請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22600完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蘇金佳 | |
| dc.contributor.author | Chin-Jui Wu | en |
| dc.contributor.author | 吳金瑞 | zh_TW |
| dc.date.accessioned | 2021-06-08T04:21:57Z | - |
| dc.date.copyright | 2010-07-15 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-07 | |
| dc.identifier.citation | 【1】 台灣電力公司永續報告書2008年,P26
【2】 江明德,“地下輸電電纜洞道冷卻系統暨氣流模擬研究”,國立台北科技大學冷凍空調工程研究所碩士論文,民國93年 【3】 日本電氣協同研究第53卷第C號,“地下電纜送電容量設計”,pp. 104~139. ,平成10年1月 【4】 劉昱儀,'345KV地下電纜洞道用冷卻機房與變電所樓層共設規劃”,行政院出國報告書,民國92年 【5】 連裕豐,“洞道中超高壓地下電力系統之設計”,國立台灣科技大學電機工程研究所碩士論文,民國92年 【6】 財團法人中華顧問工程司,“ 大安變電所相關345kV電纜線路規劃設計及監造技術服務工作高壓地下電纜洞道間接水冷系統模型實驗研究計畫 ”,民國95年11月 【7】 杜文祥,“地下電纜洞道內冰水管間接冷卻系統之性能研究”,國立台灣大學機械工程研究所碩士論文,民國95年 【8】 何柏慶,“半圓洞道內冰水管間接冷卻系統之自然對流熱傳研究”,國立台灣大學機械工程研究所碩士論文,民國96年 【9】 劉彥宏,“半圓洞道內線性熱源位置對剖面溫度的效應”,國立台灣大學機械工程研究所碩士論文,民國98年 【10】 鄭易林,“全圓洞道內線性熱源位置對剖面溫度的效應”,國立台灣大學機械工程研究所碩士論文,民國98年 【11】 J.V. Herráez, R. Belda, “A study of free convection in air around horizontal cylinders of different diameters based on holographic interferometry. Temperature field equations and heat transfer coefficients”, International Journal of thermal Sciences, Vol. 41, pp.261-267. , 2002 【12】 J.T. Anderson, O.A. Saunders, “Convection from an Isolated Heated Horizontal Cylinder Rotating about Its Axis”, Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, Vol. 217, No. 1131, pp.555-562. , 1953 【13】 J.A. Peterka, P.D. Richardson, “Natural convection from a horizontal cylinder at moderate Grashof numbers”, International Journal of Heat and Mass Transfer, Vol. 12, pp.749-752. , 1969 【14】 W. Hauff, U. Grigull, “Optical Methods in Heat Transfer”, Advances in Heat Transfer, Academic Press, New York, pp.133-366. , 1970 【15】 M.T. Sako, T. Chiva, J.M. Salinas, A. Yanagida, “Numerical solution of transient natural convective heat transfer from a cylinder”, Heat Transfer-Jan, Res. 11, pp.27-44. , 1982 【16】 M.I. Farinas, A. Garon, K. St Louis, “Study of heat transfer in a horizontal cylinder with fins”, Revue Générale de Thermique, Vol. 36, Issue 5, pp.398-410. , 1997 【17】 R. Gonzalez, P. Wintz, “Digital Image Processing”, Addison-Wesley, Reading, 1987. 【18】 R. Diez, M. Dolz, Rbelda, J.V. Herraez, M. Buendia, “Free convection around a horizontal circular cylinder. Adimensional empirical equations”, Applied Scientific Research, Vol. 46, pp.365-378. , 1989 【19】 H. Tokanai, M. Kuriyama, E. Harada, H. Konno, “Natural convection heat transfer from vertical and inclined arrays of horizontal cylinders to air”, Journal of chemical engineering of Japan, Vol. 30, No. 4, pp.728-734. , 1997 【20】 T. Misumi, K. Suzuki, K. Kitamura,“Fluid Flow and Heat Transfer of Natural Convection Around Large Horizontal Cylinders: Experiments with Air”,Heat Transfer—Asian Research , Vol. 32, No. 4, pp.293-305. , 2003 【21】 K. Kitamura, F. Kamiwa, T. Misumi,“ Heat transfer and fluid flow of natural convection around large horizontal cylinders.”, Int J Heat Mass Transferr ,No. 42, pp.4093-4106. , 1999 【22】 A. Mohamed , S. Chan , D. Murray,“Natural convection around a horizontal heated cylinder: The effects of vertical confinement” , International Journal of Heat and Mass Transfer,Vol.46,pp.3661-3672. , 2003 【23】 Ş. Özgür Atayılmaz, “Experimental and numerical study of the natural convection from a heated horizontal cylinder”, International Communications in Heat and Mass Transfer,Vol.36,pp731-738. , 2009 【24】 V.T. Morgan, “The overall convective heat transfer from smooth circular cylinders”, Advances in Heat Transfer,Vol.11,pp.199-211. , 1975 【25】 S.W. Churchill, H.H.S. Chu, “Correlating equations for laminar and turbulent free convection from a horizontal cylinder”, International Journal of Heat and Mass,Transfer,Vol.18,pp.1049-1053. , 1975 【26】 R.M. Fand, J. Brucker, “A correlation for heat transfer by natural convection fromhorizontal cylinders that accounts for viscous dissipation”, International Journal ofHeat and Mass Transfer,Vol.26, pp.709-726. , 1983 【27】 A.A. Rezaei, M.Z. basharhagh, T. Yousefi “Free convection heat transfer from a horizontal fin attached cylinder betweenconfined nearly adiabatic walls”, Experimental Thermal and Fluid Science,Vol.34,pp.177-182. , 2010 【28】 Hakan Demir, “Experimental and numerical studies of natural convection from horizontal concrete cylinder heated with a cylindrical heat source”, International Communications in Heat and Mass Transfer,Vol.37,pp.422-429. , 2010 【29】 F. Karim, B. Farouk, I. Namer, “Natural Convection Heat Transfer From a Horizontal Cylinder Between Vertical Confining Adiabatic Walls”, Journal of Heat Transfer, Vol. 108, pp.291-298, 1986 【30】 Marsters, G. F., “Effects of Confining Walls Upon Natural Convection From a Heated Horizontal Cylinder”, Proceedings of the Fourth Canadian Congress of Applied Mechanics, Montreal, pp.789-790. , May 28-June 1, 1973 【31】 Sparrow, E. M., and Pfeil, D. R., “Enhancement of Natural Convection Heat Transfer From a Horizontal Cylinder Due to Vertical Shrouding Surfaves”, ASME Journal of Heat Transfer, Vol. 106, pp.124-130. , Feb. 1984 【32】 M. Sadegh Sadeghipour, Yazdan Pedram Razi, “Natural convection from a confined horizontal cylinder: the optimum distance between the confining walls”, International Journal of Heat and Mass Transfer, Vol. 44, pp.367-374. , 2001 【33】 A.K. De A. Dalal, “A numerical study of natural convection around a square,horizontal, heated cylinder placed in an enclosure” , International Journal of Heat and Mass Transfer,Vol.49,pp.4608-4623. , 2006 【34】 El Hassan Ridouane, Antonio Campo, “Free convection performance of circular cavities having two active curved vertical side and two inactive curved horizontal sides”, Applied Thermal Engineering, Vol.26, pp.2409-2416. , 2006 【35】 Zekeriya Altac, Ozen Kurtul, “Natural convection in titted rectangular enclosure with a vertically situated hot plate inside”, Applied Thermal Engineering, Vol.27 ,pp.1832-2440. , 2007 【36】 B.S KIM, D.S Lee, M.Y. Ha, H.S Yoon “A numerical study of natural convection in a square enclosure with a circular cylinder at different vertical locations”, International Journal of Heat and Mass Transfer,Vol. 36, pp.1888-1906. , 2008 【37】 X. Xu, Z. Yu, Y. Hub, L. Fan, K. Cen, “A numerical study of laminar natural convective heat transfer around a horizontal cylinder inside a concentric air-filled triangular enclosure”, International Journal of Heat and Mass Transfer,Vol.53,PP.345-355. , 2010 【38】 王正健,“水平圓管內冷熱圓柱間自然對流現象之實驗研究”,國立成功大學機械工程研究所碩士論文,民國79年 【39】 C. J. Ho, Y. T. Cheng ,C. C. Wang, “Natural convection between two horizontal cylinders inside a circular enclosure subjected to external convection” Int. J. Heat and Fluid Flow, Vol. 15, No. 4, August 1994 【40】 J.P. Hartnett and W.J. Minkowycz, “Coupling of Wall Comduction With Natural Convection From Heated Cylinders in a Rectangular Enclosure”, HeatMass Transfer ,NO.1,pp143-151. , 1996 【41】 P. H. Oosthuizen , J. T. Paul, “Natural convection in a rectangular enclosure with two heated sections on the lower surface”, International Journal of Heat and Fluid Flow,Vo.26,pp. 587–596. , 2005 【42】 H.J. Künisch, M.H. Bohge, and E. Rumpf, “Underground High-Power Transmission. Part III: Experience From Practice And Experimental Work In Berlin (West)”, 7th IEEE/PES Tansmission and Distribution Conference and Exposition, April 1-6, 1979. 【43】 M. Hayashi , K. Uchida , W. Kumai , K. Sanjo , M. Mitani , N. Ichiyanagi , and T. Goto , “Development of water pipe cooling system for power cables in tunnels”, IEEE Transations on Power Delivery, Vol. 4, No. 2, April 1989. 【44】 M. Krarti and J.F. Kreider, “Analytical model for heat transfer in an underground air tunnel”, Energy Convers. Mgmt, Vol. 37, No. 10, pp.1561-1574. , 1996 【45】 台灣電力公司,“輸電電纜線路管路工程設計準則”,民國87年11月 【46】 李四川,“共同管道及電力輸電線冷卻節能系統之研究”,國立台北科技大學電機工程研究所碩士論文,民國90年 【47】 財團法人中華顧問工程司,“台灣電力公司仙渡345 kV地下電纜工程規劃設計工作服務建議書”,2001年 【48】 陳炳昌, 配線設計,復文書局,台北,民國83年 【49】 陳慶豐,“超高壓電纜地下洞道冷卻氣流模擬分析”,國立台北科技大學冷凍空調工程研究所碩士論文,民國94年 【50】 徐琮清,“地下電纜洞道通風冷卻系統之規劃研究以「鎮北~中島161kV 電纜線路統包工程」為例”,國立高雄第一科技大學機械與自動化工程系碩士論文,民國96年 【51】 中華技術期刊第77卷,“日本超高壓地下電纜洞道技術參訪報告”,pp. 168~174.,2008年1月 【52】 長庚大學機械工程研究所九十學年度感測元件─熱偶線種類及應用, http://mmrl.cgu.edu.tw/rehab/mme/rehab/organize/chap2/sensor/no1/no1_1.htm、2009/04/29 【53】 J.P.Holman, Heat Transfer, 7/E.,McGraw-Hill,Inc,1990年 【54】 楊鴻輝,“全圓洞道內具單線性熱源之冰水管間接冷卻系統之自然對流熱傳研究”,國立台灣大學機械工程研究所碩士論文,民國99年 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22600 | - |
| dc.description.abstract | 近年人們基於使用空間需求及美化市容景觀之考量,使得地下化洞道發展及工程設計越來越受到重視,但國內對地下洞道的工程經驗不足,且缺乏相關研究文獻,因此本研究以圓形洞道來進行實體模型研究,並以冷水管間接冷卻系統做為洞道內散熱之方法,且使用雙支線性棒狀加熱器,來模擬電纜線輸電時所散失的熱量,進而探討相關之熱傳問題。
實驗中以加熱器位置(30°、60°、90°、120°)、加熱器功率(2600W、1950W、1300W)、冷水管流量(4LPM、8LPM、12LPM)、五種冷水管位置及冷水管管數(單管、雙管、多管)作為操縱變因。在洞道內部設熱電耦線,量測洞道剖面的溫度及冷水出入口水溫,將所獲得之數據進行軸向溫度分佈、剖面溫度之分析及繪圖。 在單管冷卻實驗中發現,當加熱器位置越低時,吸收的熱傳量會越多、冷卻率會越好,缺點則是整體洞道剖面溫度會變高;若冷水管位置較靠近某邊加熱器,該加熱器上方高溫區受抑制現象明顯。當流量增加時,冷水管帶走之熱傳量也會增加,但不是呈正比增加。以單管而話,在雙加熱器位置30°、90°、120°時,皆為冷水管D有最佳冷卻率;反觀,雙加熱器位置60°則是在冷水管C有最佳冷卻率。在定流量改變管數的實驗中發現,冷水管位置佈設分散,對於冷卻洞道剖面溫度,比冷水管佈設集中之冷卻效果會來得更好;佈設越多支冷卻水管,對於降低剖面溫度以及縱向軸心溫度,有明顯助益。在改變加熱器位置之實驗中,隨著加熱器從下往上移動,低溫區範圍會越來越大;而當加熱器功率減少,洞道整體剖面溫度會降低。由實驗綜合結論可得:最佳冷卻系統應佈設多支冷水管於洞道上方;而最佳電纜線放置位置則在洞道越上方越好。 | zh_TW |
| dc.description.abstract | In recent years, people demands the use of space needs and beautifying the landscape of cities. The underground tunnel development and engineering design get much attention. We don’t have enough engineering experiences of building large underground tunnel in Taiwan and lack for related literarures of a large underground tunnel. Therefore , this research proceeds in a large circular tunnel model, in which air is cooled by indirect water cooling system. Using two linear heat sources in the tunnel is simulated by electric heaters. In order to investigate the related heat transfer issues.
The manipulated variables of this research are the positions of two heat sources( 30°, 60°, 90°, and 120°), the powers of heat source ( 2600W , 1920W , and 1300W ) , the flow rates of cooling water (4LPM , 8 LPM , and 12LPM) , the number of cooling-water pipes( single , double , multi-pipe ) , and cooling-water pipes with five positions. Air temperatures , temperatures of axial direction and cooling-water pipes in the tunnel are obtained with thermocouples, then useing them to plot the temperature distribution of cross section in tunnel. The research shows that if the position of the lower heaters , the absorption of heat transfer rate and the cooling rate will be better in single pipe. The disadvantage is that the overall temperature of the tunnel will become high. If the location of pipes are closer to the heaters , The high temperatures at the top of heaters significantly affected by inhibition. When increasing the flow rate of the pipe , the heat transfer rate will increase , but it’s not proportional to increase. When the positions of the two heat sources( 30°, 90°, and 120° ) , the D pipe is optimun cooling rate in single pipe. But the optimum cooling rate of heat sources in 60° is the C pipe. In the experiment of changing the number of cooling pipes with fixed flow rate, the distributed installation of pipes is better then the concentrated installation of pipes. Installing multi-pipe is useful for cooling the temperatures of cross section and the temperatures of axial direction. In the experiment of changing the positions of heaters , moving from the bottom to top with the heaters , the area of lower temperatures becomes larger. When the power of the heater is decreased , the temperatures of cross section will be lower. The optimum layout of indirect water cooling system is using multi-pipe and the electric heaters placement in the top of the tunnel is optimum. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T04:21:57Z (GMT). No. of bitstreams: 1 ntu-99-R96522101-1.pdf: 7513457 bytes, checksum: c40b8f975ac55cb9703e730013970c87 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 iii Abstract v 目錄 vii 表目錄 x 圖目錄 xi 符號說明 xix 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 1.2.1 洞道內通風冷卻系統 2 1.2.2 洞道內冷風機冷卻系統 3 1.2.3 線槽內間接水冷卻系統 3 1.2.4 洞道內直接水冷系統 3 1.2.5 洞道內間接水冷系統 3 1.3 研究目的 4 第二章 文獻回顧 7 2.1 單一管狀熱源之自然對流研究 7 2.2 封閉空間中含線性熱源之自然對流研究 9 2.3 封閉空間中含多管線性熱源之自然對流研究 12 2.4 洞道內冷卻系統之熱傳研究 13 第三章 實驗設備與方法 21 3.1 圓形洞道主體 21 3.2 冷水循環系統 21 3.2.1 冷水主機與冷水循環泵 22 3.2.2 恆溫蓄水槽 (含補水裝置) 22 3.2.3 系統循環泵 22 3.2.4 出入口分流管及旁通(bypass) 23 3.2.5 不鏽鋼冷水管 23 3.3 加熱元件及電控設備 23 3.4 量測系統 24 3.4.1 溫度量測設備 24 3.4.2 電壓、電流、功率量測設備 25 3.4.3 流量、壓力量測設備 25 3.5 實驗變因 26 3.6 實驗流程 27 3.7 數據計算與分析 27 第四章 結果與討論 31 4.1 單支冷水管位置對於洞道剖面溫度之影響 31 4.2 單支冷水管改變流量對於洞道剖面溫度之影響 34 4.3 雙支冷水管位置對於洞道剖面溫度之影響 35 4.4 多支冷水管位置分別對於洞道剖面溫度影響 36 4.4.1 三支冷水管位置對於洞道剖面溫度之影響 37 4.4.2 四支冷水管位置對於洞道剖面溫度之影響 38 4.4.3 五支冷水管位置對於洞道剖面溫度之影響 39 4.5 改變加熱器功率對於洞道剖面溫度之影響 40 4.6 壁溫熱傳現象及縱向軸心溫度情形 40 4.7 洞道剖面溫度無因次化 41 4.8 單加熱器與雙加熱器之結果比較 41 第五章 結論與建議 43 5.1 結論 43 5.2 建議 44 參考文獻 45 附表 50 附圖 61 附錄A 誤差分析 114 附錄B 熱電偶線編號座標表 116 附錄C 熱電耦線溫度校正 120 附錄D 流量計校正 136 附錄E 財團法人台灣電子檢驗中心校正報告 139 | |
| dc.language.iso | zh-TW | |
| dc.subject | 圓形封閉空間 | zh_TW |
| dc.subject | 自然對流 | zh_TW |
| dc.subject | 雙線性熱源 | zh_TW |
| dc.subject | 地下洞道 | zh_TW |
| dc.subject | 間接水冷 | zh_TW |
| dc.subject | Underground tunnel | en |
| dc.subject | Double linear heat sources | en |
| dc.subject | Natural convection | en |
| dc.subject | Circular enclosure | en |
| dc.subject | Indirect water cooling | en |
| dc.title | 圓形洞道內雙線性熱源位置對於剖面溫度之效應 | zh_TW |
| dc.title | Effects of Positions of Double Linear Heat Sources on Cross-Sectional Temperature Distribution in a Circular Tunnel | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 謝曉星,李昭仁,黃智勇 | |
| dc.subject.keyword | 雙線性熱源,地下洞道,間接水冷,圓形封閉空間,自然對流, | zh_TW |
| dc.subject.keyword | Double linear heat sources,Underground tunnel,Indirect water cooling,Circular enclosure,Natural convection, | en |
| dc.relation.page | 140 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2010-07-07 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 7.34 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
