請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22599完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳世雄(Shih-Hsiung Wu) | |
| dc.contributor.author | Ching-Min Chang | en |
| dc.contributor.author | 張靖敏 | zh_TW |
| dc.date.accessioned | 2021-06-08T04:21:55Z | - |
| dc.date.copyright | 2010-07-12 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-07 | |
| dc.identifier.citation | 1. H. Ohshima, M. Tatemichi, T. Sawa, Archives of Biochemistry and Biophysics 417, 3 (2003).
2. S. G. Rhee, Science 312, 1882 (2006). 3. T. Finkel, Current Opinion in Cell Biology 15, 247 (2003). 4. K. B. Beckman, B. N. Ames, Physioogical Review 78, 547 (1998). 5. K. J. Barnham, C. L. Masters, A. I. Bush, Nature Reviews Drug Discovery 3, 205 (2004). 6. A. M. Shah, K. M. Channon, Heart 90, 486 (2004). 7. D. Gems, L. Partridge, Cell Metabolism 7, 200 (2008). 8. R. S. Balaban, S. Nemoto, T. Finkel, Cell 120, 483 (2005). 9. T. Finkel, N. J. Holbrook, Nature 408, 239 (2000). 10. J. P. Brennan, P. Eaton, in Redox Proteomics, A. S. D. A. B. Isabella Dalle-Donne, Ed. (2006), pp. 605-649. 11. H. Cai, Cardiovascular Research 68, 26 (2005). 12. A. Fortuño, G. S. José, M. U. Moreno, J. Díez, G. Zalba, Experimental Physiology 90, 457 (2005). 13. R. P. Patel et al., Free Radical Biology and Medicine 28, 1780 (2000). 14. R. M. Touyz, Hypertension 44, 248 (2004). 15. P. Jezek, L. Hlavatá, The International Journal of Biochemistry & Cell Biology 37, 2478 (2005). 16. E. Schröder, P. Eaton, Current Opinion in Pharmacology 8, 153 (2008). 17. J. R. Stone, S. Yang, Antioxidants & Redox Signaling 8, 243 (2006). 18. F. Antunes, E. Cadenas, Free Radical Biology and Medicine 30, 1008 (2001). 19. S. Mueller, Free Radical Biology and Medicine 29, 410 (2000). 20. N. V. Kulagina, A. C. Michael, Analytical Chemistry 75, 4875 (2003). 21. S. Park, X. You, J. A. Imlay, Proceedings of the National Academy of Sciences of the United States of America 102, 9317 (2005). 22. B. P. Yu, Physiological Review 74, 139 (1994). 23. P. J. Halvey et al., Biochemical Journal 386, 215 (2005). 24. Z. A. Wood, L. B. Poole, P. A. Karplus, Science 300, 650 (2003). 25. K.-S. Yang et al., Journal of Biological Chemistry 277, 38029 (2002). 26. L. B. Poole, P. A. Karplus, A. Claiborne, Annual Review of Pharmacology and Toxicology 44, 325 (2004). 27. S. G. Rhee, Y. S. Bae, S.-R. Lee, J. Kwon, Science's STKE 53,1 (2000). 28. J. P. Brennan et al., Journal of Biological Chemistry 279, 41352 (2004). 29. R. L. Charles et al., Molecular & Cellular Proteomics 6, 1473 (2007). 30. H. J. Forman, Free Radical Biology and Medicine 42, 926 (2007). 31. S. W. Kang, S. G. Rhee, T.-S. Chang, W. Jeong, M. H. Choi, Trends in Molecular Medicine 11, 571 (2005). 32. W. Droge, Physioogical Review 82, 47 (2002). 33. S. G. Rhee et al., Current Opinion in Cell Biology 17, 183 (2005). 34. J. R. Stone, Archives of Biochemistry and Biophysics 422, 119 (2004). 35. H. Kojima et al., Analytical Chemistry 70, 2446 (1998). 36. H. Kojima et al., Analytical Chemistry 73, 1967 (2001). 37. Y. Gabe, Y. Urano, K. Kikuchi, H. Kojima, T. Nagano, Journal of the American Chemical Society 126, 3357 (2004). 38. V. Nardello, N. Azaroual, I. Cervoise, G. Vermeersch, J.-M. Aubry, Tetrahedron 52, 2031 (1996). 39. G. M. Makrigiorgos et al., International Journal of Radiation Biology 63, 445 (1993). 40. K.-i. Setsukinai, Y. Urano, K. Kakinuma, H. J. Majima, T. Nagano, Journal of Biological Chemistry 278, 3170 (2003). 41. E. W. Miller, A. E. Albers, A. Pralle, E. Y. Isacoff, C. J. Chang, Journal of the American Chemical Society 127, 16652 (2005). 42. E. W. Miller, O. Tulyathan, E. Y. Isacoff, C. J. Chang, Nature Chemical Biology 3, 263 (2007). 43. E. W. Miller, C. J. Chang, Current Opinion in Chemical Biology 11, 620 (2007). 44. S. L. Hempel, G. R. Buettner, Y. Q. O'Malley, D. A. Wessels, D. M. Flaherty, Free Radical Biology and Medicine 27, 146 (1999). 45. N. Soh, Analytical and Bioanalytical Chemistry 386, 532 (2006). 46. M. Zhou, Z. Diwu, N. Panchuk-Voloshina, R. P. Haugland, Analytical Biochemistry 253, 162 (1997). 47. H. Maeda et al., Angewandte Chemie International Edition 43, 2389 (2004). 48. A. Negre-Salvayre et al., in Methods in Enzymology. (Academic Press, 2002), vol. Volume 352, pp. 62-71. 49. N. Soh, K. Makihara, E. Sakoda, T. Imato, Chemical Communications, 496 (2004). 50. A. S. Keston, R. Brandt, Analytical Biochemistry 11, 1 (1965). 51. K. Akasaka, T. Suzuki, H. Ohrui, H. Meguro, Analytical Letters 20, 797 (1987). 52. M. Onoda et al., Organic Letters 5, 1459 (2003). 53. M. Onoda et al., Chemical Communications, 1848 (2005). 54. N. Soh et al., Bioorganic & Medicinal Chemistry 13, 1131 (2005). 55. O. S. Wolfbeis, A. Dürkop, M. Wu, Z. Lin, Angewandte Chemie International Edition 41, 4495 (2002). 56. V. N. Kozhevnikov et al., Inorganica Chimica Acta 358, 2445 (2005). 57. L.-C. Lo, C.-Y. Chu, Chemical Communications, 2728 (2003). 58. R. W. Tsien, R. Y. Tsien, Annual Review of Cell Biology 6, 715 (1990). 59. J. A. Royall, H. Ischiropoulos, Archives of Biochemistry and Biophysics 302, 348 (1993). 60. B. Chance, H. Sies, A. Boveris, Physiological Review 59, 527 (1979). 61. R. Floris S. R. Piersma, G. Yang, P. Jones, R. Wever, European Journal of Biochemistry 215, 767 (1993). 62. S. C. Grace, M. G. Salgo, W. A. Pryor, FEBS Letters 426, 24 (1998). 63. M. C. Y. Chang, A. Pralle, E. Y. Isacoff, C. J. Chang, Journal of the American Chemical Society 126, 15392 (2004). 64. H. G. Kuivila, A. G. Armour, Journal of the American Chemical Society 79, 5659 (1957). 65. H. G. Kuivila, R. A. Wiles, Journal of the American Chemical Society 77, 4830 (1955). 66. D. S. Kemp, D. C. Roberts, Tetrahedron Letters 16, 4629 (1975). 67. J. M. Sugihara, C. M. Bowman, Journal of the American Chemical Society 80, 2443 (1958). 68. G. Springsteen, B. Wang, Tetrahedron 58, 5291 (2002). 69. T. J. Perun, J. R. Martin, R. S. Egan, The Journal of Organic Chemistry 39, 1490 (1974). 70. P. A. Hyslop, L. A. Sklar, Analytical Biochemistry 141, 280 (1984). 71. E. L. Greene, V. Velarde, A. A. Jaffa, Hypertension 35, 942 (2000). 72. A. Gorlach et al., Circulation Research 87, 26 (2000). 73. S. J. Vowells, S. Sekhsaria, H. L. Malech, M. Shalit, T. A. Fleisher, Journal of Immunological Methods 178, 89 (1995). 74. W. L. F. Armarego, C. L. L. Chai, Purification of Laboratory Chemicals (Elsevier Inc., 2003). 75. J. L. Sessler, B. Wang, A. Harriman, Journal of the American Chemical Society 117, 704 (1995). 76. P. R. Ashton et al., Chemistry - A European Journal 6, 3558 (2000). 77. A. de Filippis, C. Morin, C. Thimon, Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry 32, 2669 (2001). 78. S.-i. Kawahara, T. Wada, M. Sekine, Tetrahedron Letters 37, 509 (1996). 79. L. Pasquato, G. Modena, L. Cotarca, P. Delogu, S. Mantovani, The Journal of Organic Chemistry 65, 8224 (2000). 80. D. Srikun, E. W. Miller, D. W. Domaille, C. J. Chang, Journal of the American Chemical Society 130, 4596 (2008). 81. M. Y. Kim, G. N. Wogan, Chemical Research in Toxicology 19, 1483 (2006). 82. V. Paromov, M. Qui, H. Yang, M. Smith, W. Stone, BMC Cell Biology 9, 33 (2008). 83. L.-Y. Yang et al., Annals of the New York Academy of Sciences 1042, 325 (2005). 84. D. Yang, H.-L. Wang, Z.-N. Sun, N.-W. Chung, J.-G. Shen, Journal of the American Chemical Society 128, 6004 (2006). 85. S. Kenmoku, Y. Urano, H. Kojima, T. Nagano, Journal of the American Chemical Society 129, 7313 (2007). 86. T. Ueno, Y. Urano, H. Kojima, T. Nagano, Journal of the American Chemical Society 128, 10640 (2006). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22599 | - |
| dc.description.abstract | 活性氧化物(reactive oxygen species, ROS)為具有高度氧化力的分子。ROS之生成可由細胞內或細胞外物質所誘發。當細胞內的ROS過量時會攻擊DNA、蛋白質和細胞膜脂質而造成無法修復的傷害,此與癌症、老化及疾病生成有關。在所有的活性氧化物中,過氧化氫 (H2O2) 被認為是最主要的分子,因為過氧化氫除了調節致病的機轉之外,目前已經有研究指出,過氧化氫也是一些訊號傳導路徑中的二級傳訊者。然而在多樣性的生物環境中,研究有關活性氧化物的過程一直遭遇一些無法克服的挑戰;主要的原因是因為在活體系統中,缺少對於活性過氧化物的專一性探針及研究方法。
在本篇研究中,我們首要目的是設計兩種化學螢光物質,我們稱之為探針一與探針二。這兩個探針都可以對過氧化氫有專一性的反應,並釋放出藍色的螢光物。因此我們可以利用此探針,在活體細胞中偵測出細胞面對壓力時所釋放出的過氧化氫。我們希望利用此篇研究的方法,建立一個簡單、快速、直接的平台,來偵測活化的巨噬細胞內之過氧化氫濃度;並藉由螢光儀偵測巨噬細胞內的相對螢光強度來定量。此外在未來的應用上,也可以利用此平台來尋找具有抗氧化劑活性的潛在化合物。 | zh_TW |
| dc.description.abstract | One major contributor to oxidative damage is hydrogen peroxide (H2O2), which has been considered mostly as reactive oxidative species (ROS), and mediate pathogenic processes. In addition, H2O2 is emerging as a newly recognized as a secondary messenger in cellular signal transduction. However, a substantial challenge in elucidating its diverse roles in complex biological environments is the lack of methods for probing this reactive oxygen metabolite in living systems specifically. Here, we reported the synthesis and application of Probe 1 (1a and 1b), two new fluorescent probes that showed high selectivity for H2O2 and were capable of visualizing the addition of exogenous H2O2 to living cells. These probes were able to serve as a tool for evaluating the H2O2 production in complex physiological and pathological processes. The main purpose of this study was to create an easy, time-saving, and a straightforward platform for measurement the exact H2O2 concentration in living RAW 264.7 cell. Through quantitating the relative fluorescence intensity in vivo by spectrofluoromerty, we might discover new small molecules for potential antioxidants in the future. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T04:21:55Z (GMT). No. of bitstreams: 1 ntu-99-R97b46032-1.pdf: 3377328 bytes, checksum: b0710b802ba2f7f139b458e022be816a (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | Table of Contents
中文摘要………………………………………………………………………………Ι Abstract………………………………………………………………………………..Ⅱ List of Figures…………………………………………………………………………Ⅲ List of Abbreviations………………………………………………………………….Ⅳ 1. Introduction 1 1.1 ROS (reactive oxygen species) 1 1.2 Hydrogen peroxide (H2O2) 2 1.2.1 Biochemical pathways of hydrogen peroxide generation and metabolism 2 1.2.2 The physiologic intracellular concentrations of hydrogen peroxide 6 1.2.3 Functions of hydrogen peroxide in biology 8 1.2.3.1 Stress or signaling 8 1.2.3.2 H2O2-dependent oxidative biosynthesis 10 1.3 Probes for H2O2 12 1.4 The criteria of designing effective chemical imaging probes for cellular hydrogen peroxide 14 1.5 Aim of this research 15 1.5.1 To develop and synthesize specific hydrogen peroxide probes 16 1.5.2 Measurement of H2O2 inside cells 19 2. Material and methods 21 2.1 Instrument and general information 21 2.1.1 Instrument 21 2.1.2. Reagents 22 2.2 General methods of organic synthesis 23 2.2.1 Synthetic route 23 2.2.2 Synthetic procedure 24 2.3 Bioassay 30 2.3.1 Materials 30 2.3.2 Analysis the spectrum property of probe 1 (1a and 1b) 31 2.3.3 Fluorescence responses of Probes to various reactive oxygen species (ROS) 31 2.3.4 Cell culture 32 2.3.5 Determination of small molecules on H2O2 production in living RAW 264.7 by fluorescence multiwall plate reader 32 2.3.6 Measure antioxidant effect of N-Acetylcysteine in LPS-stimulated RAW 264.7 cells by fluorescence multiwall plate reader 33 2.3.7 Preparation and Staining of Cell 34 2.3.8 Fluorescence Imaging Experiments 34 3. Results 35 3.1 Spectroscopic Properties and Optical Responses to H2O2. 35 3.2 Time-course of the fluorescence response of probes to H2O2 38 3.3 Fluorescence responses of probes to different reactive oxygen species 40 3.4 Fluorometric determination of intracellular H2O2 production induced by LPS in RAW264.7 cell 42 3.5 Antioxidant N-acetylcysteine (NAC) effect in living RAW264.7 cells stimulated by LPS 46 3.6 Fluorescence Image capturing of H2O2 in Living Cells using Confocal Microscopy 48 4. Discussion 53 4.1 The limitation of Probes’ Spectroscopic Properties 53 4.2 The specificity and senstivity of the probes 54 4.3 The fluorescense response of LPS-induced RAW 264.7 cells 57 4.4 The antioxidant effect of N-acetylcystenine (NAC) 57 4.5 Confocal fluorescence images of H2O2 in RAW 264.7 cells 58 4.6 Recommendation for future research 59 4.6.1 Improve the limitation of the research 59 4.6.2 Application 59 | |
| dc.language.iso | en | |
| dc.subject | 過氧化氫 | zh_TW |
| dc.subject | cellular signal transduction | en |
| dc.subject | second messenger | en |
| dc.subject | H2O2 scavenging molecule | en |
| dc.subject | hydrogen peroxide | en |
| dc.subject | antioxidants | en |
| dc.subject | spectrofluoromerty | en |
| dc.subject | reactive oxidative stress | en |
| dc.title | 以標的螢光探針研究巨噬細胞內之過氧化氫 | zh_TW |
| dc.title | Target Fluorescent Probes for Detecting Hydrogen Peroxide in Macrophage Cell | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 花國鋒(Kuo-Feng Hua),羅禮強(Lee-Chiang Lo) | |
| dc.subject.keyword | 過氧化氫, | zh_TW |
| dc.subject.keyword | hydrogen peroxide,reactive oxidative stress,second messenger,cellular signal transduction,H2O2 scavenging molecule,spectrofluoromerty,antioxidants, | en |
| dc.relation.page | 85 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2010-07-07 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 3.3 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
