG)en
dc.subjecttissue enginnering (TE)en
dc.title非線性光學顯微術於組織工程上的觀測zh_TW
dc.titleMonitoring Tissue Engineering Using Nonlinear Optical Microscopyen
dc.typeThesis
dc.date.schoolyear98-1
dc.description.degree博士
dc.contributor.oralexamcommittee鍾次文(Tje-Wen Chung),劉得任(De-Zen Liu),黃意真(Yi-Cheng Huang),陳克紹(Ko-Shao Chen)
dc.subject.keyword非線性光學顯微術,組織工程,二倍頻,偏振二倍頻,三倍頻,zh_TW
dc.subject.keywordnonlinear optical microscopy (NLOM),tissue enginnering (TE),second harmonic generation (SHG),polarization-second haemonic generation (P-SHG),third harmonic generation (THG),en
dc.relation.page89
dc.rights.note未授權
dc.date.accepted2010-02-08
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
5.78 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved