Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 口腔生物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22640
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳漢忠(Han-Chung Wu)
dc.contributor.authorYu-Ling Changen
dc.contributor.author張育綾zh_TW
dc.date.accessioned2021-06-08T04:23:10Z-
dc.date.copyright2010-09-09
dc.date.issued2010
dc.date.submitted2010-06-29
dc.identifier.citationReferences
Abu-Jawdeh, G.M., Faix, J.D., Niloff, J., Tognazzi, K., Manseau, E., Dvorak, H.F., and Brown, L.F. (1996). Strong expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in ovarian borderline and malignant neoplasms. Lab Invest 74, 1105-1115.
Adams, G.P., and Weiner, L.M. (2005). Monoclonal antibody therapy of cancer. Nat Biotechnol 23, 1147-1157.
Allen, T.M., and Cullis, P.R. (2004). Drug delivery systems: entering the mainstream. Science 303, 1818-1822.
Arap, W., Pasqualini, R., and Ruoslahti, E. (1998). Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279, 377-380.
Asahara, T., Masuda, H., Takahashi, T., Kalka, C., Pastore, C., Silver, M., Kearne, M., Magner, M., and Isner, J.M. (1999). Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85, 221-228.
Baka, S., Clamp, A.R., and Jayson, G.C. (2006). A review of the latest clinical compounds to inhibit VEGF in pathological angiogenesis. Expert Opin Ther Targets 10, 867-876.
Balint, R.F., and Larrick, J.W. (1993). Antibody engineering by parsimonious mutagenesis. Gene 137, 109-118.
Bazan-Peregrino, M., Seymour, L.W., and Harris, A.L. (2007). Gene therapy targeting to tumor endothelium. Cancer Gene Ther 14, 117-127.
Bosslet, K., Straub, R., Blumrich, M., Czech, J., Gerken, M., Sperker, B., Kroemer, H.K., Gesson, J.P., Koch, M., and Monneret, C. (1998). Elucidation of the mechanism enabling tumor selective prodrug monotherapy. Cancer Res 58, 1195-1201.
Brem, H., and Folkman, J. (1975). Inhibition of tumor angiogenesis mediated by cartilage. J Exp Med 141, 427-439.
Brigger, I., Dubernet, C., and Couvreur, P. (2002). Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 54, 631-651.
Brown, L.F., Berse, B., Jackman, R.W., Tognazzi, K., Manseau, E.J., Dvorak, H.F., and Senger, D.R. (1993). Increased expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in kidney and bladder carcinomas. Am J Pathol 143, 1255-1262.
Burrows, F.J., and Thorpe, P.E. (1994). Vascular targeting--a new approach to the therapy of solid tumors. Pharmacol Ther 64, 155-174.
Burrows, F.J., Watanabe, Y., and Thorpe, P.E. (1992). A murine model for antibody-directed targeting of vascular endothelial cells in solid tumors. Cancer Res 52, 5954-5962.
Carmeliet, P. (2005). Angiogenesis in life, disease and medicine. Nature 438, 932-936.
Chen, Y., Huang, K., Li, X., Lin, X., Zhu, Z., and Wu, Y. Generation of a stable anti-human CD44v6 scFv and analysis of its cancer-targeting ability in vitro. Cancer Immunol Immunother 59, 933-942.
de Kruif, J., Boel, E., and Logtenberg, T. (1995). Selection and application of human single chain Fv antibody fragments from a semi-synthetic phage antibody display library with designed CDR3 regions. J Mol Biol 248, 97-105.
Demetri, G.D., van Oosterom, A.T., Garrett, C.R., Blackstein, M.E., Shah, M.H., Verweij, J., McArthur, G., Judson, I.R., Heinrich, M.C., Morgan, J.A., et al. (2006). Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet 368, 1329-1338.
Denekamp, J. (1990). Vascular attack as a therapeutic strategy for cancer. Cancer Metastasis Rev 9, 267-282.
Denekamp, J. (1999). The tumour microcirculation as a target in cancer therapy: a clearer perspective. Eur J Clin Invest 29, 733-736.
Denhart, B.C., Guidi, A.J., Tognazzi, K., Dvorak, H.F., and Brown, L.F. (1997). Vascular permeability factor/vascular endothelial growth factor and its receptors in oral and laryngeal squamous cell carcinoma and dysplasia. Lab Invest 77, 659-664.
Dimmeler, S., Haendeler, J., Nehls, M., and Zeiher, A.M. (1997). Suppression of apoptosis by nitric oxide via inhibition of interleukin-1beta-converting enzyme (ICE)-like and cysteine protease protein (CPP)-32-like proteases. J Exp Med 185, 601-607.
Drummond, D.C., Meyer, O., Hong, K., Kirpotin, D.B., and Papahadjopoulos, D. (1999). Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev 51, 691-743.
Ferrara, N., Carver-Moore, K., Chen, H., Dowd, M., Lu, L., O'Shea, K.S., Powell-Braxton, L., Hillan, K.J., and Moore, M.W. (1996). Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380, 439-442.
Ferrara, N., and Davis-Smyth, T. (1997). The biology of vascular endothelial growth factor. Endocr Rev 18, 4-25.
Ferrara, N., Gerber, H.P., and LeCouter, J. (2003). The biology of VEGF and its receptors. Nat Med 9, 669-676.
Ferrara, N., Hillan, K.J., Gerber, H.P., and Novotny, W. (2004). Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 3, 391-400.
Ferrara, N., and Kerbel, R.S. (2005). Angiogenesis as a therapeutic target. Nature 438, 967-974.
Folkman, J. (1971). Tumor angiogenesis: therapeutic implications. N Engl J Med 285, 1182-1186.
Folkman, J. (1995). Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1, 27-31.
Fuh, G., Li, B., Crowley, C., Cunningham, B., and Wells, J.A. (1998). Requirements for binding and signaling of the kinase domain receptor for vascular endothelial growth factor. J Biol Chem 273, 11197-11204.
Fujio, Y., and Walsh, K. (1999). Akt mediates cytoprotection of endothelial cells by vascular endothelial growth factor in an anchorage-dependent manner. J Biol Chem 274, 16349-16354.
Fulton, D., Gratton, J.P., McCabe, T.J., Fontana, J., Fujio, Y., Walsh, K., Franke, T.F., Papapetropoulos, A., and Sessa, W.C. (1999). Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 399, 597-601.
Gabizon, A., Catane, R., Uziely, B., Kaufman, B., Safra, T., Cohen, R., Martin, F., Huang, A., and Barenholz, Y. (1994). Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res 54, 987-992.
Goldenberg, M.M. (1999). Trastuzumab, a recombinant DNA-derived humanized monoclonal antibody, a novel agent for the treatment of metastatic breast cancer. Clin Ther 21, 309-318.
Guidi, A.J., Abu-Jawdeh, G., Tognazzi, K., Dvorak, H.F., and Brown, L.F. (1996). Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in endometrial carcinoma. Cancer 78, 454-460.
Hanahan, D., and Folkman, J. (1996). Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353-364.
Hanahan, D., and Weinberg, R.A. (2000). The hallmarks of cancer. Cell 100, 57-70.
Heldin, C.H., Rubin, K., Pietras, K., and Ostman, A. (2004). High interstitial fluid pressure - an obstacle in cancer therapy. Nat Rev Cancer 4, 806-813.
Hoffman, J.A., Giraudo, E., Singh, M., Zhang, L., Inoue, M., Porkka, K., Hanahan, D., and Ruoslahti, E. (2003). Progressive vascular changes in a transgenic mouse model of squamous cell carcinoma. Cancer Cell 4, 383-391.
Hoffmann, J., Haendeler, J., Aicher, A., Rossig, L., Vasa, M., Zeiher, A.M., and Dimmeler, S. (2001). Aging enhances the sensitivity of endothelial cells toward apoptotic stimuli: important role of nitric oxide. Circ Res 89, 709-715.
Hurwitz, H., Fehrenbacher, L., Novotny, W., Cartwright, T., Hainsworth, J., Heim, W., Berlin, J., Baron, A., Griffing, S., Holmgren, E., et al. (2004). Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350, 2335-2342.
Jain, R.K. (1987). Transport of molecules in the tumor interstitium: a review. Cancer Res 47, 3039-3051.
Jain, R.K. (1996). 1995 Whitaker Lecture: delivery of molecules, particles, and cells to solid tumors. Ann Biomed Eng 24, 457-473.
Kaplan, J.B., Sridharan, L., Zaccardi, J.A., Dougher-Vermazen, M., and Terman, B.I. (1997). Characterization of a soluble vascular endothelial growth factor receptor-immunoglobulin chimera. Growth Factors 14, 243-256.
Kerbel, R.S. (2008). Tumor angiogenesis. N Engl J Med 358, 2039-2049.
Lee, T.Y., Lin, C.T., Kuo, S.Y., Chang, D.K., and Wu, H.C. (2007). Peptide-mediated targeting to tumor blood vessels of lung cancer for drug delivery. Cancer Res 67, 10958-10965.
Leung, D.W., Cachianes, G., Kuang, W.J., Goeddel, D.V., and Ferrara, N. (1989). Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246, 1306-1309.
Li, X.B., Schluesener, H.J., and Xu, S.Q. (2006). Molecular addresses of tumors: selection by in vivo phage display. Arch Immunol Ther Exp (Warsz) 54, 177-181.
Liotta, L.A., Steeg, P.S., and Stetler-Stevenson, W.G. (1991). Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 64, 327-336.
Lu, D., Shen, J., Vil, M.D., Zhang, H., Jimenez, X., Bohlen, P., Witte, L., and Zhu, Z. (2003). Tailoring in vitro selection for a picomolar affinity human antibody directed against vascular endothelial growth factor receptor 2 for enhanced neutralizing activity. J Biol Chem 278, 43496-43507.
Lyden, D., Hattori, K., Dias, S., Costa, C., Blaikie, P., Butros, L., Chadburn, A., Heissig, B., Marks, W., Witte, L., et al. (2001). Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 7, 1194-1201.
Ma, J., and Waxman, D.J. (2008). Combination of antiangiogenesis with chemotherapy for more effective cancer treatment. Mol Cancer Ther 7, 3670-3684.
Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., McCafferty, J., Griffiths, A.D., and Winter, G. (1991). By-passing immunization. Human antibodies from V-gene libraries displayed on phage. J Mol Biol 222, 581-597.
Maruta, F., Parker, A.L., Fisher, K.D., Murray, P.G., Kerr, D.J., and Seymour, L.W. (2003). Use of a phage display library to identify oligopeptides binding to the lumenal surface of polarized endothelium by ex vivo perfusion of human umbilical veins. J Drug Target 11, 53-59.
Matsumoto, T., Bohman, S., Dixelius, J., Berge, T., Dimberg, A., Magnusson, P., Wang, L., Wikner, C., Qi, J.H., Wernstedt, C., et al. (2005). VEGF receptor-2 Y951 signaling and a role for the adapter molecule TSAd in tumor angiogenesis. EMBO J 24, 2342-2353.
Matthews, W., Jordan, C.T., Gavin, M., Jenkins, N.A., Copeland, N.G., and Lemischka, I.R. (1991). A receptor tyrosine kinase cDNA isolated from a population of enriched primitive hematopoietic cells and exhibiting close genetic linkage to c-kit. Proc Natl Acad Sci U S A 88, 9026-9030.
McNamara, J.R., Cohn, J.S., Wilson, P.W., and Schaefer, E.J. (1990). Calculated values for low-density lipoprotein cholesterol in the assessment of lipid abnormalities and coronary disease risk. Clin Chem 36, 36-42.
Miao, H.Q., Hu, K., Jimenez, X., Navarro, E., Zhang, H., Lu, D., Ludwig, D.L., Balderes, P., and Zhu, Z. (2006). Potent neutralization of VEGF biological activities with a fully human antibody Fab fragment directed against VEGF receptor 2. Biochem Biophys Res Commun 345, 438-445.
Millauer, B., Wizigmann-Voos, S., Schnurch, H., Martinez, R., Moller, N.P., Risau, W., and Ullrich, A. (1993). High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72, 835-846.
Mimeault, M., Hauke, R., and Batra, S.K. (2008). Recent advances on the molecular mechanisms involved in the drug resistance of cancer cells and novel targeting therapies. Clin Pharmacol Ther 83, 673-691.
Motzer, R.J., Michaelson, M.D., Redman, B.G., Hudes, G.R., Wilding, G., Figlin, R.A., Ginsberg, M.S., Kim, S.T., Baum, C.M., DePrimo, S.E., et al. (2006). Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma. J Clin Oncol 24, 16-24.
O'Reilly, M.S. (2007). Antiangiogenesis and vascular endothelial growth factor/vascular endothelial growth factor receptor targeting as part of a combined-modality approach to the treatment of cancer. Int J Radiat Oncol Biol Phys 69, S64-66.
Oh, P., Li, Y., Yu, J., Durr, E., Krasinska, K.M., Carver, L.A., Testa, J.E., and Schnitzer, J.E. (2004). Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy. Nature 429, 629-635.
Orlova, A., Magnusson, M., Eriksson, T.L., Nilsson, M., Larsson, B., Hoiden-Guthenberg, I., Widstrom, C., Carlsson, J., Tolmachev, V., Stahl, S., et al. (2006). Tumor imaging using a picomolar affinity HER2 binding affibody molecule. Cancer Res 66, 4339-4348.
Papahadjopoulos, D., Allen, T.M., Gabizon, A., Mayhew, E., Matthay, K., Huang, S.K., Lee, K.D., Woodle, M.C., Lasic, D.D., Redemann, C., et al. (1991). Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci U S A 88, 11460-11464.
Pasqualini, R., and Ruoslahti, E. (1996). Organ targeting in vivo using phage display peptide libraries. Nature 380, 364-366.
Persaud, K., Tille, J.C., Liu, M., Zhu, Z., Jimenez, X., Pereira, D.S., Miao, H.Q., Brennan, L.A., Witte, L., Pepper, M.S., et al. (2004). Involvement of the VEGF receptor 3 in tubular morphogenesis demonstrated with a human anti-human VEGFR-3 monoclonal antibody that antagonizes receptor activation by VEGF-C. J Cell Sci 117, 2745-2756.
Plate, K.H., Breier, G., Millauer, B., Ullrich, A., and Risau, W. (1993). Up-regulation of vascular endothelial growth factor and its cognate receptors in a rat glioma model of tumor angiogenesis. Cancer Res 53, 5822-5827.
Pugh, C.W., and Ratcliffe, P.J. (2003). Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 9, 677-684.
Quinn, T.P., Peters, K.G., De Vries, C., Ferrara, N., and Williams, L.T. (1993). Fetal liver kinase 1 is a receptor for vascular endothelial growth factor and is selectively expressed in vascular endothelium. Proc Natl Acad Sci U S A 90, 7533-7537.
Retter, I., Althaus, H.H., Munch, R., and Muller, W. (2005). VBASE2, an integrative V gene database. Nucleic Acids Res 33, D671-674.
Roskoski, R., Jr. (2007). Vascular endothelial growth factor (VEGF) signaling in tumor progression. Crit Rev Oncol Hematol 62, 179-213.
Ryan, H.E., Lo, J., and Johnson, R.S. (1998). HIF-1 alpha is required for solid tumor formation and embryonic vascularization. EMBO J 17, 3005-3015.
Saharinen, P., Tammela, T., Karkkainen, M.J., and Alitalo, K. (2004). Lymphatic vasculature: development, molecular regulation and role in tumor metastasis and inflammation. Trends Immunol 25, 387-395.
Schier, R., and Marks, J.D. (1996). Efficient in vitro affinity maturation of phage antibodies using BIAcore guided selections. Hum Antibodies Hybridomas 7, 97-105.
Scott, J.K., and Smith, G.P. (1990). Searching for peptide ligands with an epitope library. Science 249, 386-390.
Shay-Salit, A., Shushy, M., Wolfovitz, E., Yahav, H., Breviario, F., Dejana, E., and Resnick, N. (2002). VEGF receptor 2 and the adherens junction as a mechanical transducer in vascular endothelial cells. Proc Natl Acad Sci U S A 99, 9462-9467.
Shibuya, M., Yamaguchi, S., Yamane, A., Ikeda, T., Tojo, A., Matsushime, H., and Sato, M. (1990). Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase gene (flt) closely related to the fms family. Oncogene 5, 519-524.
Shichiri, M., and Hirata, Y. (2001). Antiangiogenesis signals by endostatin. FASEB J 15, 1044-1053.
Shinkaruk, S., Bayle, M., Lain, G., and Deleris, G. (2003). Vascular endothelial cell growth factor (VEGF), an emerging target for cancer chemotherapy. Curr Med Chem Anticancer Agents 3, 95-117.
Simberg, D., Duza, T., Park, J.H., Essler, M., Pilch, J., Zhang, L., Derfus, A.M., Yang, M., Hoffman, R.M., Bhatia, S., et al. (2007). Biomimetic amplification of nanoparticle homing to tumors. Proc Natl Acad Sci U S A 104, 932-936.
Smith, G.P. (1985). Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228, 1315-1317.
Smith, J., Kontermann, R.E., Embleton, J., and Kumar, S. (2005). Antibody phage display technologies with special reference to angiogenesis. FASEB J 19, 331-341.
Stupack, D.G., and Cheresh, D.A. (2004). Integrins and angiogenesis. Curr Top Dev Biol 64, 207-238.
Susman, E. (2006). New drug increases survival in stomach cancer. Lancet Oncol 7, 286.
Takahashi, T., Yamaguchi, S., Chida, K., and Shibuya, M. (2001). A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-gamma and DNA synthesis in vascular endothelial cells. EMBO J 20, 2768-2778.
Takanami, I., Tanaka, F., Hashizume, T., and Kodaira, S. (1997). Vascular endothelial growth factor and its receptor correlate with angiogenesis and survival in pulmonary adenocarcinoma. Anticancer Res 17, 2811-2814.
Terman, B.I., Carrion, M.E., Kovacs, E., Rasmussen, B.A., Eddy, R.L., and Shows, T.B. (1991). Identification of a new endothelial cell growth factor receptor tyrosine kinase. Oncogene 6, 1677-1683.
Umetsu, M., Tsumoto, K., Hara, M., Ashish, K., Goda, S., Adschiri, T., and Kumagai, I. (2003). How additives influence the refolding of immunoglobulin-folded proteins in a stepwise dialysis system. Spectroscopic evidence for highly efficient refolding of a single-chain Fv fragment. J Biol Chem 278, 8979-8987.
Vaage, J., Barbera-Guillem, E., Abra, R., Huang, A., and Working, P. (1994). Tissue distribution and therapeutic effect of intravenous free or encapsulated liposomal doxorubicin on human prostate carcinoma xenografts. Cancer 73, 1478-1484.
van der Flier, A., and Sonnenberg, A. (2001). Function and interactions of integrins. Cell Tissue Res 305, 285-298.
Vasey, P.A., Kaye, S.B., Morrison, R., Twelves, C., Wilson, P., Duncan, R., Thomson, A.H., Murray, L.S., Hilditch, T.E., Murray, T., et al. (1999). Phase I clinical and pharmacokinetic study of PK1 [N-(2-hydroxypropyl)methacrylamide copolymer doxorubicin]: first member of a new class of chemotherapeutic agents-drug-polymer conjugates. Cancer Research Campaign Phase I/II Committee. Clin Cancer Res 5, 83-94.
Veikkola, T., and Alitalo, K. (1999). VEGFs, receptors and angiogenesis. Semin Cancer Biol 9, 211-220.
Verheul, H.M., and Pinedo, H.M. (2007). Possible molecular mechanisms involved in the toxicity of angiogenesis inhibition. Nat Rev Cancer 7, 475-485.
Vitaliti, A., Wittmer, M., Steiner, R., Wyder, L., Neri, D., and Klemenz, R. (2000). Inhibition of tumor angiogenesis by a single-chain antibody directed against vascular endothelial growth factor. Cancer Res 60, 4311-4314.
Weinstat-Saslow, D., and Steeg, P.S. (1994). Angiogenesis and colonization in the tumor metastatic process: basic and applied advances. FASEB J 8, 401-407.
Weisser, N.E., and Hall, J.C. (2009). Applications of single-chain variable fragment antibodies in therapeutics and diagnostics. Biotechnol Adv 27, 502-520.
Willett, C.G., Boucher, Y., di Tomaso, E., Duda, D.G., Munn, L.L., Tong, R.T., Chung, D.C., Sahani, D.V., Kalva, S.P., Kozin, S.V., et al. (2004). Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 10, 145-147.
Wilting, J., Christ, B., and Weich, H.A. (1992). The effects of growth factors on the day 13 chorioallantoic membrane (CAM): a study of VEGF165 and PDGF-BB. Anat Embryol (Berl) 186, 251-257.
Xu, C., Lo, A., Yammanuru, A., Tallarico, A.S., Brady, K., Murakami, A., Barteneva, N., Zhu, Q., and Marasco, W.A. Unique biological properties of catalytic domain directed human anti-CAIX antibodies discovered through phage-display technology. PLoS One 5, e9625.
Zeng, H., Sanyal, S., and Mukhopadhyay, D. (2001). Tyrosine residues 951 and 1059 of vascular endothelial growth factor receptor-2 (KDR) are essential for vascular permeability factor/vascular endothelial growth factor-induced endothelium migration and proliferation, respectively. J Biol Chem 276, 32714-32719.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22640-
dc.description.abstract在腫瘤生長過程當中,腫瘤血管新生 (angiogenesis) 是必經的過程之一,癌細胞藉由新生血管獲得養分及釋放廢物得以進一步擴大惡化。根據以往研究發現,腫瘤新生血管之型態結構以及表現於血管細胞膜上之受體相較於正常血管有很大的不同,故可利用這些受體做為癌症診斷及治療的標的物質;其中,VEGFR2是調控血管新生重要的受體,血管細胞藉由VEGF/VEGFR2訊息傳遞路徑可促進細胞之增生、存活力、轉移以及血管通透性。本篇研究中,透過噬菌體顯現法 (phage display) 篩選出專一性結合VEGFR2的人類單鏈抗體 (scFv)。進一步利用酵素免疫連結吸附反應、西方點墨法、免疫螢光染色法以及流式細胞分析等技術,確認四株表現不同單鏈抗體之噬菌體分別對於VEGFR2蛋白質、經VEGFR2轉染後的293T細胞、以及人類臍帶靜脈內皮細胞 (HUVEC) 有專一性辨認的能力,並且亦可競爭VEGFA結合到VEGFR2。另外,純化後的這四株單鏈抗體蛋白對癌症病患腫瘤血管也具有高度辨識能力。為了更進一步了解這些對抗VEGFR2單鏈抗體在活體之功能,將這幾株噬菌體施打於移植人類腫瘤的免疫不全鼠之後,發現它們對於腫瘤有高度的辨認之特性。綜合以上之結果,我們所篩選出對抗VEGFR2之單鏈抗體的確可辨識細胞及活體腫瘤所表現之VEGFR2,因此,這些對抗VEGFR2之抗體具有應用於發展配體藥引之藥物傳輸系統 (ligand-mediated drug delivery system) 以及建構治療性抗體之潛力,進而改善目前腫瘤治療的困境,亦可結合癌症造影之技術,針對癌症患者做更精確的診斷與追蹤。zh_TW
dc.description.abstractAngiogenesis is an essential pathological process during tumor development and progression. The growth of tumor cells need to recruit oxygen and nutrition supplied through new blood vessels. According to the previous study, the structural and molecular diversity of tumor-associated vasculature which very differently from normal vasculature provides a basis for the development of targeted diagnostics and therapeutics. Among these tumor vasculature-associated molecules, VEGFR2 is a crucial receptor which plays an important role in regulation of angiogenesis. Activation of VEGF/VEGFR2 signaling pathway results in the promotion of cell proliferation, migration, survival, and vascular permeability. In this study, several anti-VEGFR2 scFvs were selected from a large human naïve scFv library displayed by phage. After ELISA, Western blot analysis, immunofluorescence staining, and FACS analysis, we identified four anti-VEGFR2 scFvs with high binding affinity against VEGFR2 proteins, VEGFR2 transfected 293T cells, HUVEC, and tumor vessels of cancer patients. Besides, these scFvs were able to inhibit the binding of VEGF to VEGFR2. For further investigation of the binding ability of these scFvs in vivo, we injected these anti-VEGFR2 scFv displayed phages to tumor bearing mice. The tumor homing ability of these four targeting phages were remarkable compared with other normal organs. Our results showed that several anti-VEGFR2 scFv antibodies with the specific recognition ability to cell-expressed VEGFR2 and tumor mass were isolated successfully. Therefore, these anti-VEGFR2 scFvs are promising agents for development of ligand-mediated drug delivery system or for further generation of therapeutic antibodies to overcome the obstacles of cancer treatment. In addition, combination of the scFvs to imaging agents is also attractive for cancer diagnosis.en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:23:10Z (GMT). No. of bitstreams: 1
ntu-99-R97450009-1.pdf: 3606073 bytes, checksum: 7217adc4b503f7e4a3f60b2cce61e11e (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsContent
中文摘要 i
Abstract ii
Content iv
Content of figures vi
Introduction 1
1.1 Epidemiology, pathogenesis, and hallmarks of cancer 1
1.2 The obstacle of cancer treatment 2
1.3 The angiogenesis in solid tumor 4
1.4 VEGF and VEGFR2 5
1.5 Roles of VEGFR2 in tumor angiogenesis 7
1.6 Tumor vascular targeting therapy 8
1.7 VEGF/VEGFR2 pathway as a target for cancer therapy 10
1.8 Phage display 11
1.9 Application of phage display in cancer therapy 13
Materials and Methods 16
2.1 Isolation of phages binding to VEGFR2 from phage-displayed scFv library. 16
2.2 Screening of anti-VEGFR2 phage clones by ELISA. 17
2.3 Identification of the V domain subgroups and CDRs of anti-VEGFR2 scFv. 17
2.4 Construction of mammalian expression vector encoding human VEGFR2. 18
2.5 Competitive VEGF-A binding assay. 18
2.6 Determination of the binding specificity of phage-displayed anti-VEGFR2 scFv by immunofluorescent staining. 19
2.7 Evaluation of the binding affinity of anti-VEGFR2 scFv to VEGFR2 20
2.8 Expression and purification of soluble scFvs. 21
2.9 Detection of the human tumor vasculature targeted ability of anti-VEGFR2 scFvs (R2S) by immunofluorescent staining. 21
2.10 In vivo homing experiment and tissue distribution of phages. 22
Result 24
3.1 Isolation of phages binding to VEGFR2 from phage-displayed scFv library. 24
3.2 Screening of anti-VEGFR2 phage clones by ELISA. 24
3.3 Identification of the V domain subgroup and CDRs of anti-VEGFR2 scFv. 25
3.4 Determination of the binding affinity of phage-displayed anti-VEGFR2 scFv by ELISA. 26
3.5 Construction and identification of pEF1x-VEGFR2DC vector. 26
3.6 Competitive inhibition of VEGF-A binding to VEGFR2 by anti-VEGFR2 scFv. 27
3.7 Determination of the binding specificity of phage-displayed anti-VEGFR2 scFv by immunofluorescent staining. 28
3.8 Determination of the binding specificity of phage-displayed anti-VEGFR2 scFv by FACS analysis. 28
3.9 Anti-VEGFR2 scFvs effectively recognized tumor vesculature of human by immunofluorescent staining. 29
3.10 The tumor homing ability of phage displayed anti-VEGFR2 scFvs. 30
Discussion 31
Figures 40
References 53
Content of Figures
Figure 1. Selection of anti-VEGFR2 scFv from phage-displayed scFv library 40
Figure 2. Screening of phage clones recognized VEGFR2 by ELISA 41
Figure 3. Identification of the V domain subgroup and CDRs of anti-VEGFR2 scFv 42
Figure 4. Determination of the binding affinity of phage displayed anti-VEGFR2 scFv by ELISA 43
Figure 5. Construction and identification of pEF1x-VEGFR2DC vector 44
Figure 6. Competitive inhibition of VEGF-A binding to VEGFR2 by phage displayed anti-VEGFR2 scFvs 45
Figure 7. Determination of the binding specificity of phage displayed anti-VEGFR2 scFv by immunofluorescent staining 46
Figure 8. Determination of the binding specificity of phage displayed anti-VEGFR2 scFv by FACS analysis 47
Figure 9. Identification of the binding activity of phage displayed anti-VEGFR2 scFv to HUVEC by FACS analysis 48
Figure 10. Expression and purification of soluble scFvs 49
Figure 11. R2S-12, -28, -29, and -45 effectively recognized tumor vesculature of human by immunofluorescent staining 50
Figure 12. Verification of tumor-homing ability of phage displayed anti-VEGFR2 scFv in vivo 51
Figure 13. Verification of tissue distribution of phage displayed anti-VEGFR2 scFv in vivo 52
dc.language.isoen
dc.title研發對抗VEGFR2之人類抗體運用於癌症之治療zh_TW
dc.titleDevelopment of Human Antibodies Against VEGFR2 for Cancer Therapyen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.coadvisor樓國隆(Kuo-Long Lou)
dc.contributor.oralexamcommittee呂仁(Lu, Joyce Jean)
dc.subject.keyword腫瘤血管新生,VEGFR2,噬菌體顯現法,scFv,配體藥引之藥物傳輸系統,治療性抗體,zh_TW
dc.subject.keywordangiogenesis,VEGFR2,phage display,scFv,ligand-mediated drug delivery system,therapeutic antibody,en
dc.relation.page63
dc.rights.note未授權
dc.date.accepted2010-06-29
dc.contributor.author-college牙醫專業學院zh_TW
dc.contributor.author-dept口腔生物科學研究所zh_TW
顯示於系所單位:口腔生物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
3.52 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved