請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22555
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林俊彬(Chun-Pin Lin) | |
dc.contributor.author | Po-Yao Chang | en |
dc.contributor.author | 張博堯 | zh_TW |
dc.date.accessioned | 2021-06-08T04:20:42Z | - |
dc.date.copyright | 2010-09-09 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-07-18 | |
dc.identifier.citation | Albrektsson T, Hansson HA (1986). An ultrastructural characterization of the interface between bone and sputtered titanium or stainless steel surfaces. Biomaterials 7(3):201-205.
Albrektsson T, Jacobsson M (1987). Bone-metal interface in osseointegration. J Prosthet Dent 57(5):597-607. Anderson DJ (1956). Measurement of stress in mastication. I. J Dent Res 35(5):664-670. Barbier L, Schepers E (1997). Adaptive bone remodeling around oral implants under axial and nonaxial loading conditions in the dog mandible. Int J Oral Maxillofac Implants 12(2):215-223. Berkovitz BK, Migdalski A, Solomon M (1972). The effect of the lathyritic agent aminoacetonitrile on the unimpeded eruption rate in normal and root-resected rat lower incisors. Arch Oral Biol 17(12):1755-1763. Berzins A, Shah B, Weinans H, Sumner DR (1997). Nondestructive measurements of implant-bone interface shear modulus and effects of implant geometry in pull-out tests. J Biomed Mater Res 34(3):337-340. Bien SM, Ayers HD (1965). Responses of Rat Maxillary Incisors to Loads. J Dent Res 44(517-520. Bien SM (1966a). Fluid dynamic mechanisms which regulate tooth movement. Adv Oral Biol 2(173-201. Bien SM (1966b). Hydrodynamic damping of tooth movement. J Dent Res 45(3):907-914. Branemark PI, Adell R, Albrektsson T, Lekholm U, Lundkvist S, Rockler B (1983). Osseointegrated titanium fixtures in the treatment of edentulousness. Biomaterials 4(1):25-28. Burstone CJ (1962). Rationale of the segmented arch. Am J Orthod 48(805-822. Burstone CJ, James RB, Legan H, Murphy GA, Norton LA (1978a). Cephalometrics for orthognathic surgery. J Oral Surg 36(4):269-277. Burstone CJ, Pryputniewicz RJ, Bowley WW (1978b). Holographic measurement of tooth mobility in three dimensions. J Periodontal Res 13(4):283-294. Burstone CJ, Pryputniewicz RJ (1980). Holographic determination of centers of rotation produced by orthodontic forces. Am J Orthod 77(4):396-409. Carr AB, Laney WR (1987). Maximum occlusal force levels in patients with osseointegrated oral implant prostheses and patients with complete dentures. Int J Oral Maxillofac Implants 2(2):101-108. Carr AB, Larsen PE, Papazoglou E, McGlumphy E (1995). Reverse torque failure of screw-shaped implants in baboons: baseline data for abutment torque application. Int J Oral Maxillofac Implants 10(2):167-174. Coelho AJ, Moxham BJ (1989). The intrusive mobility of the incisor tooth of the guinea pig. Arch Oral Biol 34(5):383-386. Davies SJ, Gray RJ, Young MP (2002). Good occlusal practice in the provision of implant borne prostheses. Br Dent J 192(2):79-88. Dorow C, Krstin N, Sander FG (2002). Experiments to determine the material properties of the periodontal ligament. J Orofac Orthop 63(2):94-104. Duyck J, Ronold HJ, Van Oosterwyck H, Naert I, Vander Sloten J, Ellingsen JE (2001). The influence of static and dynamic loading on marginal bone reactions around osseointegrated implants: an animal experimental study. Clin Oral Implants Res 12(3):207-218. Embery G, Picton DC, Stanbury JB (1987). Biochemical changes in periodontal ligament ground substance associated with short-term intrusive loadings in adult monkeys (Macaca Fascicularis). Arch Oral Biol 32(8):545-549. Garner LD (1971). Burstone series 1. Segmented arch technique. J Clin Orthod 5(1):passim 20-25 p. Gathercole LJ (1987). In-vitro mechanics of intrusive loading in porcine cheek teeth with intact and perforated root apices. Arch Oral Biol 32(4):249-255. Glantz PO, Rangert B, Svensson A, Stafford GD, Arnvidarson B, Randow K et al. (1993). On clinical loading of osseointegrated implants. A methodological and clinical study. Clin Oral Implants Res 4(2):99-105. Haack DC, Weinstein S (1963). Geometry and mechanics as related to tooth movement studied by means of two-dimensional model. J Am Dent Assoc 66(157-164. Hammerle CH, Wagner D, Bragger U, Lussi A, Karayiannis A, Joss A et al. (1995). Threshold of tactile sensitivity perceived with dental endosseous implants and natural teeth. Clin Oral Implants Res 6(2):83-90. Isidor F (1996). Loss of osseointegration caused by occlusal load of oral implants. A clinical and radiographic study in monkeys. Clin Oral Implants Res 7(2):143-152. Isidor F (1997). Histological evaluation of peri-implant bone at implants subjected to occlusal overload or plaque accumulation. Clin Oral Implants Res 8(1):1-9. Ivanoff CJ, Sennerby L, Johansson C, Rangert B, Lekholm U (1997). Influence of implant diameters on the integration of screw implants. An experimental study in rabbits. Int J Oral Maxillofac Surg 26(2):141-148. Johansson C, Albrektsson T (1987). Integration of screw implants in the rabbit: a 1-year follow-up of removal torque of titanium implants. Int J Oral Maxillofac Implants 2(2):69-75. Johansson CB, Albrektsson T (1991). A removal torque and histomorphometric study of commercially pure niobium and titanium implants in rabbit bone. Clin Oral Implants Res 2(1):24-29. Kardos TB, Simpson LO (1980). A new periodontal membrane biology based upon thixotropic concepts. Am J Orthod 77(5):508-515. Kirkham J, Robinson C, Phull JK, Shore RC, Moxham BJ, Berkovitz BK (1993). The effect of rate of eruption on periodontal ligament glycosylaminoglycan content and enamel formation in the rat incisor. Cell Tissue Res 274(2):413-419. Komatsu K, Shibata T, Shimada A, Viidik A, Chiba M (2004). Age-related and regional differences in the stress-strain and stress-relaxation behaviours of the rat incisor periodontal ligament. J Biomech 37(7):1097-1106. Komatsu K, Sanctuary C, Shibata T, Shimada A, Botsis J (2007). Stress-relaxation and microscopic dynamics of rabbit periodontal ligament. J Biomech 40(3):634-644. Korber KH (1971). Electronic registration of tooth movements. Int Dent J 21(4):466-477. Lear CS, Mackay JS, Lowe AA (1972). Threshold levels for displacement of human teeth in response to laterally directed forces. J Dent Res 51(5):1478-1482. Limbert G, Middleton J, Laizans J, Dobelis M, Knets I (2003). A transversely isotropic hyperelastic constitutive model of the PDL. Analytical and computational aspects. Comput Methods Biomech Biomed Engin 6(5-6):337-345. Meredith N, Alleyne D, Cawley P (1996). Quantitative determination of the stability of the implant-tissue interface using resonance frequency analysis. Clin Oral Implants Res 7(3):261-267. Meredith N, Shagaldi F, Alleyne D, Sennerby L, Cawley P (1997). The application of resonance frequency measurements to study the stability of titanium implants during healing in the rabbit tibia. Clin Oral Implants Res 8(3):234-243. Mericske-Stern R, Zarb GA (1996). In vivo measurements of some functional aspects with mandibular fixed prostheses supported by implants. Clin Oral Implants Res 7(2):153-161. Moxham BJ (1979). The effects of some vaso-active drugs on the eruption of the rabbit mandibular incisor. Arch Oral Biol 24(9):681-688. Moxham BJ, Berkovitz BK (1981). A quantitative assessment of the effects of axially directed extrusive loads on displacement of the impeded and unimpeded rabbit mandibular incisor. Arch Oral Biol 26(3):209-215. Moxham BJ, Berkovitz BK (1984). The mobility of the lathyritic rabbit mandibular incisor in response to axially-directed extrusive loads. Arch Oral Biol 29(10):773-778. Moxham BJ, Berkovitz BK, Shore RC, Spence JA (1987). A laboratory method for studying tooth mobility of the mandibular central incisor of the sheep. Res Vet Sci 42(1):61-64. Moxham BJ, Berkovitz BK (1989). A comparison of the biomechanical properties of the periodontal ligaments of erupting and erupted teeth of non-continuous growth (ferret mandibular canines). Arch Oral Biol 34(10):763-766. Moxham BJ, Shore RC, Berkovitz BK (1990). Effects of inflammatory periodontal disease ('broken mouth') on the mobility of the sheep incisor. Res Vet Sci 48(1):99-102. Muhlemann HR (1951). Periodontometry, a method for measuring tooth mobility. Oral Surg Oral Med Oral Pathol 4(10):1220-1233. Muhlemann HR, Houglum MW (1954). The determination of the tooth rotation center. Oral Surg Oral Med Oral Pathol 7(4):392-394. Muhlemann HR, Wartmann P, Marthaler TM (1955). [Tooth mobility, intraalveolar portion of root, biological factor.]. Parodontologie 9(1):24-27. Muhlemann HR (1967). Tooth mobility: a review of clinical aspects and research findings. J Periodontol 38(6):Suppl:686-713. Natali A, Pavan P, Carniel E, Dorow C (2004a). Viscoelastic response of the periodontal ligament: an experimental-numerical analysis. Connect Tissue Res 45(4-5):222-230. Natali AN, Pavan PG, Scarpa C (2004b). Numerical analysis of tooth mobility: formulation of a non-linear constitutive law for the periodontal ligament. Dent Mater 20(7):623-629. Ogiso M, Tabata T, Kuo PT, Borgese D (1994). A histologic comparison of the functional loading capacity of an occluded dense apatite implant and the natural dentition. J Prosthet Dent 71(6):581-588. Packman H, Shoher I, Stein RS (1977). Vascular responses in the human periodontal ligament and alveolar bone detected by photoelectric plethysmography: the effect of force application to the tooth. J Periodontol 48(4):194-200. Parfitt GJ (1960). Measurement of the physiological mobility of individual teeth in an axial direction. J Dent Res 39(608-618. Parfitt GJ (1962). An investigation of the normal variations in alveolar bone trabeculation. Oral Surg Oral Med Oral Pathol 15(1453-1463. Persson R, Svensson A (1980). Assessment of tooth mobility using small loads. I. Technical devices and calculations of tooth mobility in periodontal health and disease. J Clin Periodontol 7(4):259-275. Picton DC (1962). Tilting movements of teeth during biting. Arch Oral Biol 7(151-159. Picton DC (1963a). The effect on normal vertical tooth mobility of the rate of thrust and time interval between thrusts. Arch Oral Biol 8(291-299. Picton DC (1963b). Vertical movement of cheek teeth during biting. Arch Oral Biol 8(109-118. Picton DC (1964a). The Effect of Repeated Thrusts on Normal Axial Tooth Morbility. Arch Oral Biol 16(55-64. Picton DC (1964b). Some Implications of Normal Tooth Mobility during Mastication. Arch Oral Biol 72(565-573. Picton DC (1965). On the part played by the socket in tooth support. Arch Oral Biol 10(6):945-955. Picton DC (1967). The effect on tooth mobility of trauma to the mesial and distal regions of the periodontal membrane in monkeys. Helv Odontol Acta 11(1):105-112. Picton DC, Davies WI (1967). Dimensional changes in the periodontal membrane of monkeys (Macaca irus) due to horizontal thrusts applied to the teeth. Arch Oral Biol 12(12):1635-1643. Picton DC, Slatter JM (1972). The effect on horizontal tooth mobility of experimental trauma to the periodontal membrane in regions of tension or compression in monkeys. J Periodontal Res 7(1):35-41. Picton DC (1973). [Physiology of the alveolo-dental ligament tooth support]. Actual Odontostomatol (Paris) 27(102):349-361. Picton DC, Wills DJ (1978). Viscoelastic properties of the periodontal ligament and mucous membrane. J Prosthet Dent 40(3):263-272. Picton DC, Wills DJ (1981). Visualization by scanning electron microscopy of the periodontal ligament in vivo in the macaque monkey. Arch Oral Biol 26(10):821-825. Picton DC (1984). Changes in axial mobility of undisturbed teeth and following sustained intrusive forces in adult monkeys (Macaca fascicularis). Arch Oral Biol 29(12):959-964. Picton DC (1986). Extrusive mobility of teeth in adult monkeys (Macaca fascicularis). Arch Oral Biol 31(6):369-372. Picton DC (1988). The effect on intrusive tooth mobility of surgically removing the cervical periodontal ligament in monkeys (Macaca fascicularis). Arch Oral Biol 33(5):301-304. Picton DC (1989). The periodontal enigma: eruption versus tooth support. Eur J Orthod 11(4):430-439. Picton DC (1990). Tooth mobility--an update. Eur J Orthod 12(1):109-115. Pietrzak G, Curnier A, Botsis J, Scherrer S, Wiskott A, Belser U (2002). A nonlinear elastic model of the periodontal ligament and its numerical calibration for the study of tooth mobility. Comput Methods Biomech Biomed Engin 5(2):91-100. Poppe M, Bourauel C, Jager A (2002). Determination of the elasticity parameters of the human periodontal ligament and the location of the center of resistance of single-rooted teeth a study of autopsy specimens and their conversion into finite element models. J Orofac Orthop 63(5):358-370. Provenzano P, Lakes R, Keenan T, Vanderby R, Jr. (2001). Nonlinear ligament viscoelasticity. Ann Biomed Eng 29(10):908-914. Pryputniewicz RJ, Burstone CJ, Bowley WW (1978). Determination of arbitrary tooth displacements. J Dent Res 57(5-6):663-674. Pryputniewicz RJ, Burstone CJ (1979). The effect of time and force magnitude on orthodontic tooth movement. J Dent Res 58(8):1754-1764. Raadsheer MC, van Eijden TM, van Ginkel FC, Prahl-Andersen B (1999). Contribution of jaw muscle size and craniofacial morphology to human bite force magnitude. J Dent Res 78(1):31-42. Rees JS, Jacobsen PH (1997). Elastic modulus of the periodontal ligament. Biomaterials 18(14):995-999. Richter EJ (1998). In vivo horizontal bending moments on implants. Int J Oral Maxillofac Implants 13(2):232-244. Roberts WE, Smith RK, Zilberman Y, Mozsary PG, Smith RS (1984). Osseous adaptation to continuous loading of rigid endosseous implants. Am J Orthod 86(2):95-111. Ross GG, Lear CS, DeCou R (1976). Modeling the lateral movement of teeth. J Biomech 9(11):723-734. Sanctuary CS, Wiskott HW, Justiz J, Botsis J, Belser UC (2005). In vitro time-dependent response of periodontal ligament to mechanical loading. J Appl Physiol 99(6):2369-2378. Sanctuary CS, Wiskott HW, Botsis J, Scherrer SS, Belser UC (2006). Oscillatory shear loading of bovine periodontal ligament--a methodological study. J Biomech Eng 128(3):443-448. Shibata T, Botsis J, Bergomi M, Mellal A, Komatsu K (2006). Mechanical behavior of bovine periodontal ligament under tension-compression cyclic displacements. Eur J Oral Sci 114(1):74-82. Shore RC, Berkovitz BK, Moxham BJ (1985). The effects of preventing movement of the rat incisor on the structure of its periodontal ligament. Arch Oral Biol 30(3):221-228. Strom D, Holm S (1992). Bite-force development, metabolic and circulatory response to electrical stimulation in the canine and porcine masseter muscles. Arch Oral Biol 37(12):997-1006. Tanne K, Sakuda M (1983). Initial stress induced in the periodontal tissue at the time of the application of various types of orthodontic force: three-dimensional analysis by means of the finite element method. J Osaka Univ Dent Sch 23(143-171. Tjellstrom A, Jacobsson M, Albrektsson T (1988). Removal torque of osseointegrated craniofacial implants: a clinical study. Int J Oral Maxillofac Implants 3(4):287-289. Toms SR, Dakin GJ, Lemons JE, Eberhardt AW (2002). Quasi-linear viscoelastic behavior of the human periodontal ligament. J Biomech 35(10):1411-1415. van Eijden TM (1991). Three-dimensional analyses of human bite-force magnitude and moment. Arch Oral Biol 36(7):535-539. Wills DJ, Picton DC, Davies WI (1972). An investigation of the viscoelastic properties of the periodontium in monkeys. J Periodontal Res 7(1):42-51. Wills DJ, Picton DC, Davies WI (1976). A study of the fluid systems of the periodontium in macaque monkeys. Arch Oral Biol 21(3):175-185. Wills DJ, Picton DC, Davies WI (1978). The intrusion of the tooth for different loading rates. J Biomech 11(10-12):429-434. Wills DJ, Picton DC (1981). Changes in the force--intrusion relationship of the tooth with its resting position in macaque monkeys. Arch Oral Biol 26(10):827-829. Yoshida N, Koga Y, Peng CL, Tanaka E, Kobayashi K (2001). In vivo measurement of the elastic modulus of the human periodontal ligament. Med Eng Phys 23(8):567-572. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22555 | - |
dc.description.abstract | 牙周膜韌帶(periodontal ligament) 主要連結牙根和齒槽骨壁,是一種軟的結締組織、富含微血管網。牙周膜韌帶的平均厚度約為0.2~0.4 mm。目前所提出過的牙周支撐理論有:簡單張力理論(simple tension theory),受壓理論(compression theory),流體靜力理論(hydrodynamic damping theory)觸變性理論(thixotropic theory)及黏彈理論(The viscoelasticity Theory)。
牙周膜韌帶的力學行為在牙科不論補綴、植體、牙齒斷裂、及矯正等的探討上是不能忽略的,且其所表現出來的行為皆不同。但是目前仍然未有明確的定論。牙科植體應用於全口或部分缺牙牙病人已經有近五十年的歷史,目前植牙病人也與日俱增,而近年來與植體相關的後遺症包括周圍齒槽骨喪失,植體螺絲或上方的贗復鬆動或斷裂,都與植體受力後的力學分佈有關,但相關植體力學的研究卻依舊缺乏。由於人類身上實驗之架設不易,變因較不易控制,本研究中我們針對動物體內的單牙根與植體做研究,以了解牙周膜韌帶及植體的受力機轉。 本實驗的主要目的在比較單牙根與植體生物力學行為的不同,實驗以兩隻米格犬進行進行相關測試,以自行設計的測量儀器得到自然牙與植體潛變,應力鬆弛,遲滯現象等的曲線,由實驗中可以了解自然牙牙周膜韌帶具有潛變,應力鬆弛,遲滯現象,而植體骨整合受力後潛變現象不明顯,惟仍有應力鬆弛及遲滯現象,進一步的結果需要更多的實驗來進行。此研究成果提供初步了解自然牙與植體力學行為模式。 | zh_TW |
dc.description.abstract | The periodontal ligament (PDL) is a soft connective tissue which joins the tooth root to the alveolus and thus provides for anchorage of the tooth in the alveolar bone. Understanding how the PDL functions is important and still lacking in dental biomechanics research. Although many experimental techniques and theroretical analyses have been employed in understanding the PDL, experiments concerning the PDL are especially difficult due to its complex structure, and testing device should be very accurate. The goal of our study was to investigate the creep source , stress relaxation and hysteresis properties of PDL and the dental implant by using animal study.
Two beagle dogs were used in this study, and modified occlusal splints were made. After three month extraction of lower right premolars, Straumann 3.3mm x 8mm implant was placed . Two displacement sensors and the force actuator loading device were inserted to this occlusal splint and anchored with posterior teeth. In vivo experimental tests were carried out on the mandibular incisor’s PDL and the implant to obtain creep , stress-relaxation and hystrersis curves. It was found that the creep , stress relaxation and hysteresis properties of the PDL was defined. From the implant test , slight stress relaxation and hysteresis phenomenon was detected but the creep properties wasn’t clear. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T04:20:42Z (GMT). No. of bitstreams: 1 ntu-99-R96422017-1.pdf: 13400738 bytes, checksum: 0b5c20a02f02cd81a3003d01ce93a8a6 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 誌謝 1
中文摘要 2 Abstract 3 目錄 5 圖次 8 第一章 緒論 13 1.1前言 13 1.2牙周膜韌帶之組成與功能簡介 13 1.3牙齒移動支持理論 14 1.3.1簡單張力理論(The Simple Tension Theory): 15 1.3.2受壓理論(Compression Theory): 15 1.3.3流體靜力理論(Hydrodynamic Theory ): 16 1.3.4黏彈理論(The Viscoelasticity Theory): 17 1.3.5變凝性理論 ( Thixotropic material ) : 17 第二章 文獻回顧 : 自然牙部分 21 2.1不同施力方向 21 2.1.1軸向壓力與拉力: 21 2.1.2側向施力: 27 2.1.3水平負載的旋轉中心 29 2.2牙周膜韌帶之彈性係數 31 2.3牙周靭帶和牙齒支撐機制理論 : 抗軸向壓入負載的支撐生理機制 31 2.3.1膠原纖維的作用: 31 2.3.2牙周膜血管,血液與組織液的作用: 35 2.3.3牙周基質的作用: 38 2.3.4齒槽骨的作用: 39 2.4體外牙周靭帶最終拉力強度之研究 40 2.5牙齒應力分析 42 2.6牙科植體部分 44 2.6.1牙科植體簡介 45 2.6.2力量及機械施力對植體影響 46 2.6.3提高咬合高度造成植體咬合過度負荷 47 2.6.4非軸向力量對植體周圍組織的影響 48 2.7咬力對植體的影響 49 2.8評估骨-植體界面力學特性 50 2.8.1體內骨對骨-植體界面上生物力學負載之反應 51 2.8.2骨-植體界面之本質強度(intrinsic strength) 52 2.8.3測試骨-植體界面非侵入性評估之動態模型 53 第三章 實驗目的與方法 55 3.1實驗動機與目的: 55 3.2口內實驗儀器之架構 55 3.3實驗測試 57 3.4實驗校正 58 3.4.1力量校正 58 3.4.2位移感測器校正 59 第四章 實驗結果 60 4.1自然牙測試結果 60 4.1.1潛變測試結果(Creep test data) 60 4.1.2應力鬆弛結果 61 4.1.3遲滯實驗結果 62 4.2植體測試結果 62 4.2.1潛變實驗結果 62 4.2.2應力鬆弛實驗結果 63 4.2.3遲滯實驗結果 64 第五章 討論 65 5.1實驗對象討論 65 5.2測試裝置討論 65 5.3潛變實驗討論 66 5.4應力鬆弛實驗 68 5.5遲滯結果討論 69 5.6綜合討論 70 5.7未來應用及目標 72 第六章 結論 73 第七章 參考資料 74 第八章 圖表 83 | |
dc.language.iso | zh-TW | |
dc.title | 比較自然牙與牙科植體受力後力學行為之異同:動物實驗 | zh_TW |
dc.title | Difference of Biomechanical Behaviors of Natural Tooth and Dental Implant : Animal Study | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 章浩宏(Hao-Hueng Chang) | |
dc.contributor.oralexamcommittee | 陳文斌(Weng-Pin Chen) | |
dc.subject.keyword | 牙周膜韌帶,牙科植體,潛變,應力鬆弛,遲滯現象, | zh_TW |
dc.subject.keyword | periodontal ligament,dental implant,creep,stress relaxation,hysteresis, | en |
dc.relation.page | 138 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2010-07-19 | |
dc.contributor.author-college | 牙醫專業學院 | zh_TW |
dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
顯示於系所單位: | 臨床牙醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 13.09 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。