Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22653
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳榮凱
dc.contributor.authorChee-Fai Yungen
dc.contributor.author容志輝zh_TW
dc.date.accessioned2021-06-08T04:23:33Z-
dc.date.copyright2010-07-05
dc.date.issued2010
dc.date.submitted2010-06-28
dc.identifier.citation1. A. Ailon, Controllability of Generalized Linear Time-Invariant Systems, IEEE Transactions on Automatic Control, Vol. AC-32, No. 5, pp. 429-432, 1987.
2. J. Bender and A. J. Laub, The Linear-Quadratic Optimal Regulator for Descriptor System, IEEE Transactions on Automatic Control, Vol.AC-23, No. 1, 672-688, 1987.
3. S. Bittanti, , A. J. Laub, and J. C. Willems, (Eds), The Riccati Equation, Springer Berlin, 1991.
4. K. E. Brenan, S. L. Campbell, and L. R. Petzold, Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, SIAM's Classics in Applied Mathematics series, 1996.
5. S. L. Campbell, Singular Systems of Differential Equations I, Pitman, New York, 1980.
6. S. L. Campbell, Singular Systems of Differential Equations II, Pitman, New York, 1982.
7. D. J. Cobb, Controllability, Observability, and Duality in Singular Systems, IEEE Transactions on Automatic Control, Vol. AC-29, No. 12, pp. 1076-1082, 1984.
8. L. Dai, Singular Control Systems, Lecture Notes in Control and Information Sciences, 118, Springer-Verlag, Berlin, Heidelberg 1989.
9. B. Dziurla and R. W. Newcomb, The Drazin Inverse and Semi-State Equations, Proceedings of the International Symposium on Mathematical Theory of Networks and Systems, Delft, pp. 283-289, 1979.
10. C. H. Fang and F. R. Chang, Analysis of Stability Robustness for Generalized State-Space Systems with Structured Perturbations, Systems and Control Letters, Vol. 21, No. 2, pp. 109-114, 1993.

11. F. R. Gantmacher, The Theory of Matrices, Vol. I and II, Chelsea, New York, 1959.
12. S. J. Hammarling, Numerical Solution of the Stable Non-negative Definite Lyapunov Equation, IMA J. Numer. Anal.,
Vol. 2, pp. 303-323, 1982.
13. G. E. Hayton, P. Fretwell, and A. C. Pugh, Fundamental Equivalence of Generalized State Space Systems, IEEE Transactions on Automatic Control, Vol.AC-31, No. 5, pp. 431-439, 1986.
14. R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, New York, 1990.
15. V. Ionescu, C. Oara, and M. Weiss, Generalized Riccati Theory and Robust Control: A Popov Function Approach}, John Wiley & Sons, Chichester, England, 1999.
16. N. Karcanias, Regular State-Space Realizations of Singular System Control Problems, Proceedings of the 28th Conference on Decision and Control, Los Angeles, CA, pp. 1144-1146, 1987.
17. C. F. Klamm, Jr., B. D. O. Anderson, and R. W. Newcomb, Stability of Passive Time-Variable Circuits, Proceedings of the IEE, Vol. 114, No. 1, pp. 71-75, 1967.
18. V. Kucera, Stationary LQG Control of Singular Systems, IEEE Transactions on Automatic Control, Vol.AC-31, No. 1, pp. 31-39, 1986.
19. M. Kuijper, First-Order Representations of Linear Systems. Birkhauser, Boston, 1994.
20. P. Lancaster and L. Rodman, Algebraic Riccati Equations, Oxford Science Publication, 1995.
21. W. W. Leontieff, Static and Dynamic Theory, in Studies in the Structure of the American Economy (ed: W. W. Leontieff), Oxford University Press, New York, 1953.
22. F. L. Lewis, A Survey of Linear Singular Systems, Circuits, Systems, and Signal Process, Vol. 5, No. 1, pp. 3-36, 1986.
23. F. L. Lewis, A Tutorial on the Geometric Analysis of Linear Time-invariant Implicit Systems, Automatica, Vol. 28, No. 1, pp. 119-137, 1992.
24. P. Lotstedt and L. Petzold, Numerical Solution of Nonlinear Differential Equations with Algebraic Constraints, I: Convergence Results for Backward Differentiation Formulas, Mathematics of Computation, Vol. 46, No. 174, pp. 491-516, 1986.
25. D. G. Luenberger, Singular Dynamic Leontieff Systems, Econometrica, Vol. 45, pp. 991-995, 1977.
26. D. G. Luenberger, Dynamic Equations in Descriptor Form, IEEE Transactions on Automatic Control, Vol.AC-22, No. 3, pp. 312-321, 1977.
27. D. G. Luenberger, Non-Linear Descriptor Systems, Journal of Economic Dynamics and Control, Vol. 1, pp. 212-242, 1979.
28. J. W. Manke, B. Dembart, M. A. Epton, A. M. Erisman, P. Lu, R. F. Sincovec, and E. L. Yip, Solvability of Large Scale Descriptor Systems, Report, Boeing Computer Services Company, Seattle, WA, 1979.
29. R. Marz, On Initial Value Problems in Differential-Algebraic Equations and Their Numerical Treatment, Computing, Vol. 35, No. 1, pp. 13-37, 1985.
30. N. H. McClamroch, Singular Systems of Differential Equations as Dynamic Models for Constrained Robot Systems, Proceedings of the IEEE Conference on Robotics and Automations, San Francisco, California, pp. 21-28, 1986. Circuit, Systems and Signal Process, Vol. 8, No. 3, PP. 235-260, 1989.
31. R. W Newcomb and B. Dziurla, Some Circuits and Systems Applications of Semistate Thoery, Circuit, Systems and Signal Process, Vol. 8, No. 3, PP. 235-260, 1989.
32. L. Petzold, Numerical Solution of Differential/Algebraic Systems by Implicit Runge-Kutta Methods, Proceedings of the 27th Midwest Symposium on Circuits and Systems, Morgantown, West Virginia, pp. 678-691, 1984.
33. S. Reich, On an Existence and Uniqueness Theory for Nonlinear Differential-Algebraic Equations, Circuits, Systems and Signal Processing, Vol. 10, No. 3, pp. 343-359, 1991.
34. R. E. Skelton, T. Iwasaki, and K. M. Grigoriadis, A Unified Algebraic Approach to Linear Control Design, Taylor & Francis, 2004.
35. T. Stykel, Stability and inertia theorems for generalized Lyapunov equations, Linear Algebra and its Applications, Vol. 355, pp.297-314, 2002.
36. V. L. Syrmos, P Misra, and R. Aripirala, On the Discrete Generalized Lyapunov Equation, Automatica, Vol. 31, No.2, pp.291-301, 1995.
37. K. Takaba, N. Morihira, and T. Katayama, H-infinity Control for Descriptor Systems - A J-Spectral Factorization Approach, Proceedings of 33rd Conference on Decision and Control, Lake Buena Vista, Florida, pp. 2251-2256, 1994.
38. V. Venkatasubramanian, H. Schattler, and J. Zaborszky, Local Bifurcations and Feasibility Regions in Differential-Algebraic Systems, IEEE Transactions on Automatic Control, Vol.AC-40, No. 12, pp. 1992-2013, 1995.
39. G. Verghese, B. C. Levy, and T. Kailath, A Generalized State-Space for Singular Systems, IEEE Transaction on Automatic Control, Vol. AC-26, No. 4, pp. 811-831, 1981.
40. H. S. Wang, C. F. Yung, and F. R. Chang, H∞ Control for Nonlinear Descriptor Systems, Lecture notes in control and information sciences, Berlin; Springer-Verlag, 2006.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22653-
dc.description.abstract本論文探討矩陣束之重要幾何結構, 包括正規性、 特徵結構、 因果性等。 論文中亦探討回授允當化問題, 並研究線性離散時間描述子系統之Lyapunov理論。 文中並推導Lyapunov方程式對稱解及一般解存在之充分且必要條件, 並求出所有對稱解及一般解之表示式, 最後並舉兩個數值例子說明。zh_TW
dc.description.abstract英文摘要 In this thesis we present geometric characterizations of fundamental properties of matrix pencils, such as regularity, eigenstructure and causality. We also deal with the feedback admissibilization problem and develop Lyapunov theory for linear discrete-time descriptor systems. Necessary and sufficient conditions are presented for the existence of a hermitian solution and general non-hermitian solution of Lyapunov equation. Explicit formulae, expressed in terms of the geometry of the underlying pencil, for all hermitian solutions and general non-hermitian solutions of the Lyapunov equation are also given. Finally, numerical examples are given for illustration.en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:23:33Z (GMT). No. of bitstreams: 1
ntu-99-R95221024-1.pdf: 632447 bytes, checksum: 1b9e823622a68a04c4c5a2b489b99471 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsContents
List of Figures vii
Nomenclature ix
1 Introduction 1
1.1 Why Descriptor Systems? 1
1.2 Why Geometric Approach? 9
1.3 Organization of the thesis 10
2 Matrix Pencils 13
2.1 Geometry 13
2.2 Regularity 15
2.3 Eigenstructure 23
2.4 Causality 27
3 Feedback 35
3.1 Regularizability 36
3.2 Non-Causality Controllability and Observability 38
3.3 Stability, Stabilization and Detectability 39
3.4 Admissibility 42
4 Lyapunov Theory 47
4.1 Hermitian Solutions 55
4.2 General Solutions 69
4.3 Numerical Examples 75
5 Conclusions 93
Bibliography 95
dc.language.isoen
dc.subject回授允當化問題zh_TW
dc.subject矩陣束之幾何結構zh_TW
dc.subject線性離散時間描述子系統zh_TW
dc.subjectLyapunov理論zh_TW
dc.subjectGeometry of matrix pencilsen
dc.subjectfeedback admissibilization problemen
dc.subjectLyapunov theoryen
dc.subjectlinear discrete-time descriptor systemsen
dc.title矩陣束之幾何結構及其在線性離散時間描述子系統之應用zh_TW
dc.titleGeometry of Matrix Pencils with Applications to Linear Discrete-Time Descriptor Systemsen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee葉芳柏,林文偉,蔡炎龍
dc.subject.keyword矩陣束之幾何結構,線性離散時間描述子系統,Lyapunov理論,回授允當化問題,zh_TW
dc.subject.keywordGeometry of matrix pencils,linear discrete-time descriptor systems,Lyapunov theory,feedback admissibilization problem,en
dc.relation.page100
dc.rights.note未授權
dc.date.accepted2010-06-28
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
617.62 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved