請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22714完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳文翔(Wen-Shiang Chen),林文澧(Win-Li Lin) | |
| dc.contributor.author | Kun-Che Tsai | en |
| dc.contributor.author | 蔡坤哲 | zh_TW |
| dc.date.accessioned | 2021-06-08T04:25:34Z | - |
| dc.date.copyright | 2010-05-12 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-04-06 | |
| dc.identifier.citation | 1. Hoofnagle JH. Hepatocellular carcinoma: Summary and recommendations. Gastroenterology 2004;127(5):S319-S23.
2. Deuffic S, Poynard T, Buffat L, Valleron AJ. Trends in primary liver cancer. Lancet 1998;351(9097):214-5. 3. Mohr L, Shankara S, Yoon SK, et al. Gene therapy of hepatocellular carcinoma in vitro and in vivo in nude mice by adenoviral transfer of the Escherichia coli purine nucleoside phosphorylase gene. Hepatology 2000;31(3):606-14. 4. Barajas M, Mazzolini G, Genove G, et al. Gene therapy of orthotopic hepatocellular carcinoma in rats using adenovirus coding for interleukin 12. Hepatology 2001;33(1):52-61. 5. Terazaki Y, Yano S, Yuge K, et al. An optimal therapeutic expression level is crucial for suicide gene therapy for hepatic metastatic cancer in mice. Hepatology 2003;37(1):155-63. 6. Vlachaki MT, Hernandez-Garcia A, Ittmann M, et al. Impact of preimmunization on adenoviral vector expression and toxicity in a subcutaneous mouse cancer model. Molecular Therapy 2002;6(3):342-8. 7. Wong TK, Neumann E. Electric field mediated gene transfer. Biochem Biophys Res Commun 1982;107(2):584-7. 8. Mir LM, Bureau MF, Gehl J, et al. High-efficiency gene transfer into skeletal muscle mediated by electric pulses. Proceedings of the National Academy of Sciences of the United States of America 1999;96(8):4262-7. 9. Lucas ML, Heller L, Coppola D, Heller R. IL-12 plasmid delivery by in vivo electroporation for the successful treatment of established subcutaneous B16.F10 melanoma. Molecular Therapy 2002;5(6):668-75. 10. Baque P, Pierrefite-Carle V, Gavelli A, et al. Naked DNA injection for liver metastases treatment in rats. Hepatology 2002;35(5):1144-52. 11. Yamashita YI, Shimada M, Tachibana K, et al. In vivo gene transfer into muscle via electro-sonoporation. Hum Gene Ther 2002;13(17):2079-84. 12. Amabile PG, Waugh JM, Lewis TN, Elkins CJ, Janas W, Dake MD. High-efficiency endovascular gene delivery via therapeutic ultrasound. J Am Coll Cardiol 2001;37(7):1975-80. 13. Newman CM, Lawrie A, Brisken AF, Cumberland DC. Ultrasound gene therapy: On the road from concept to reality. Echocardiography-J Cardiovasc Ultrasound Allied Tech 2001;18(4):339-47. 14. Niidome T, Huang L. Gene therapy progress and prospects: Nonviral vectors. Gene Ther 2002;9(24):1647-52. 15. Medl M, Petersengl C, Leodolter S. The Use of Color-Coded Doppler Sonography in the Diagnosis of Breast-Cancer. Anticancer Res 1994;14(5B):2249-51. 16. Lee F, Bahn DK, McHugh TA, Kumar AA, Badalament RA. Cryosurgery of prostate cancer. Use of adjuvant hormonal therapy and temperature monitoring - A one year follow-up. Anticancer Res 1997;17(3A):1511-5. 17. Huber PE, Pfisterer P. In vitro and in vivo transfection of plasmid DNA in the Dunning prostate tumor R3327-AT1 is enhanced by focused ultrasound. Gene Ther 2000;7(17):1516-25. 18. Baker KG, Robertson VJ, Duck FA. A review of therapeutic ultrasound: Biophysical effects. Phys Ther 2001;81(7):1351-8. 19. Johns LD. Nonthermal effects of therapeutic ultrasound: The frequency resonance hypothesis. J Athl Train 2002;37(3):293-9. 20. Pohlman R. Uber die Absorption des Ultraschalls im menschlichen Geweben und ihre Abhangigkeit von der Frequenz. 1939. p. 159-61. 21. Tachibana K, Uchida T, Ogawa K, Yamashita N, Tamura K. Induction of cell-membrane porosity by ultrasound. Lancet 1999;353(9162):1409-. 22. Fechheimer M, Boylan JF, Parker S, Sisken JE, Patel GL, Zimmer SG. Transfection of mammalian cells with plasmid DNA by scrape loading and sonication loading. Proc Natl Acad Sci U S A 1987;84(23):8463-7. 23. Bao S, Thrall BD, Miller DL. Transfection of a reporter plasmid into cultured cells by sonoporation in vitro. Ultrasound Med Biol 1997;23(6):953-9. 24. Fechheimer M, Denny C, Murphy RF, Taylor DL. Measurement of cytoplasmic pH in Dictyostelium discoideum by using a new method for introducing macromolecules into living cells. Eur J Cell Biol 1986;40(2):242-7. 25. Ng KY, Liu Y. Therapeutic ultrasound: Its application in drug delivery. Medicinal Research Reviews 2002;22(2):204-23. 26. Mitragotri S, Blankschtein D, Langer R. Ultrasound-Mediated Transdermal Protein Delivery. Science 1995;269(5225):850-3. 27. Guzman HR, Nguyen DX, McNamara AJ, Prausnitz MR. Equilibrium loading of cells with macromolecules by ultrasound: Effects of molecular size and acoustic energy. J Pharm Sci 2002;91(7):1693-701. 28. Manome Y, Nakamura M, Ohno T, Furuhata H. Ultrasound facilitates transduction of naked plasmid DNA into colon carcinoma cells in vitro and in vivo. Hum Gene Ther 2000;11(11):1521-8. 29. Nakashima M, Tachibana K, Iohara K, Ito M, Ishikawa M, Akamine A. Induction of reparative dentin formation by ultrasound-mediated gene delivery of growth/differentiation factor 11. Hum Gene Ther 2003;14(6):591-7. 30. Ward M, Wu JR, Chiu JF. Experimental study of the effects of Optison (R) concentration on sonoporation in vitro. Ultrasound Med Biol 2000;26(7):1169-75. 31. Sakakima Y, Hayashi S, Yagi Y, Hayakawa A, Tachibana K, Nakao A. Gene therapy for hepatocellular carcinoma using sonoporation enhanced by contrast agents. Cancer Gene Ther 2005;12(11):884-9. 32. Koike H, Tomita N, Azuma H, et al. An efficient gene transfer method mediated by ultrasound and microbubbles into the kidney. J Gene Med 2005;7(1):108-16. 33. Lu QL, Bou-Gharios G, Partridge TA. Non-viral gene delivery in skeletal muscle: a protein factory. Gene Ther 2003;10(2):131-42. 34. Bekeredjian R, Chen SY, Frenkel PA, Grayburn PA, Shohet RV. Ultrasound-targeted microbubble destruction can repeatedly direct highly specific plasmid expression to the heart. Circulation 2003;108(8):1022-6. 35. Sheyn D, Kimelman-Bleich N, Pelled G, Zilberman Y, Gazit D, Gazit Z. Ultrasound-based nonviral gene delivery induces bone formation in vivo. Gene Ther 2008;15(4):257-66. 36. Dittmar KM, Xie JW, Hunter F, et al. Pulsed high-intensity focused ultrasound enhances systemic administration of naked DNA in squamous cell carcinoma model: Initial experience. Radiology 2005;235(2):541-6. 37. Iwanaga K, Tominaga K, Yamamoto K, et al. Local delivery system of cytotoxic agents to tumors by focused sonoporation. Cancer Gene Ther 2007;14(4):354-63. 38. Taniyama Y, Tachibana K, Hiraoka K, et al. Development of safe and efficient novel nonviral gene transfer using ultrasound: enhancement of transfection efficiency of naked plasmid DNA in skeletal muscle. Gene Ther 2002;9(6):372-80. 39. Griffioen AW, Molema G. Angiogenesis: Potentials for pharmacologic intervention in the treatment of cancer, cardiovascular diseases, and chronic inflammation. Pharmacol Rev 2000;52(2):237-68. 40. Jung YD, Ahmad SA, Akagi Y, et al. Role of the tumor microenvironment in mediating response to anti-angiogenic therapy. Cancer and Metastasis Reviews 2000;19(1-2):147-57. 41. Keyes KA, Mann L, Cox K, et al. Circulating angiogenic growth factor levels in mice bearing human tumors using Luminex multiplex technology. Cancer Chemotherapy and Pharmacology 2003;51(4):321-7. 42. Jain RK. Normalization of tumor vasculature: An emerging concept in antiangiogenic therapy. Science 2005;307(5706):58-62. 43. Sweeney CJ, Miller KD, Sledge GW. Resistance in the anti-angiogenic era: nay-saying or a word of caution? Trends Mol Med 2003;9(1):24-9. 44. Kim KJ, Li B, Winer J, et al. Inhibition of Vascular Endothelial Growth Factor-Induced Angiogenesis Suppresses Tumor-Growth Invivo. Nature 1993;362(6423):841-4. 45. Folkman J. What Is the Evidence That Tumors Are Angiogenesis Dependent. J Natl Cancer Inst 1990;82(1):4-6. 46. Graepler F, Verbeek B, Graeter T, et al. Combined endostatin/sFlt-1 antiangiogenic gene therapy is highly effective in a rat model of HCC. Hepatology 2005;41(4):879-86. 47. Li GC, Sham J, Yang JM, et al. Potent antitumor efficacy of an E1B 55kDa-deficient adenovirus carrying murine endostatin in hepatocellular carcinoma. Int J Cancer 2005;113(4):640-8. 48. O'Reilly MS, Boehm T, Shing Y, et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 1997;88(2):277-85. 49. Hohenester E, Sasaki T, Olsen BR, Timpl R. Crystal structure of the angiogenesis inhibitor endostatin at 1.5 angstrom resolution. Embo Journal 1998;17(6):1656-64. 50. Olsson AK, Johansson I, Akerud H, et al. The minimal active domain of endostatin is a heparin-binding motif that mediates inhibition of tumor vascularization. Cancer Research 2004;64(24):9012-7. 51. Kim YM, Jang JW, Lee OH, et al. Endostatin inhibits endothelial and tumor cellular invasion by blocking the activation and catalytic activity of matrix metalloproteinase 2. Cancer Research 2000;60(19):5410-3. 52. Yu Y, Moulton KS, Khan MK, et al. E-selectin is required for the antiangiogenic activity of endostatin. Proceedings of the National Academy of Sciences of the United States of America 2004;101(21):8005-10. 53. Shichiri M, Hirata Y. Antiangiogenesis signals by endostatin. Faseb Journal 2001;15(6):1044-53. 54. Nash PD, Opas M, Michalak M. Calreticulin - Not Just Another Calcium-Binding Protein. Mol Cell Biochem 1994;135(1):71-8. 55. Michalak M, Parker JMR, Opas M. Ca2+ signaling and calcium binding chaperones of the endoplasmic reticulum. Cell Calcium 2002;32(5-6):269-78. 56. Michalak M, Milner RE, Burns K, Opas M. Calreticulin. Biochem J 1992;285:681-92. 57. Michalak M, Corbett EF, Mesaeli N, Nakamura K, Opas M. Calreticulin: one protein, one gene, many functions. Biochem J 1999;344:281-92. 58. Burns K, Duggan B, Atkinson EA, et al. Modulation of gene expression by calreticulin binding to the glucocorticoid receptor. Nature 1994;367(6462):476-80. 59. Dedhar S, Rennie PS, Shago M, et al. Inhibition of nuclear hormone receptor activity by calreticulin. Nature 1994;367(6462):480-3. 60. Pike SE, Yao L, Jones KD, et al. Vasostatin, a calreticulin fragment, inhibits angiogenesis and suppresses tumor growth. The Journal of experimental medicine 1998;188(12):2349-56. 61. Basu S, Srivastava PK. Calreticulin, a peptide-binding chaperone of the endoplasmic reticulum, elicits tumor- and peptide-specific immunity. J Exp Med 1999;189(5):797-802. 62. Cheng WF, Hung CF, Chai CY, et al. Tumor-specific immunity and antiangiogenesis generated by a DNA vaccine encoding calreticulin linked to a tumor antigen. J Clin Invest 2001;108(5):669-78. 63. Wild R, Ramakrishnan S, Sedgewick J, Griffioen AW. Quantitative assessment of angiogenesis and tumor vessel architecture by computer-assisted digital image analysis: Effects of VEGF-toxin conjugate on tumor microvessel density. Microvascular Research 2000;59(3):368-76. 64. Wolff JA, Ludtke JJ, Acsadi G, Williams P, Jani A. Long-term persistence of plasmid DNA and foreign gene expression in mouse muscle. Hum Mol Genet 1992;1(6):363-9. 65. Wolff JA, Malone RW, Williams P, et al. Direct gene transfer into mouse muscle in vivo. Science 1990;247(4949 Pt 1):1465-8. 66. Duvshani-Eshet M, Machluf M. Efficient transfection of tumors facilitated by long-term therapeutic ultrasound in combination with contrast agent: from in vitro to in vivo setting. Cancer Gene Therapy 2007;14(3):306-15. 67. Tsai KC, Liao ZK, Yang SJ, et al. Differences in gene expression between sonoporation in tumor and in muscle. J Gene Med 2009;11(10):933-40. 68. Chang CJ, Chen YH, Huang KW, et al. Combined GM-CSF and IL-12 gene therapy synergistically suppresses the growth of orthotopic liver tumors. Hepatology (Baltimore, Md 2007;45(3):746-54. 69. Thomas JP, Arzoomanian RZ, Alberti D, et al. Phase I pharmacokinetic and pharmacodynamic study of recombinant human endostatin in patients with advanced solid tumors. J Clin Oncol 2003;21(2):223-31. 70. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996;86(3):353-64. 71. Kulke MH, Bergsland EK, Ryan DP, et al. Phase II study of recombinant human endostatin in patients with advanced neuroendocrine tumors. J Clin Oncol 2006;24(22):3555-61. 72. Celik I, Surucu O, Dietz C, et al. Therapeutic efficacy of endostatin exhibits a biphasic dose-response curve. Cancer research 2005;65(23):11044-50. 73. Cho HM, Rosenblatt JD, Kang YS, et al. Enhanced inhibition of murine tumor and human breast tumor xenografts using targeted delivery of an antibody-endostatin fusion protein. Molecular cancer therapeutics 2005;4(6):956-67. 74. Hansma AH, Broxterman HJ, van der Horst I, et al. Recombinant human endostatin administered as a 28-day continuous intravenous infusion, followed by daily subcutaneous injections: a phase I and pharmacokinetic study in patients with advanced cancer. Ann Oncol 2005;16(10):1695-701. 75. Ma J, Waxman DJ. Combination of antiangiogenesis with chemotherapy for more effective cancer treatment. Mol Cancer Ther 2008;7(12):3670-84. 76. Giles FJ. The emerging role of angiogenesis inhibitors in hematologic malignancies. Oncology-NY 2002;16(5):23-9. 77. Ferrara N. Role of vascular endothelial growth factor in the regulation of angiogenesis. Kidney Int 1999;56(3):794-814. 78. Asahara T, Takahashi T, Masuda H, et al. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. Embo J 1999;18(14):3964-72. 79. Lyden D, Hattori K, Dias S, et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 2001;7(11):1194-201. 80. Li CY, Shan SQ, Huang Q, et al. Initial stages of tumor cell-induced angiogenesis: Evaluation via skin window chambers in rodent models. J Natl Cancer Inst 2000;92(2):143-7. 81. Herbst RS, Sandler AB. Non-small cell lung cancer and antiangiogenic therapy: What can be expected of bevacizumab? Oncologist 2004;9:19-26. 82. Relf M, LeJeune S, Scott PAE, et al. Expression of the angiogenic factors vascular endothelial cell growth factor, acidic and basic fibroblast growth factor, tumor growth factor beta-1, platelet-derived endothelial cell growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis. Cancer Res 1997;57(5):963-9. 83. Jubb AM, Hurwitz HI, Bai W, et al. Impact of vascular endothelial growth factor-A expression, thrombospondin-2 expression, and microvessel density on the treatment effect of bevacizurnab in metastatic colorectal cancer. J Clin Oncol 2006;24(2):217-27. 84. Bergers G, Javaherian K, Lo KM, Folkman J, Hanahan D. Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 1999;284(5415):808-12. 85. Graepler F, Verbeek B, Graeter T, et al. Combined endostatin/sFlt-1 antiangiogenic gene therapy is highly effective in a rat model of HCC. Hepatology (Baltimore, Md 2005;41(4):879-86. 86. Benjamin LE, Golijanin D, Itin A, Pode D, Keshet E. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J Clin Invest 1999;103(2):159-65. 87. Kerbel RS. Tumor angiogenesis: past, present and the near future. Carcinogenesis 2000;21(3):505-15. 88. Fidler IJ, Ellis LM. Chemotherapeutic drugs - more really is not better. Nat Med 2000;6(5):500-2. 89. Folkman J. Fighting cancer by attacking its blood supply. New York: Munn & Co.; 1996. p. 150-6. 90. 吳銘斌, 吳梨華, 曾慶誠, 周振陽. 抗血管新生療法在人類腫瘤的應用 (一). p. 125-36. 91. Schatzlein AG. Non-viral vectors in cancer gene therapy: principles and progress. Anticancer Drugs 2001;12(4):275-304. 92. Schatzlein AG. Targeting of Synthetic Gene Delivery Systems. J Biomed Biotechnol 2003;2003(2):149-58. 93. Pack DW, Hoffman AS, Pun S, Stayton PS. Design and development of polymers for gene delivery. Nat Rev Drug Discov 2005;4(7):581-93. 94. Jackson DA, Juranek S, Lipps HJ. Designing nonviral vectors for efficient gene transfer and long-term gene expression. Mol Ther 2006;14(5):613-26. 95. Boussif O, Lezoualc'h F, Zanta MA, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A 1995;92(16):7297-301. 96. Wong K, Sun G, Zhang X, et al. PEI-g-chitosan, a novel gene delivery system with transfection efficiency comparable to polyethylenimine in vitro and after liver administration in vivo. Bioconjug Chem 2006;17(1):152-8. 97. Tang MX, Szoka FC. The influence of polymer structure on the interactions of cationic polymers with DNA and morphology of the resulting complexes. Gene Ther 1997;4(8):823-32. 98. Kircheis R, Wightman L, Wagner E. Design and gene delivery activity of modified polyethylenimines. Adv Drug Deliv Rev 2001;53(3):341-58. 99. Godbey WT, Wu KK, Mikos AG. Size matters: molecular weight affects the efficiency of poly(ethylenimine) as a gene delivery vehicle. J Biomed Mater Res 1999;45(3):268-75. 100. Fischer D, Bieber T, Li Y, Elsasser HP, Kissel T. A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharm Res 1999;16(8):1273-9. 101. Bieber T, Elsasser HP. Preparation of a low molecular weight polyethylenimine for efficient cell transfection. Biotechniques 2001;30(1):74-7, 80-1. 102. Ferrari S, Moro E, Pettenazzo A, Behr JP, Zacchello F, Scarpa M. ExGen 500 is an efficient vector for gene delivery to lung epithelial cells in vitro and in vivo. Gene Ther 1997;4(10):1100-6. 103. Ohki EC, Tilkins ML, Ciccarone VC, Price PJ. Improving the transfection efficiency of post-mitotic neurons. J Neurosci Methods 2001;112(2):95-9. 104. Unger EC, McCreery TP, Sweitzer RH. Ultrasound enhances gene expression of liposomal transfection. Invest Radiol 1997;32(12):723-7. 105. Koch S, Pohl P, Cobet U, Rainov NG. Ultrasound enhancement of liposome-mediated cell transfection is caused by cavitation effects. Ultrasound Med Biol 2000;26(5):897-903. 106. Deshpande MC, Prausnitz MR. Synergistic effect of ultrasound and PEI on DNA transfection in vitro. J Control Release 2007;118(1):126-35. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22714 | - |
| dc.description.abstract | 抗血管生成的基因治療主要是藉由抑制腫瘤內部血管新生來達到抑制腫瘤生長之治療方式。近幾年,因肝癌具有高新生血管之能力,故被認為適合用抗新生血管之方法來進行治療。另一方面,超音波被認為是一種新型且可有效率地將基因局部導引進入標定之腫瘤。本研究目的是研發超音波基因轉移技術,以抑制原位肝腫瘤,腦腫瘤和肺腫瘤的生長。
此論文主要分成兩個部分(1)為展現以肌肉組織來製造基因產物之獨特優點,將在兩個腫瘤模型和肌肉組織中,藉不同顯影劑濃度及超音波照射時間以比較其基因表現。並研究最佳的聲學參數以獲得高效率之基因轉殖。(2)需發展能順利將治療用基因送入目標細胞之策略。因此,我們必須在動物模型上測試發展多次性超音波基因轉殖的方式,利用超音波在肌肉來傳送以攜帶抗血管新生的因子,血管內皮抑制素(ED)或者鈣網蛋白(CRT),進而抑制遠端原位肝腫瘤,腦腫瘤和肺腫瘤之生長。 本研究第一部分乃在了解藉著改變顯影劑濃度和超音波照射時間對於超音波基因轉殖效率在原位肝腫瘤,腫瘤皮下和肌肉組織之影響;結果顯示肌肉組織在超音波基因治療上是個容易產生大量基因產物的位置,其效率遠高於利用肝細胞或肝腫瘤。其次,本文評估了利用肌肉進行超音波轉移內源性血管生成抑制因子來治療遠端之肝腫瘤、腦腫瘤,與肺腫瘤。結果顯示利用超音波配合隔週肌肉注射是一種有效的非病毒性技術,以抑制遠端腫瘤生長。此外,結合抗血管生成療法與免疫療法或傳統化療也有很大的潛力,可產生協同抗腫瘤之作用。而我們從組織免疫化學染色也可發現合併組合明顯有較多T細胞產生,降低腫瘤內的血管數目,以及增加腫瘤細胞凋亡。另外,結合多種抗血管生成因子可被用來克服腫瘤在抗血管生成治療上所產生之抗藥性。 | zh_TW |
| dc.description.abstract | Antiangiogenic gene therapy is a promising approach to inhibit neovascularization via angiogenesis, the growth of new blood vessels from preexisting ones. In recent years, hepatocellular carcinoma (HCC) is considered as one of the suitable targets for anti-angiogenic approaches due to its highly neovascularization. At the same time, ultrasound is believed to be a novel and effective tool to locally deliver gene into target tumors. The objective of this research work is to develop ultrasound-mediated gene transfer strategies to suppress the growth of the inoculated orthotopic liver, brain, and lung tumors.
In this thesis, two major parts of work are included: (1) To demonstrate the unique advantages of using muscle as a manufacturer of gene products, the gene expression in two tumor models and muscle tissue was compared at different contrast agent concentrations and ultrasound exposure durations. Optimal acoustic parameters for efficient gene transfection were also studied. (2) There always remains a need for developing successful strategies for delivering therapeutic genes into target cells. Thus, the strategies of repeated ultrasound mediated gene transfection were tested in animal models. We employed genes encoded with an anti-angiogenic factor, endostatin (ED) or calreticulin (CRT), to suppress the growth of distal inoculated orthotopic liver, brain, and lung tumors after transfected in muscle by ultrasound. The first part of this thesis was to clarify the impacts of contrast agent concentrations and ultrasound exposure period on the efficiencies of ultrasound-facilitated gene transfection at orthotopic liver tumor, subcutaneous tumor, and muscle tissue. Results indicated that a large amount of gene products were produced at muscular tissue via ultrasound gene transfection. The efficiency was much higher than that at hepatocytes or liver tumor. Next, an ultrasound muscular transfection of endogenous angiogenesis inhibitors was evaluated to suppress the growth of distal liver, brain, and lung tumors. Results suggested that ultrasound and weekly muscular transfection may serve as an effective nonviral technology to inhibit the growth of distant orthotopic tumors. In addition, combining antiangiogenic therapy with immunotherapy or conventional chemotherapy may have great potential to induce synergistic antitumor effects. Immunohistochemical analysis also revealed that combination treatment recruited significantly higher number of T cells to infiltrate tumor tissue, reduced tumor vascularization, and enhanced apoptosis in the tumor region. Furthermore, simultaneous use of multiple antiangiogenic factors may be used to overcome the resistance of tumor to the antiangiogenic therapy. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T04:25:34Z (GMT). No. of bitstreams: 1 ntu-99-D93548016-1.pdf: 1389915 bytes, checksum: 8d9075298bc32cd36a28d03a9a59e4bc (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 口試委員會審定書
誌謝 I 中文摘要 III ABSTRACT V TABLE OF CONTENTS IX LIST OF FIGURES XII LIST OF TABLES XIV CHAPTER 1: INTRODUCTION 1 1.1. Background 1 1.1.1. Cancer Gene Therapy 1 1.1.2. Therapeutic Ultrasound (TUS) 2 1.1.2.1. Properties of Ultrasound 2 1.1.2.2. Biological Effects of Ultrasound 4 1.1.2.3. Ultrasound-Enhanced Gene Delivery 5 1.1.3. Antiangiogenic Gene Therapy 7 1.2. Objective 10 CHAPTER 2: OPTIMAL ACOUSTIC PARAMETERS FOR EFFICIENT GENE TRANSFECTION IN VIVO 11 2.1. Abstract 11 2.2. Materials and Methods 13 2.2.1. Plasmid Preparation 13 2.2.2. Ultrasound Apparatus 13 2.2.3. Cell Line 15 2.2.4. Generation of Subcutaneous and Orthotopic Liver Tumor Models 15 2.2.5. Ultrasound Treatment Experiments 16 2.2.6. Immunohistochemical Staining 18 2.2.7. Real-time PCR Analysis 19 2.2.8. Statistical Analysis 20 2.3. Results 21 2.3.1. Optimization of in vivo Gene Expression 21 2.3.2. The Duration of IL-12 Expression in vivo 27 2.3.3. The Distribution of EGFP Expression in the Tissues 30 2.3.4. The Microvessel Densities in Different Tissues 31 2.3.5. Quantification of the Plasmid Amounts in Different Tissues 33 2.4. Discussion 35 CHAPTER 3: GENE THERAPY FOR DISTANT ORTHOTOPIC TUMORS 39 3.1. Abstract 39 3.2. Materials and Methods 41 3.2.1. Plasmid Preparation 41 3.2.2. Construction of Adenoviral Vector 41 3.2.3. Ultrasound Apparatus 42 3.2.4. Cell Culture 44 3.2.5. Generation of Subcutaneous Tumor Models and Treatments 44 3.2.6. Generation of Orthotopic Liver Tumor Models and Treatments 45 3.2.7. Combination of Immunotherapy with TUS-mediated Antiangiogenic Gene Therapy 46 3.2.8. Combination of Chemotherapy with TUS-mediated Antiangiogenic Gene Therapy 47 3.2.9. Generation of Orthotopic Brain Tumor Models and Treatments 48 3.2.10. Generation of Orthotopic Lung Tumor Models and Treatments 48 3.2.11. Multiple Antiangiogenic Treatments on Orthotopic Liver Tumor Models 49 3.2.12. Immunohistochemical Staining 50 3.2.13. Statistical Analysis 50 3.3. Results 52 3.3.1. Therapeutic Effects on SC Tumor Model 52 3.3.2. Therapeutic Effects on Orthotopic Liver Tumor Model 56 3.3.3. Combination of Immunotherapy with Ultrasound-mediated Antiangiogenic Gene Therapeutic Effects on Orthotopic Liver Tumor Model 59 3.3.4. Combination of Chemotherapy with Ultrasound-mediated Antiangiogenic Gene Therapeutic Effects on Orthotopic Liver Tumor Model 64 3.3.5. Therapeutic Effects on Orthotopic Brain Tumor Model 67 3.3.6. Therapeutic Effects on Orthotopic Lung Tumor Model 67 3.3.7. Multi-therapeutic Effects on Orthotopic Liver Tumor Model 71 3.4. Discussion 74 CHAPTER 4: CONCLUSION 81 CHAPTER 5: FUTURE WORK 82 REFERENCES 86 PUBLICATION LIST 96 | |
| dc.language.iso | en | |
| dc.subject | 抗血管新生 | zh_TW |
| dc.subject | 基因治療 | zh_TW |
| dc.subject | 超音波顯影劑 | zh_TW |
| dc.subject | 超音波 | zh_TW |
| dc.subject | 癌症 | zh_TW |
| dc.subject | cancer | en |
| dc.subject | gene therapy | en |
| dc.subject | antiangiogenesis | en |
| dc.subject | ultrasound contrast agent | en |
| dc.subject | ultrasound | en |
| dc.title | 利用超音波刺激肌肉來進行抗血管生成因子轉移以強化治療遠端腫瘤 – 動物實驗 | zh_TW |
| dc.title | In-vivo ultrasound-mediated antiangiogenic gene transfer on muscle for distal cancer therapy | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 謝銘鈞,楊偉勛,蘇怡寧,江惠華,黃麗華 | |
| dc.subject.keyword | 基因治療,抗血管新生,超音波顯影劑,超音波,癌症, | zh_TW |
| dc.subject.keyword | gene therapy,antiangiogenesis,ultrasound contrast agent,ultrasound,cancer, | en |
| dc.relation.page | 96 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2010-04-08 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 1.36 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
