Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22725
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張耀乾(Yao-Chien Alex Chang)
dc.contributor.authorWen-Yi Yenen
dc.contributor.author顏婉怡zh_TW
dc.date.accessioned2021-06-08T04:25:56Z-
dc.date.copyright2010-03-10
dc.date.issued2010
dc.date.submitted2010-02-25
dc.identifier.citation么煥英. 2007. 應用Pour-Through介質溶液測定法於以水草栽培之蝴蝶蘭. 國立臺灣大學園藝學系碩士論文.
行政院農委會統計資料. 2007-2009. 農產品號列進出口量值. 9 Feb. 2010. <http://agrapp.coa.gov.tw/TS2/TS2Jsp/Index.jsp>.
李哖. 1988. 育苗介質與施肥. 園藝種苗產銷技術研討會專集. 種苗場編印. 188-202.
李嘉慧和李哖. 1991. 台灣蝴蝶蘭根和葉的形態與解剖的特性. 中國園藝 37:237-248.
柯勇. 2002. 植物的礦物營養, p.105-142. 植物生理學. 第一版. 藝軒圖書出版社, 台北.
張耿衡、蔡隆禾、吳容儀、戴廷恩、謝廷芳. 2007. 樹皮作為蝴蝶蘭栽培介質之評估. 台灣農業研究 56: 237-252.
張耿衡、戴廷恩、黃勝忠、曹進義、蔡媦婷、王斐能、張愛華、侯鳳舞. 2006. 人造纖維應用於蝴蝶蘭栽培介質之研究. 臺灣園藝 52:71-80.
陳江良. 2006. 肥料濃度對蝴蝶蘭商業大苗生長與開花之影響. 國立嘉義大學園藝學系碩士論文.
陳福旗. 2007. 熱帶蘭花生理學. 睿煜出版社. 屏東縣.
彭穎君. 2008. 大白花蝴蝶蘭'V3'對氮素之吸收、運移及利用. 國立臺灣大學園藝學系碩士論文.
游富鈴. 2004. 水苔、椰纖混合介質及添加緩效性肥料對蝴蝶蘭生育之影響. 國立臺灣大學園藝學系碩士論文.
雷欣怡. 2007. 蝴蝶蘭開花期礦物元素組成變化與肥料需求. 國立臺灣大學園藝學系碩士論文.
劉士華. 2009. 臺灣芭蕉細胞懸浮培養及體胚發生之研究. 國立臺灣大學園藝學系碩士論文.
蔡佩芬. 2000. 溫度、光度、栽培介質與肥料濃度對文心蘭苗生育之影響. 國立臺灣大學園藝系碩士論文.
蔡淑華. 1978. 植物組織切片技術綱要. 茂昌圖書公司, 臺北.
Andrews, P.H. and P.A. Hammer. 2006. Response of zonal and ivy geraniums to root medium pH. HortScience 41:1351-1355.
Anthura B.V. 2004. Cultivation guide Phalaenopsis. Anthura B.V. Bleiswijk, The Netherlands.
Argo, W.R. and J.A. Biernbaum. 1997. Lime, water source, and fertilizer nitrogen form affect medium pH and nitrogen accumulation and uptake. HortScience 32:71-74.
Argo, W.R. and P.R. Fisher. 2002. Understanding pH managment for container-grown crops. Meister publishing, Willoughby, OH.
Cakmak, I., B. Erenoglu, K.Y. Gulut, R. Derici, and V. Romheld. 1998. Light-mediated release of phytosiderophores in wheat and barley under iron or zinc deficiency. Plant Soil 202:309-315.
Cakmak, I. and H. Marschner. 1988. Increase in membrane-permeability and exudation in roots of zinc-deficient plants. J. Plant Physiol. 132:356-361.
Cakmak, I. and H. Marschner. 1990. Decrease in nitrate uptake and increase in proton release in zinc deficient cotton, sunflower and buckwheat plants. Plant Soil 129:261-268.
Chen, C. and R.S. Lin. 2004. Nondestructive estimation of dry weight and leaf area of Phalaenopsis leaves. Appl. and Engineer. Agric. 20:467-472.
Christenson, E.A. 2001. Phalaenopsis - a monograph. Timber Press, Portland, OR.
Chung, J.-P., C. Tsu-Liang, C.A. Yu-Ming, and C.T. Shii. 2006. Triploid banana cell growth phases and the correlation of medium pH changes with somatic embryogenesis in embryogenic cell suspension culture. Plant Cell Tiss. Organ Cult. 87:305-314.
Cieslinski, G., K.C.J.V. Rees, A.M. Szmigielska, G.S.R. Krishnamurti, and P.M. Huang. 1998. Low-molecular-weight organic acids in rhizosphere soils of durum wheat and their effect on cadmium bioaccumulation. Plant Soil 203:109-117.
Cushman, J.H. 1982. Nutrient transport inside and outside the root rhizosphere-theory. Soil Sci. Soc. Amer. J. 46:704-709.
Degryse, F., V.K. Verma, and E. Smolders. 2008. Mobilization of Cu and Zn by root exudates of dicotyledonous plants in resin-buffered solutions and in soil. Plant Soil 306:69-84.
Gherardi, M.J. and Z. Rengel. 2004. The effect of manganese supply on exudation of carboxylates by roots of lucerne (Medicago sativa). Plant Soil 260:271-282.
Gordon, B. 1990. Culture of the Phalaenopsis. Laid-Back Publications, Rialto, CA.
Graham, J.H., R.T. Leonard, and J.A. Menge. 1981. Membrane-mediated decrease in root exudation responsible for phosphorus inhibition of vesicular-arbuscular mycorrhiza formation. Plant Physiol. 68:548-552.
Grierson, P.F. 1992. Organic acids in rhizosphere of Banksia integrifolia L.f. Plant Soil 144:259-265.
Guo, T.-R., G.-P. Zhang, M.-X. Zhou, F.-B. Wu, and J.-X. Chen. 2007. Influence of aluminum and cadmium stresses on mineral nutrition and root exudates in two barley cultivars. Pedosphere 17:505-512.
Hamlen, R.A., F.L. Lukezic, and J.R. Bloom. 1972. Influence of age and stage of development on the neutral carbohydrate components in root exudates from alfalfa plants grown in a gnotobiotic environment. Canadian J. of Plant Sci. 52:633-642.
Henry, A., W. Doucette, J. Norton, and B. Bugbee. 2007. Changes in crested wheatgrass root exudation caused by flood, drought, and nutrient stress. J. Environ. Quality 36:904-912.
Hew, C.S. and J.W. Yong. 2004. The physiology of tropical orchids in relation to the industry. 2nd ed. World Science Publishing, Singapore.
Hiltner, L. 1904. Arbeiten der Deutschen. Zandwirtsh Ges. 98:59-78.
Hoffland, E., R. Vandenboogaard, J. Nelemans, and G. Findenegg. 1992. Biosynthesis and root exudation of citric and malic acids in phosphate-starved rape plants. New Phytol. 122:675-680.
Hopkins, B.G., D.A. Whitney, R.E. Lamond, and V.D. Jolley. 1998. Phytosiderophore released by sorghum, wheat, and corn under zinc deficiency. J. Plant Nutr. 21:2623-2637.
Hwang, S.J. and B.R. Jeong. 2007. Growth of Phalaenopsis plants in five different potting media. J. Jpn. Soc. Hort. Sci. 76:319-326.
Imas, P., B. BarYosef, U. Kafkafi, and R. GanmoreNeumann. 1997. Release of carboxylic anions and protons by tomato roots in response to ammonium nitrate ratio and pH in nutrient solution. Plant Soil 191:27-34.
Janick, J. 1986. Horticultural science. 4th ed. W.H. Freeman, New York.
Jay, V., S. Genestier, and J.C. Courduroux. 1994. Bioreactor studies of the effect of medium pH on carrot (Daucus carota L.) somatic embryogenesis. Plant Cell Tiss. Organ Cult. 36:205-209.
Jeong, K.Y., D. Hesterberg, P. Nelson, and J. Frantz. 2009. Predicting calcite (CaCO3) requirements of sphagnum peat moss from pH titration curves. HortScience 44:1020.
Jin, C.W., G.Y. You, Y.F. He, C.X. Tang, P. Wu, and S.J. Zheng. 2007. Iron deficiency-induced secretion of phenolics facilitates the reutilization of root apoplastic iron in red clover. Plant Physiol. 144:278-285.
Jones, D.L. and P.R. Darrah. 1995. Influx and efflux of organic acids across the soil root interface of Zea may L. and its implications in rhizosphere C flow. Plant Soil 173:103-119.
Jones, D.L., A.C. Edwards, K. Donachie, and P.R. Darrah. 1994. Role of proteinaceous amino acids released in root exudates in nutrient acquisition from the rhizosphere. Plant Soil 158:183-191.
Kalinova, J., N. Vrchotova, and J. Triska. 2007. Exudation of allelopathic substances in buckwheat (Fagopyrum esculentum Moench). J. Agr. Food Chem. 55:6453-6459.
Kamh, M., W.J. Horst, F. Amer, H. Mostafa, and P. Maier. 1999. Mobilization of soil and fertilizer phosphate by cover crops. Plant Soil 211:19-27.
Keith, H., J.M. Oades, and J.K. Martin. 1986. Input of carbon to soil from wheat plants Soil Biology & Biochemistry 18:445-449.
Kollmeier, M., P. Dietrich, C.S. Bauer, W.J. Horst, and R. Hedrich. 2001. Aluminum activates a citrate-permeable anion channel in the aluminum-sensitive zone of the maize root apex. A comparison between an aluminum-sensitive and an aluminum-resistant cultivar. Plant Physiol. 126:397-410.
Kowalczyk, W., J. Dysko, and S. Kaniszewski. 2008. Effect of nutrient solution pH regulated with hydrochloric acid on the concentration of Cl- ions in the root zone in soilless culture of tomato. J. Element. 13:245-254.
Kraffczyk, I., G. Trolldenier, and H. Beringer. 1984. Soluble root exudates of maize-influence of potassium supply and rhizosphere microorganisms. Soil Biol. Biochem. 16:315-322.
Kubota, S., T. Kato, and K. Yoneda. 1993. The effects of concentration of fertilizer application and the physico-chemical properties of sphagnum moss and clay pots on the growth of Phalaenopsis. J. Jpn. Soc. Hort. Sci. 62:601-609.
Kumar, R., R. Bhatia, K. Kukreja, R.K. Behl, S.S. Dudeja, and N. Narula. 2007. Establishment of Azotobacter on plant roots: chemotactic response, development and analysis of root exudates of cotton (Gossypium hirsutum L.) and wheat (Triticum aestivum L.). J. Basic Microbiol. 47:436-439.
Lesuffleur, F., F. Paynel, M.P. Bataille, E. Le Deunff, and J.B. Cliquet. 2007. Root amino acid exudation: measurement of high efflux rates of glycine and serine from six different plant species. Plant Soil 294:235-246.
Li, M., T. Shinano, and T. Tadano. 1997. Distribution of exudates of lupin roots in the rhizosphere under phosphorus deficient conditions. Soil Sci. Plant Nutr. 43:237-245.
Ligaba, A., M. Yamaguchi, H. Shen, T. Sasaki, Y. Yamamoto, and H. Matsumoto. 2004. Phosphorus deficiency enhances plasma membrane H+-ATPase activity and citrate exudation in greater purple lupin (Lupinus pilosus). Funct. Plant Biol. 31:1075-1083.
Lu, H., C. Yan, and J. Liu. 2007. Low-molecular-weight organic acids exudated by mangrove (Kandelia candel (L.) Druce) roots and their effect on cadmium species change in the rhizosphere. Environ. Expt. Bot. 61:159-166.
Mengel, K., E.A. Kirkby, H. Kosegarten, and T. Appel. 2001. Principles of plant nutrition. 5th ed. Kluwer Academic Publishers, Dordrecht, The Netherlands.
Nambiar, E.K.S. 1976. The uptake of zinc-65 by oats in relation to soil water content and root growth. Austra. J. Soil Res. 14:67-74.
Neumann, G., A. Massonneau, E. Martinoia, and V. Romheld. 1999. Physiological adaptations to phosphorus deficiency during proteoid root development in white lupin. Planta 208:373-382.
Neumann, G. and V. Romheld. 1999. Root excretion of carboxylic acids and protons in phosphorus-deficient plants. Plant Soil 211:121-130.
Ohwaki, Y. and K. Sugahara. 1997. Active extrusion of protons and exudation of carboxylic acids in response to iron deficiency by roots of chickpea (Cicer arietinum L.). Plant Soil 189:49-55.
Pacific Wide Group. 2009. Orchiata TM technical data. 9 Feb. 2010. <http://www.orchiata.com/productsheets.html>.
Pearse, S.J., E.J. Veneklaas, G. Cawthray, M.D.A. Bolland, and H. Lambers. 2007. Carboxylate composition of root exudates does not relate consistently to a crop species' ability to use phosphorus from aluminium, iron or calcium phosphate sources. New Phytol. 173:181-190.
Phillips, D.A., T.C. Fox, and J. Six. 2006. Root exudation (net efflux of amino acids) may increase rhizodeposition under elevated CO2. Global Change Biol. 12:561-567.
Pinton, R., Z. Varanini, and P. Nannipieri. 2007. The Rhizosphere. 2nd ed. CRC Press, Boca Raton, FL.
Pritsa, T.S., D.G. Voyiatzis, and T. Matsi. 2004. Viable olive embryos can change the pH and the ionic composition of the medium during their in vitro germination. J. Hort. Sci. Biotech. 79:591-595.
Qin, R.J., Y. Hirano, and I. Brunner. 2007. Exudation of organic acid anions from poplar roots after exposure to Al, Cu and Zn. Tree Physiol. 27:313-320.
Rittenhouse, R.L. and M.G. Hale. 1971. Loss of organic compounds from roots II. Effect of O2 and CO2 tension on release of sugars from peanut roots under axenic conditions. Plant Soil 35:311-321.
Roelofs, R.F.R., Z. Rengel, G.R. Cawthray, K.W. Dixon, and H. Lambers. 2001. Exudation of carboxylates in Australian Proteaceae: chemical composition. Plant Cell Environ. 24:891-903.
Romheld, V. and H. Marschner. 1983. Mechanism of iron uptake by peanut plants .I. FeIII reduction, chelate splitting, and release of phenolics. Plant Physiol. 71:949-954.
Rovira, A.D. 1959. Root excretions in relation to the rhizosphere effect. Plant Soil 11:53-64.
Sakaguchi, T., N.K. Nishizawa, H. Nakanishi, E. Yoshimura, and S. Mori. 1999. The role of potassium in the secretion of mugineic acids family phytosiderophores from iron-deficient barley roots. Plant Soil 215:221-227.
Sas, L., Z. Rengel, and C. Tang. 2001. Excess cation uptake, and extrusion of protons and organic acid anions by Lupinus albus under phosphorus deficiency. Plant Sci. 160:1191-1198.
Schenck, N.G. 1976. Microorganisms and root development and function. Soil and Crop Science Society, Madison, FL.
Shimazu, T. and K. Kurata. 2003. Dynamic dissolved oxygen concentration control for enhancing the formation rate of torpedo-stage embryos in carrot somatic embryo culture. J. Biosci. Bioengineer 95:384-390.
Smucker, A.J.M. and A.E. Erickson. 1987. Anaerobic stimulation of root exudates and disease of peas. Plant Soil 99:423-433.
Szmigielska, A.M., K.C.J.V. Rees, G. Cieslinski, and P.M. Huang. 1996. Low molecular weight dicarboxylic acids in rhizosphere soil of durum wheat. J. Agr. Food Chem. 44:1036-1040.
Szmigielska, A.M., K.C.J.V. Rees, G. Cieslinski, P.M. Huang, and D.R. Knott. 1995. Determination of low molecular weight dicarboxylic acids in root exudates by gas chromatography. J. Agr. Food Chem. 43:956-959.
Taiz, L. and E. Zeiger. 2002. Plant physiology. 3rd ed. Sinauer Associates, MA, USA.
Takagi, S., K. Nomoto, and T. Takemoto. 1984. Physiological aspect of mugineic acid, a possible phytosiderophore of graminaceous plants. J. Plant Nutr. 7:469-477.
Taylor, M.D., P.V. Nelson, and J.M. Frantz. 2008a. Substrate acidification by geranium: Light effects and phosphorus uptake. J. Amer. Soc. Hort. Sci. 133:515-520.
Taylor, M.D., P.V. Nelson, and J.M. Frantz. 2008b. Substrate acidification by geranium: Temperature effects. J. Amer. Soc. Hort. Sci. 133:508-514.
Ueno, D., A.D. Rombola, T. Iwashita, K. Nomoto, and J.F. Ma. 2007. Identification of two novel phytosiderophores secreted by perennial grasses. New Phytol. 174:304-310.
Valdez-Aguilar, L.A., C.M. Grieve, and J. Poss. 2009a. Salinity and alkaline pH in irrigation water affect marigold plants: I. Growth and shoot dry weight partitioning. HortScience 44:1719-1725.
Valdez-Aguilar, L.A., C.M. Grieve, J. Poss, and D.A. Layfield. 2009b. Salinity and alkaline pH in irrigation water affect marigold plants: II. Mineral ion relations. HortScience 44:1726-1735.
Valdez-Aguilar, L.A. and D.W. Reed. 2006. Comparison of growth and alkalinity-induced responses in two cultivars of hibiscus (Hibiscus rosa-sinensis L.). HortScience 41:1704-1708.
Vancura, V. 1967. Root dates of plants. III. Effect of temperature and cold shock on exudation of various compounds from seeds and seedlings of maize and cucumber. Plant Soil 27:319-328.
Wang, M. and Y. Ha. 2007. An electrochemical approach to monitor pH change in agar media during plant tissue culture. Biosensors Bioelectronics 22:2718-2723.
Wang, P., R. Zhou, J.J. Cheng, and S.P. Bi. 2007a. LC determination of trace short-chain organic acids in wheat root exudates under aluminum stress. Chromatographia 66:867-872.
Wang, Y.N., M.K. Wang, S.Y. Zhuang, T.C. Tu, and K.Y. Chiang. 2007b. Characterization of low-molecular-weight organic acids and organic carbon of Taiwan red cypress, peacock pine, and moso bamboo in a temperate rain forest. Comm. Soil Sci. Plant Anal. 38:77-91.
Wang, Y.T. 1996. Effects of six fertilizers on vegetative growth and flowering of Phalaenopsis orchids. Scientia Hort. 65:191-197.
Wang, Y.T. 1998. Impact of salinity and media on growth and flowering of a hybrid Phalaenopsis orchid. HortScience 33:247-250.
Wang, Y.T. and L.L. Gregg. 1994. Medium and fertilizer affect the performance of Phalaenopsis orchids during two flowering cycles. HortScience 29:269-271.
Wang, Y.T. and E.A. Konow. 2002. Fertilizer source and medium composition affect vegetative growth and mineral nutrition of a hybrid moth orchid. J. Amer. Soc. Hort. Sci. 127:442-447.
Watt, M. and J.R. Evans. 1999. Linking development and determinacy with organic acid efflux from proteoid roots of white lupin grown with low phosphorus and ambient or elevated atmospheric CO2 concentration. Plant Physiol. 120:705-716.
Xia, J.H. and J.K.M. Roberts. 1994. Improved cytoplasmic pH regulation, increased lactate efflux, and reduced cytoplasmic lactate levels are biochemical traits expressed in root-tips of whole maize seedings acclimated to a low-oxygen environment. Plant Physiol. 105:651-657.
Xu, W.-H., H. Liu, Q.-F. Ma, and Z.-T. Xiong. 2007. Root exudates, rhizosphere Zn fractions, and Zn accumulation of ryegrass at different soil Zn levels. Pedosphere 17:389-396.
Yang, X., V. Romheld, and H. Marschner. 1994. Effect of bicarbonate on root-growth and accumulation of organic-acids in Zn-inefficient and Zn-efficient rice cultivars (Oryza sativa L.). Plant Soil 164:1-7.
Yao, H.Y., R.S. Chung, S.B. Ho, and Y.C.A. Chang. 2008. Adapting the pour-through medium extraction method to Phalaenopsis grown in sphagnum moss. HortScience 43:2167-2170.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22725-
dc.description.abstract台灣栽培蝴蝶蘭(Phalaenopsis spp.)之介質以水苔為主。隨著種植蝴蝶蘭的時間增長,水苔介質pH値逐漸下降,而造成此酸化現象的原因至今仍尚未釐清。介質pH值的變化會改變根域礦物元素有效性,導致植物營養缺乏或毒害,降低栽培品質。本論文探討造成介質酸化的原因,並嘗試瞭解介質酸化現象是否與蝴蝶蘭偏好的生長pH值範圍有關,進一步分析蝴蝶蘭的根部分泌物,以釐清介質酸化的肇因。
本研究以大白花蝴蝶蘭(Phal. Sogo Yukidian ‘V3’)為材料,分別對介質特性、肥料施用或植物本身等可能肇因進行試驗。結果顯示雖然施用肥料濃度增加,會降低介質的初始pH值,但施肥不是造成水苔介質持續酸化的主要原因。因為不論有無施肥,未種植蝴蝶蘭的水苔介質pH值皆隨時間增加而上升,而有種植蝴蝶蘭者之水苔介質pH值皆會下降。以不同介質栽培蝴蝶蘭,雖各種介質之pH值變化程度和過程不同,但pH値均呈下降的趨勢。綜合上述,蝴蝶蘭根部是造成水草介質持續酸化的主要原因。此外,雖然提高環境溫度可增進蝴蝶蘭營養生長,水苔照光處理可提升蝴蝶蘭根部品質,但兩者皆不會改變介質酸化趨勢。
為瞭解蝴蝶蘭是否偏好較低的pH值範圍而造成介質酸化,本試驗分別以水苔和養液淹灌栽培方式進行試驗,探求蝴蝶蘭偏好的生長pH範圍。水苔以較高濃度石灰水(12和24 g•L-1)處理者,蝴蝶蘭地下部生長較差,因此若欲使用石灰提高水苔初始的pH值,用量須低於12 g•L-1。而不同pH值養液栽培,栽植在高pH值養液(pH 9.0和pH 10.5)中的蝴蝶蘭根部品質較差,因此,蝴蝶蘭應較不適合生長在高pH值環境中。
進一步將前述淹灌栽培後回收之養液進行分析,期望可以辨識造成介質酸化的根部分泌物。結果顯示不論有無施肥,有種植蝴蝶蘭者,在HPLC分析結果中多出一個吸收波峰,此波峰的最大UV吸收值在200之下。而NMR分析結果顯示其結構為兩個以上醣類所組成的複合物,LC-MS-MS分析後推測其分子量應為526 amu。因此蝴蝶蘭的根部會分泌一分子量為526 amu的雙醣衍生物,但目前尚不能斷論其與介質酸化有關。
綜合上述,蝴蝶蘭為造成水苔介質酸化現象的主要原因,而蝴蝶蘭較不適合生長在高pH值環境中,否則根部生長不佳。目前發現蝴蝶蘭根部會分泌由雙醣構成,分子量為526 amu之衍生物,而其與介質酸化間的關係仍需進一步研究。
zh_TW
dc.description.abstractIn Taiwan, growers usually use sphagnum moss as potting medium to plant Phalaenopsis. The pH of sphagnum moss medium decreases during the cultivation of Phalaenopsis and the causes of this phenomenon are still unknown. Generally, change of medium pH affects mineral effectiveness, which might lead to nutritional deficiency or toxicity, and consequently reduces plant quality. This study aims to explore the causes of medium acidification and to understand the relationship between medium acidification and the preferred pH range of Phalaenopsis. Moreover, root secretions of Phalaenopsis were analyzed, in order to clarify causes of medium acidification.
This study aimed to realize if medium types, fertilizer application, and Phalaenopsis Sogo Yukidian ‘V3’ itself are related to the medium acidification. The results showed that the initial medium pH value decreased with increasing fertilizer concentration. However, fertilizer application was not the main cause of continuous medium acidification, since a gradual pH decrease occurred only when Phalaenopsis was planted. Although the patterns of pH change were different between medium types, all media pH decreased with time. Although higher temperature improved vegetative growth of Phalaenopsis and light-transmission clear pot increased the root quality of Phalaenopsis, both temperature and light transmission had no effect on medium acidification. In conclusion, Phalaenopsis is the main cause of continuous medium acidification.
Some other experiments were conduced to understand the relationship between medium acidification and the preferred pH range of Phalaenopsis. The results showed that Phalaenopsis in sphagnum moss pretreated with higher concentrations of CaCO3 solution (12 and 24 g•L-1) had poor root growth. Therefore, when using lime to increase the sphagnum moss medium pH, the applied concentration should be less than 12 g•L-1. In ebb and flow culture with various pH, though only tested for one month, higher pH of solution (pH 9 and pH 10.5) also resulted in poor root quality. Thereby it is recommended that the cultivation of Phalaenopsis should avoid high rhizosphere pH.
In order to find out what Phalaenopsis roots have secreted to acidify medium, cultural solution after growing Phalaenopsis for 14 days was analyzed. The results showed that when Phalaenopsis was planted, regardless of fertilization, one more absorbance peak was recorded in HPLC analysis compared with solution where no Phalaenopsis was planted. The maximum UV absorption of the additional peak was below 200 and the NMR results showed that at least two sugar moieties might have composed the disaccharide derivative, and the LC-MS-MS analysis showed the molecular weight was 526 amu. Therefore, the exudation of Phalaenopsis roots contained a disaccharide derivative with molecular weight of 526 amu.
In summary, Phalaenopsis was the main cause of the continuous medium acidification. High pH environment should be avoided when cultivating Phalaenopsis. Presently, a disaccharides derivative with molecular weight of 526 amu secreted from Phalaenopsis root was detected, but its relationship to medium acidification needed further studies.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:25:56Z (GMT). No. of bitstreams: 1
ntu-99-R96628122-1.pdf: 1431995 bytes, checksum: 3c1fe3b9c0f097a65650c9e341ef37fc (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents摘要………………………………………………………………………I
Summary………………………………………………………………..III
第一章 前言…………………………………………………………...1
第二章 前人研究…………………………………… ……………...2
一、蝴蝶蘭根部結構………………………… ……………………....2
二、根域環境……………………………… …………………….....2
三、介質酸化現象………………………………………… ………….3
四、介質酸化原因……………………………………………………….5
(一) 介質特性………………………………………………… ..5
(二) 肥料特性………………………………………… ……………...7
(三) 植物生長特性…………………………………… ……………….9
1. 植物品種差異……………………………………… ………..10
2. 養分盈缺…………………………………………… ………..11
3. 植物生長環境…………………………………… …………..14
五、介質pH值和植物生長的關係…………………………… …….19
六、研究動機……………………………………………………… ...20
第三章 材料方法…………………………………………………....21
第四章 結果……………………………………………………………… …….36
試驗一:種植蝴蝶蘭與施肥對水苔介質酸化的影響……… ……...36
試驗二:光照、種植蝴蝶蘭與施肥對水苔介質酸化的影響……… .37
試驗三:不同介質的酸化現象………………………………… …...40
試驗四:種植不同蘭科植物的介質酸化現象I……………………….42
試驗五:種植不同蘭科植物的介質酸化現象II………………………42
試驗六:水苔介質於不同種植溫度環境下的酸化現象………… ...43
試驗七:浸泡不同濃度石灰之水苔環境對蝴蝶蘭生長情況之影響..44
試驗八:種植蝴蝶蘭和肥料施用對水耕養液pH值的影響I…… …46
試驗九:種植蝴蝶蘭和肥料施用對水耕養液pH值的影響II………..48
試驗十:不同養液pH值對蝴蝶蘭生長發育的影響I……………… …49
試驗十一:不同養液pH值對蝴蝶蘭生長發育的影響II……………..50
試驗十二:蝴蝶蘭根部細胞的壞死對養液pH值的影響… ………….51
試驗十三:不同環境下的蝴蝶蘭根部形態……………………… ...51
第五章 討論……………………………………………………… ….53
一、水苔介質酸化原因探討…………………………………… …...53
二、植物生長特性對介質酸化的影響……………………………… .56
三、探討介質酸化現象與蝴蝶蘭偏好之pH值範圍的關係………… .58
四、蝴蝶蘭根部分泌物的分析…………………………………… ...60
參考文獻……………………………………………………… …...…99
附錄…………………………………………………………………...110
dc.language.isozh-TW
dc.subject酸鹼值zh_TW
dc.subject根域zh_TW
dc.subject施肥zh_TW
dc.subject蘭花zh_TW
dc.subjectfertilizationen
dc.subjectpH valueen
dc.subjectrhizosphereen
dc.subjectorchidsen
dc.title種植蝴蝶蘭之水苔介質酸化現象之研究zh_TW
dc.titleThe Acidification of Sphagnum Moss Medium in Phalaenopsis Cultivationen
dc.typeThesis
dc.date.schoolyear98-1
dc.description.degree碩士
dc.contributor.oralexamcommittee李慶國,鐘仁賜,蔡媦婷
dc.subject.keyword酸鹼值,蘭花,施肥,根域,zh_TW
dc.subject.keywordpH value,orchids,fertilization,rhizosphere,en
dc.relation.page110
dc.rights.note未授權
dc.date.accepted2010-02-25
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝學研究所zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
1.4 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved