請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22744完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 賴飛羆 | |
| dc.contributor.author | Kai-Ping Hsu | en |
| dc.contributor.author | 許凱平 | zh_TW |
| dc.date.accessioned | 2021-06-08T04:26:37Z | - |
| dc.date.copyright | 2010-03-10 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-02-11 | |
| dc.identifier.citation | [1] Cortes, C. and V. Vapnik, Support-vector network. Machine Learning, 1995. 20(3).
[2] Papazoglou, M.P. and W.J. van den Heuvel, Service oriented architectures: approaches, technologies and research issues. Vldb Journal, 2007. 16(3): p. 389-415. [3] Papazoglou, M.P. Service-Oriented Computing: Concepts, Characteristics and Directions. in Proceedings of the Fourth International Conference on Web Information Systems Engineering. 2003. [4] Tu, C.-M., et al., The Design and Implementation of a Next Generation Information System for Newborn Screening, in HEALTHCOM. 2007: Taipei, Taiwan. [5] Sung-huai Hsieh, e.a., A Newborn Screening System based on the Service-Oriented Architecture. Journal of Medical Systems, 2009. [6] Chace, D.H., T.A. Kalas, and E.W. Naylor, Use of tandem mass spectrometry for multianalyte screening of dried blood specimens from newborns. Clin Chem, 2003. 49(11): p. 1797-817. [7] M. Pinheiro, J.L.O., M. A. S. Santos, H. Rocha, M. L. Cardoso, and L. Vilarinho, NeoScreen: A software application for MS/MS newborn screening analysis, in Biological and Medical Data Analysis (ISBMDA'2004). 2004: Barcelona, Spain. [8] Expanded Newborn Screening using Tandem Mass Spectrometry Financial, Ethical, Legal and Social Issues (FELSI). Available from: http://www.newbornscreening.info. [9] Olgemoller, B., et al., Screening for congenital adrenal hyperplasia: adjustment of 17-hydroxyprogesterone cut-off values to both age and birth weight markedly improves the predictive value. J Clin Endocrinol Metab, 2003. 88(12): p. 5790-4. [10] McGhee, S.A., et al., Two-tiered universal newborn screening strategy for severe combined immunodeficiency. Mol Genet Metab, 2005. 86(4): p. 427-30. [11] Webster, D., Quality performance of newborn screening systems: strategies for improvement. J Inherit Metab Dis, 2007. 30(4): p. 576-84. [12] Tu, C.-M., The New Generation of Information System for Newborn Screening - A Case Study of National Taiwan University Hospital, in Dept. of Computer Science and Information Engineering. 2007, National Taiwan University: Taipei. [13] Georgia Newborn Screening Manual for Metabolic Diseases and Hemoglobinopathies. 2007, Georgia Department of Human Resources, Division of Public Health. [14] Wisconsin Newborn Screening Laboratory. Available from: http://www.slh.wisc.edu/wps/scm/connect/extranet/. [15] M. Pinheiro, J.L.O., M. A. S. Santos, H. Rocha, M. L. Cardoso, and L. Vilarinho, A Computer-based Solution for Screening of Inherited Metabolic Diseases. Journal of Inherited Metabolic Disease, 2004. 27(Suppl. 1): p. 4. [16] NeoMate. [cited 2009 07/22]; Available from: http://www.atlab.com/index.php/NeoMate.html. [17] perkinelmer. [cited 2009 07/22]; Available from: http://www.perkinelmer.com/. [18] Chen, P.H., R.E. Fan, and C.J. Lin, Training support vector machines via SMO-type decomposition methods. Algorithmic Learning Theory, 2005. 3734: p. 45-62. [19] Baumgartner, C., C. Bohm, and D. Baumgartner, Modelling of classification rules on metabolic patterns including machine learning and expert knowledge. Journal of Biomedical Informatics, 2005. 38(2): p. 89-98. [20] Karatzoglou, A., D. Meyer, and K. Hornik, Support Vector Machines in R. Journal of Statistical Software, 2006. 15(9): p. -. [21] Sakamoto, O., et al., Mutation and haplotype analyses of the MUT gene in Japanese patients with methylmalonic acidemia. J Hum Genet, 2007. 52(1): p. 48-55. [22] Harrington, C.A., C. Rosenow, and J. Retief, Monitoring gene expression using DNA microarrays. Current Opinion in Microbiology, 2000. 3(3): p. 285-291. [23] Golub, T.R., et al., Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring. Science, 1999. 286(5439): p. 531-537. [24] Dietterich, T., Ensemble Methods in Machine Learning. 2000. p. 1-15. [25] Tsymbal, A., M. Pechenizkiy, and P. Cunningham, Diversity in search strategies for ensemble feature selection. Information Fusion, 2005. 6(1): p. 83-98. [26] Reese, G., Database Programming with JDBC and Java, in Database Programming with JDBC and Java. 2000, O'Reilly & Associates. [27] Donald Michie, D.J.S., C. C. Taylor, John Campbell, Machine learning, neural and statistical classification. Ellis Horwood Series In Artificial Intelligence. 1995. [28] Dirk Krafzig, K.B., Dirk Slama, Enterprise SOA: Service Oriented Architecture Best Practices. 2005. [29] Shepherd, M., Zitner, D., Watters, C., Medical portals: Web-based access to medical information, in Proceedings of the 33rd Annual Hawaii International Conference on System Sciences. 2000: Hawaii. p. 1-10. [30] R. Bunge, S.C., B. Endicott-Popovsky, D. McLane, An Operational Framework for Service Oriented Architecture Network Security, in Proceedings of the 41st Hawaii International Conference on System Sciences. 2008. [31] Freudenstein, P., Nussbaumer, M., and Majer, F. et al., A Workflow-Driven Approach for the Efficient Integration of Web Services in Portals, in Services Computing, SCC 2007, IEEE International Conference. 2007. p. 410 - 417. [32] Murray, M., Strategies for the successful implementation of workflow systems within healthcare: a cross case comparison, in System Sciences, 2003. Proceedings of the 36th Annual Hawaii International Conference. 2003. p. 10. [33] G. A. Lewis, E.M., S. Simanta, L. Wrage, Common Misconceptions about Service-Oriented Architecture, in Commercial-off-the-Shelf (COTS)-Based Software Systems, ICCBSS '07, Sixth International IEEE Conference. 2007. p. 123-130. [34] Jang, J.S.R., C.T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Computing-A Computational Approach to Learning and Machine Intelligence [Book Review]. Automatic Control, IEEE Transactions on, 1997. 42(10): p. 1482-1484. [35] Jang, J.S.R., Neuro-Fuzzy Modeling: Architectures, Analyses and Application. 1992, University of California Berkeley. [36] Bressan, M. and J. Vitria, Nonparametric discriminant analysis and nearest neighbor classification. Pattern Recognition Letters, 2003. 24(15): p. 2743-2749. [37] Brunzell, H. and J. Eriksson, Feature reduction for classification of multidimensional data. Pattern Recognition, 2000. 33(10): p. 1741-1748. [38] Thomas, G.D. Ensemble methods in machine learning. in Proc. of the first International Workshop on Multiple Classifier System (MCS 2000). 2000. [39] Chen, C., et al., Prediction of Protein Secondary Structure Content by Using the Concept of Chou's Pseudo Amino Acid Composition and Support Vector Machine. Protein and Peptide Letters, 2009. 16(1): p. 27-31. [40] Xing, E.P., et al.,. Feature selection for high-dimensional genomic microarray data. in ICML'01: Proceedings of the Eighteenth International Conference on Machine Learning. 2001. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. [41] Mitchell, T.M., Machine learning and data mining. Commun. ACM, 1999. 42(11): p. 30-36. [42] Yao, X. and Y. Liu, A new evolutionary system for evolving artificial neural networks. Ieee Transactions on Neural Networks, 1997. 8(3): p. 694-713. [43] Chris, D. Minimum Redundancy Feature Selection from Microarray Gene Expression Data. 2003. [44] Google. Google Health: About Google Health. 2009 2010-01-02 [cited 2009 01-18]; Available from: http://www.google.com/intl/en-US/health/about/index.html. [45] Inc., G. Google Health: Google Health Tour. 2009 2010-01-02 [cited 2010 01-18]; Available from: http://www.google.com/intl/en-US/health/tour/. [46] (W3C), W.W.W.C. SOAP Version 1.2. Available from: http://www.w3.org/TR/soap12/. [47] (W3C), W.W.W.C. Web Services Description Language (WSDL) 1.1. Available from: http://www.w3.org/TR/wsdl. [48] Health Information Privacy. Available from: http://www.hhs.gov/ocr/privacy/index.html. [49] J. J. Ward, L.J.M., B. F. Buxton, and D. T. Jones, Secondary Structure Prediction with Support Vector Machine. Bioinformatics, 2003. 19. [50] Newman, A.A.a.D.J. Machine Learning Repository. 2007; Available from: http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Original%29. [51] Mangasarian, O.L., W.N. Street, and W.H. Wolberg, Breast-Cancer Diagnosis and Prognosis Via Linear-Programming. Operations Research, 1995. 43(4): p. 570-577. [52] Ronald N. Forthofer, E.S.L., Mike Hernandez, Biostatistics, Second Edition: A Guide to Design, Analysis and Discovery. 2006: Academic Press. [53] Lin, C.J. A Library for Support Vector Machines. 2009; Available from: http://www.csie.ntu.edu.tw/~cjlin/libsvm/. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22744 | - |
| dc.description.abstract | 近年來網際網路的普及以及Web技術的不斷演進,以網頁作為醫療服務的平台的概念在近年來逐漸成型,並且也出現了以網頁服務為平台的醫院資訊系統。另一方面,由於醫療的進步,很多新型的疾病被診斷出來;然而這些疾病與第一線的篩驗數值往往沒有很好的準則可以判斷,太鬆造成病人沒辦法及時得到治療,太緊又會浪費醫療資源做太多檢查。這種複雜的醫療決策正是人工智慧與資料探勘可以發揮的地方。
我們利用支援向量機的資料分類功能,對於串聯質譜儀分析出的新陳代謝物濃度數據做分析,評估新生兒是否罹患甲基丙二酸血症(MMA)。利用支援向量機方法,檢測的敏感度可由傳統Cutoff Value方法的76%提升到超過96%。除此之外,我們也在特徵資料進入SVM處理之前,以取對數值與加入乘法反元素的方式加以處理,配合不同的kernel進一步將正確率進一步提昇至99%以上。在實作方面,我們以服務導向的做法,將支援向量機的功能架構在分散式環境,,除了容易整合異質的平台之外,也提供了服務外延的便利性。 | zh_TW |
| dc.description.abstract | The concept, web as a platform, has been adopted in Hospital information systems successfully in National Taiwan University Hospital (NTUH). With the advances in medical technology, most diseases can be diagnosed, but the prices of some tests are still too expensive. Most interpretations of test results rely on cutoff values; consequently, the choice of a good cutoff value is important: a low cutoff value gives many false-positive, but a high cutoff value will let patients lose early treatment chances. For overcome this situation, we design, implement a newborn screening system using Support Vector Machine (SVM) classifications. . In this system, the predicting accuracy of MMA could be improved from 76% (cut-off value approach) to over 96%. Moreover, we have add enhancements for features: multiply inverse and logarithm before SVM, and the accuracy can be more than 99% in MMA dataset with some kernels.
In addition, National Taiwan University Hospital Information System (NTUHIS) have been developed and implemented to integrate heterogeneous platforms, protocols, databases as well as applications. To expedite adapting the heterogeneities, we deploy Service-Oriented Architecture (SOA) concepts to the newborn screening system based on web services. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T04:26:37Z (GMT). No. of bitstreams: 1 ntu-99-D91922014-1.pdf: 7245984 bytes, checksum: ac56075382ca8e11de3c16c66f2a40e6 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | Chapter 1 Introduction 1
1.1. Hospital Information System 2 1.2. Healthcare Information Analysis 4 1.2.1. Newborn Screening 4 1.2.2. Cancer Classifications 13 Chapter 2 Background 16 2.1. Data Analysis by Machine Learning 17 2.1.1. SVM 19 2.1.2. Neural Fuzzy System 27 2.1.3. K Nearest Neighbor 28 2.1.4. Quadratic classifier 28 2.1.5. Ensemble Classifier model 29 2.2. Distributed Computing 36 2.3. Service Oriented Architecture 37 2.4. Web Services 39 2.5. Service Provider 40 2.6. Service Registry 41 2.7. Service Requestor 42 2.8. Core Specifications of Web Services 42 2.9. Online HIA Service 45 2.10. Google Health 45 Chapter 3 Design and Implementation 47 3.1. System Architecture 47 3.2. Authentication/Authorization 48 3.3. SVM Services Components 50 3.4. Screening Client Site 52 3.5. SVM Methods based on Web Services 53 3.6. Sequence Diagram 55 Chapter 4 Experiments and Results 58 4.1. Dataset 58 4.1.1. MMA Dataset 58 4.1.2. Leukemia Cancer Dataset 59 4.1.3. Breast Cancer Dataset 59 4.2. Newborn Screening by SVM 59 4.2.1. Feature Selection 60 4.2.2. Results 61 4.3. Cancer Classifications by ECL 64 4.3.1. Feature Selection 65 4.3.2. Results 66 Chapter 5 Discussion 96 Chapter 6 Conclusion and Future Works 98 References 101 | |
| dc.language.iso | en | |
| dc.subject | 服務導向架構 | zh_TW |
| dc.subject | 新生兒篩檢 | zh_TW |
| dc.subject | 支援向量機 | zh_TW |
| dc.subject | Support Vector Machine | en |
| dc.subject | Service-Oriented Architecture | en |
| dc.subject | Newborn Screening | en |
| dc.title | 以服務導向架構提供基於支持向量機的醫療保健資訊分析 | zh_TW |
| dc.title | Healthcare Information Analysis Based on Support Vector Machine over Service Oriented Architecture | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 陳俊良,李秀惠,趙坤茂,曾宇鳳,李鴻璋,林正偉,譚慶鼎 | |
| dc.subject.keyword | 新生兒篩檢,支援向量機,服務導向架構, | zh_TW |
| dc.subject.keyword | Newborn Screening,Support Vector Machine,Service-Oriented Architecture, | en |
| dc.relation.page | 105 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2010-02-11 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 7.08 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
