Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22700
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉長遠(Cheng-Yuan Liou)
dc.contributor.authorWei-Chen Chengen
dc.contributor.author鄭為正zh_TW
dc.date.accessioned2021-06-08T04:25:05Z-
dc.date.copyright2010-06-17
dc.date.issued2010
dc.date.submitted2010-05-31
dc.identifier.citation[1] Y. Bao, P. Bolotov, et al. The influenza virus resource at the national center for biotechnology information. Journal of Virology, 82:596—601, 2008.
[2] B.E. Boser, I.M. Guyon, and V.N. Vapnik. A training algorithm for optimal margin classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pages 144—152, 1992.
[3] S.M. Case. Biochemical systematics of members of the genus Rana native to western north america. Systematic Zoology, 27:299—311, 1978.
[4] C.-C. Chang and C.-J. Lin. Libsvm : a library for support vector machines. Software available at http://www.csie.ntu.edu.tw/ cjlin/libsvm, 2001.
[5] W.-C. Cheng and C.-Y. Liou. Manifold construction using the multilayer perceptron. In Lecture Notes In Computer Science, volume 5163, Part I, pages 119—127, 2008.
[6] V. de Silva and J.B. Tenenbaum. Global versus local methods in nonlinear dimensionality reduction. In Advances in neural information processing systems 15, pages 705—712, 2002.
[7] G. Deboeck and T. Kohonen. Visual explorations in finance: with self-organizing maps. Springer, 1998.
[8] R.C. Edgar. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32:1792—1797, 2004.
[9] E. Erwin, K. Obermayer, and K. Schulten. Self-organizing maps: ordering, convergence properties and energy functions. Biological Cybernetics, 67:47—55, 1992.
[10] J.S. Farris. Estimating phylogenetic trees from distance matrices. American Naturalist, 106:645—668, 1972.
[11] R.A. Fisher. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7 Part II:179—188, 1936.
[12] S.C. Johnson. Hierarchical clustering schemes. Psychometrika, 32(3):241—254, 1967.
[13] T. Kohonen. Self-organized formation of topologically correct feature maps. Biological Cybernetics, 43:59—69, 1982.
[14] T. Kohonen. Self-organization and associative memory. Springer-Verlag, Berlin, ed 2, 1988.
[15] T. Kohonen. Comparison of som point densities based on different criteria. Neural Computation, 11:2081—2095, 1999.
[16] T. Kohonen. Self-organizing maps. Springer, 2001.
[17] T. Kohonen and P. Somervuo. Self-organizing maps of symbol strings. Neurocomputing, 21:19—30, 1998.
[18] C.-Y. Liou, H.-T. Chen, and J.-C. Huang. Separation of internal representations of the hidden layer. In Proceedings of the International Computer Symposium, Workshop on Artificial Intelligence, pages 26—34, 2000.
[19] C.-Y. Liou, H.-T. Chen, and J.-C. Huang. Separation of internal representations of the hidden layer. In Proceedings of the 2000 International Computer Symposium, pages 26—34, 2000.
[20] C.-Y. Liou and W.-C. Cheng. Manifold construction by local neighborhood preservation. In Lecture Notes In Computer Science, volume 4985, pages 683—692, 2008.
[21] C.-Y. Liou and W.-C. Cheng. Resolving hidden representations. In Lecture Notes in Computer Science, volume 4985, Part II, pages 254—263. Springer, Heidelberg, 2008.
[22] C.-Y. Liou and Y.-T. Kuo. Economic state indicator on neuronic map. In International Conference on Neural Information Processing, volume 2, pages 787—791, 2002.
[23] C.-Y. Liou and B.R. Musicus. Separable cross-entropy approach to power spectrum estimation. IEEE Transactions on Acoustics, Speech and Signal Processing, 38:105—113, 1990.
[24] C.-Y. Liou and W.-P. Tai. Conformal self-organization for continuity on a feature map. Neural Networks, 12:893—905, 1999.
[25] C.-Y. Liou andW.-P. Tai. Conformality in the self-organization network. Artificial Intelligence, 116:265—286, 2000.
[26] C.-Y. Liou and H.-C. Yang. Handprinted character recognition based on spatial topology distance measurement. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(9):941—945, 1996.
[27] C.-Y. Liou and W.-J. Yu. Initializing the weights in multilayer network with quadratic sigmoid function. In Proceedings of the International Conference on Neural Information Processing, pages 1387—1392, 1994.
[28] C.-Y. Liou and W.-J. Yu. Ambiguous binary representation in multilayer neural network. In Proceedings of International Conference on Neural Networks, volume 1, pages 379—384, 1995.
[29] M.A. Little, P.E. McSharry, S.J. Roberts, D.A.E. Costello, and I.M. Moroz. Exploiting nonlinear recurrence and fractal scaling properties for voice disorder detection. BioMedical Engineering OnLine, 6:23, 2007.
[30] S. Luttrell. Code vector density in topographic mappings: Scalar case. IEEE Transactions on Neural Networks, 2:427—436, 1991.
[31] M.A. Marra, S.J. Jones, et al. The genome sequence of the SARS-associated coronavirus. Science, 300(5624):1399—1404, 2003.
[32] P.A. Rota, M.S. Oberste, et al. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science, 300:1394—1399, 2003.
[33] S.T. Roweis and L.K. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290:2323—2326, 2000.
[34] N. Saitou and M. Nei. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4:406—425, 1987.
[35] S. Sattath and A. Tversky. Additive similarity trees. Psychometrika, 42:319—345, 1977.
[36] R.R. Sokal and P.H.A. Sneath. Principles of numerical taxonomy. W.H. Freeman, San Francisco, 1963.
[37] J. Tenenbaum, V. de Silva, and J.C. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290:2319—2323, 2000.
[38] W.S. Torgerson. Multidimensional scaling, i: Theory and method. Psychometrika, 17:401—419, 1952.
[39] WHO. Epidemic and pandemic alert and response (epr). http://www.who.int/csr/disease/avian_influenza/country/cases_table_2009_05_22/en/index.html, 2009.
[40] W.H. Wolberg and O.L. Mangasarian. Multisurface method of pattern separation for medical diagnosis applied to breast cytology. In Proceedings of the National Academy of Sciences, volume 87, pages 9193—9196, 1990.
[41] J.-M. Wu, Z.-H. Lin, and P.H. Hsu. Function approximation using generalized adalines. IEEE Transactions on Neural Networks, 17:541—558, 2006.
[42] J.-M.Wu, C.-Y. Lu, and C.-Y. Liou. Independent component analysis of correlated neuronal responses in area MT. In International Conference on Neural Information Processing, pages 639—642, 2005.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22700-
dc.description.abstract此學位論文提出了一個保持距離關係的流形來維持資料間的鄰居關係。因為所有的輸入資料在流形的空間都有他們的對應單元,所以與輸入資料鄰近的單元會跟輸出資料的很像。而且此流形在資料座標系被位移、旋轉和縮放下都能保持不變。這些單元之間的鄰近關係會根據降低保持距離的能量函式的演算法,不斷的被調整和改善。
此學位論文還延伸前述演算法提出一個多層神經元核心,此核心將那些在同一類的所有資料對映到輸出層的同一點上且將異類的點對映到不同點上。這些大幅分離的類別點可以進一步地被用來做分類。此核心是一個階層式的前饋網路。每一層皆使用類別差異來做訓練,且一層接一層、從下而上獨立的訓練,類別的值並不被直接用在訓練過程中,故此核心可以掌握多類別區分問題。
zh_TW
dc.description.abstractThis dissertation presents a distance invariant manifold that preserves neighboring relationships among data patterns. Since all input patterns have their corresponding cells in the manifold space, the neighboring cells of the input pattern resembles that of the output patterns. The manifold is invariant under the translation, rotation and scale of the pattern coordinates. And the neighboring relationships among cells are adjusted and improved in each iteration according to the algorithm of reduction of the distance preservation energy.
This dissertation also extends the algorithm to presents a MLP kernel. It maps all patterns in a one class into a single point in the output layer space and maps different classes into different points. These widely separated class points can be used for further classifications. The kernel is a layered feed-forward network. Each layer is trained using class differences and is trained independently layer after layer using a bottom-up construction. The value of class labels are not used in the training process. Therefore, this kernel can be used in separating multiple classes.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:25:05Z (GMT). No. of bitstreams: 1
ntu-99-D95922011-1.pdf: 6682135 bytes, checksum: dfc7b193230101d7f125fce6e492e3e3 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3 Experiments on artificial data . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1 Swiss roll dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 S-curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4 Experiments on real data . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1 Economic data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Manifolds for H5N1 and H1N1 proteins . . . . . . . . . . . . . . . . . . . . 21
4.3 Phylogenetic Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4 Tree experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5 Introduction of SIR mapping function . . . . . . . . . . . . . . . . . . . . . 31
6 Method of SIR mapping function . . . . . . . . . . . . . . . . . . . . . . . . 35
6.1 Algorithmof SIRmapping function . . . . . . . . . . . . . . . . . . . . . . . 36
7 Extended Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . . . 39
7.1 Two-Class Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.2 Multiple-Class Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.3 Real Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
8 FutureWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
dc.language.isoen
dc.subjectSIR 映射函式zh_TW
dc.subject區域保距&#63946zh_TW
dc.subject形zh_TW
dc.subject非定問題zh_TW
dc.subject樹&#63994zh_TW
dc.subject結構zh_TW
dc.subject水平基因轉移zh_TW
dc.subject感A 型病毒zh_TW
dc.subject經濟&#63994zh_TW
dc.subject態zh_TW
dc.subjecttree-like structureen
dc.subjectInfluenza A virusen
dc.subjectLDI manifolden
dc.subjectill-posed problemen
dc.subjecthorizontal gene transferen
dc.subjectSIR mapping functionen
dc.subjectstate of economyen
dc.title保距自組織圖zh_TW
dc.titleDistance Invariant Self-organizing Mapen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree博士
dc.contributor.oralexamcommittee呂育道(Yuh-Dauh Lyuu),趙坤茂(Kun-Mao Chao),林智仁(Chih-Jen Lin),曾宇鳳(Yufeng Jane Tseng),林軒田(Hsuan-Tien Lin),郭彥廷(Yen-Ting Kuo)
dc.subject.keyword區域保距&#63946,形,非定問題,樹&#63994,結構,水平基因轉移,&#63946,感A 型病毒,經濟&#63994,態,SIR 映射函式,zh_TW
dc.subject.keywordLDI manifold,ill-posed problem,tree-like structure,horizontal gene transfer,Influenza A virus,state of economy,SIR mapping function,en
dc.relation.page52
dc.rights.note未授權
dc.date.accepted2010-06-03
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
6.53 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved