Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22628
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李秋坤
dc.contributor.authorChih-Whi Chenen
dc.contributor.author陳志瑋zh_TW
dc.date.accessioned2021-06-08T04:22:48Z-
dc.date.copyright2010-07-06
dc.date.issued2010
dc.date.submitted2010-06-30
dc.identifier.citation[1] S.A. Amitsur, Rings of quotients and morita contexts, J. Algebra 17(1971), 273-298.
[2] H. Bass, “The Morita-theorems”, Oregon Lectures, 1962.
[3] K.I. Beidar and W.S.Martindale III and A.V. Mikhalev, “Rings with generalized identities”, Marcel Dekker, INC, 1995.
[4] A.W. Goldie, The structure of prime rings under ascending chain conditions, Proc. London Math. Sot. 8 (1958), 589-608.
[5] A.W. Goldie, Semi-prime rings with maximum condition, Proc. London Math. Sot. 10 (1960), 201-220.
[6] N. Jacobson, “PI-algebras”, An introduction. Lecture Notes inMathematics, 441. Springer-Verlag, Berlin-New York, 1975.
[7] T.Y. Lam, “Lectures on modules and rings”, Graduate Texts in Mathematics, 189. Springer-Verlag, New York, 1999.
[8] T.Y. Lam, “A first course in noncommutative rings. Second edition”, Graduate Texts in Mathematics, 131. Springer-Verlag, New York, 2001.
[9] T.-K. Lee, A characterization of left ideals satisfieing polynomial identities, Chinese J. Math., 24(4) (1996), 359-368.
[10] W.S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576-584.
[11] K. Morita, Duality for modules and its application to the theory of rings with minimum conditions, Science Reports of the Tokyo Kyoiku Daigoku Sect. A. 6 (1958), 83-142.
[12] C. Procesi and L. Small, Endomorphism Rings of Modules over PI-Algebras, Math. Zeitschr. 106, 178-180 (1968).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22628-
dc.description.abstract在本篇論文中,我們延伸 Amitzur 對於 Morita contexts 的研究 [1]。並不假設 Morita contexts 有一致忠實的非奇異左理想,在本文章中我們給出了Morita contexts 是素環的充分必要,並且計算了中心。更進一步地,我們個別刻劃了滿足多項式恆等式與廣義多項式恆等式的Morita contexts,並且計算了多項式階數。我們在文中也給出了在經典Morita contexts 環上的應用。zh_TW
dc.description.abstractIn this thesis, we continue the study of Morita context in [1]. Without assumption that the Morita contexts has uniformly faithful, non-singular left ideal, here we give the necessary and sufficient condition of the prime Morita contexts, and compute its center.Furthermore, we characterize the Morita contexts to be a polynomial identity ring and generalized polynomial identity ring respectively, and compute its polynomial degree. We also give some applications on classical Morita context.en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:22:48Z (GMT). No. of bitstreams: 1
ntu-99-R97221007-1.pdf: 434830 bytes, checksum: d262f0af7cd3dd9b552db9dc471b2755 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents目 錄
口試委員會審定書……………………………………………………………… i
誌謝………………………………………………………………………………. ii
中文摘要………………………………………………………………………… i ii
英文摘要…………………………………………………………………………. iv
1. Introduction …..……………………………………………………………… 1
2. Primeness ……..……………………………………………………………… 1
3. PI-degree and GPI-rings ...…………………………………………………… 6
4. Primitivity and Simplicity …………………………………………………... 10
5. The associative division algebra ……………………………………………… 11
Reference ..………………………………………………………………………… 12
dc.language.isoen
dc.subjectMorita contextszh_TW
dc.subject素環zh_TW
dc.subject多項式恆等式zh_TW
dc.subject廣義多項式恆等式zh_TW
dc.subject多項式階數zh_TW
dc.subject經典Morita contextszh_TW
dc.subjectprime ringen
dc.subjectMorita contextsen
dc.subjectpolynomial degreeen
dc.subjectgeneralized polynomial identityen
dc.subjectpolynomial identityen
dc.subjectclassical Morita contextsen
dc.titleMorita contexts 環的性質zh_TW
dc.titleRing properties of Morita contextsen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李白飛,蔡援宗
dc.subject.keywordMorita contexts,素環,多項式恆等式,廣義多項式恆等式,多項式階數,經典Morita contexts,zh_TW
dc.subject.keywordMorita contexts,prime ring,polynomial identity,generalized polynomial identity,polynomial degree,classical Morita contexts,en
dc.relation.page13
dc.rights.note未授權
dc.date.accepted2010-06-30
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
424.64 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved