請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22496完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡懷楨(Huai-Jen Tsai) | |
| dc.contributor.author | Chien-Wei Lin | en |
| dc.contributor.author | 林建瑋 | zh_TW |
| dc.date.accessioned | 2021-06-08T04:19:11Z | - |
| dc.date.copyright | 2010-07-30 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-22 | |
| dc.identifier.citation | Andreazzoli, M., Gestri, G., Angeloni, D., Menna, E., and Barsacchi, G. (1999). Role of Xrx1 in Xenopus eye and anterior brain development. Development 126, 2451-2460.
Arnaoutov, A., and Dasso, M. (2005). Ran-GTP regulates kinetochore attachment in somatic cells. Cell Cycle 4, 1161-1165. Bailey, T.J., El-Hodiri, H., Zhang, L., Shah, R., Mathers, P.H., and Jamrich, M. (2004). Regulation of vertebrate eye development by Rx genes. Int J Dev Biol 48, 761-770. Battistoni, A., Guarguaglini, G., Degrassi, F., Pittoggi, C., Palena, A., Di Matteo, G., Pisano, C., Cundari, E., and Lavia, P. (1997). Deregulated expression of the RanBP1 gene alters cell cycle progression in murine fibroblasts. J Cell Sci 110 ( Pt 19), 2345-2357. Bilbao-Cortes, D., Hetzer, M., Langst, G., Becker, P.B., and Mattaj, I.W. (2002). Ran binds to chromatin by two distinct mechanisms. Curr Biol 12, 1151-1156. Bilitou, A., and Ohnuma, S. (2010). The role of cell cycle in retinal development: cyclin-dependent kinase inhibitors co-ordinate cell-cycle inhibition, cell-fate determination and differentiation in the developing retina. Dev Dyn 239, 727-736. Bischoff, F.R., and Gorlich, D. (1997). RanBP1 is crucial for the release of RanGTP from importin beta-related nuclear transport factors. FEBS Lett 419, 249-254. Bischoff, F.R., Klebe, C., Kretschmer, J., Wittinghofer, A., and Ponstingl, H. (1994). RanGAP1 induces GTPase activity of nuclear Ras-related Ran. Proc Natl Acad Sci U S A 91, 2587-2591. Bischoff, F.R., Krebber, H., Smirnova, E., Dong, W., and Ponstingl, H. (1995). Co-activation of RanGTPase and inhibition of GTP dissociation by Ran-GTP binding protein RanBP1. EMBO J 14, 705-715. Bischoff, F.R., and Ponstingl, H. (1991). Catalysis of guanine nucleotide exchange on Ran by the mitotic regulator RCC1. Nature 354, 80-82. Boguski, M.S., and McCormick, F. (1993). Proteins regulating Ras and its relatives. Nature 366, 643-654. Bovolenta, P., Mallamaci, A., Puelles, L., and Boncinelli, E. (1998). Expression pattern of cSix3, a member of the Six/sine oculis family of transcription factors. Mech Dev 70, 201-203. Burmeister, M., Novak, J., Liang, M.Y., Basu, S., Ploder, L., Hawes, N.L., Vidgen, D., Hoover, F., Goldman, D., Kalnins, V.I., et al. (1996). Ocular retardation mouse caused by Chx10 homeobox null allele: impaired retinal progenitor proliferation and bipolar cell differentiation. Nat Genet 12, 376-384. Bylund, M., Andersson, E., Novitch, B.G., and Muhr, J. (2003). Vertebrate neurogenesis is counteracted by Sox1-3 activity. Nat Neurosci 6, 1162-1168. Calegari, F., and Huttner, W.B. (2003). An inhibition of cyclin-dependent kinases that lengthens, but does not arrest, neuroepithelial cell cycle induces premature neurogenesis. J Cell Sci 116, 4947-4955. Carazo-Salas, R.E., Gruss, O.J., Mattaj, I.W., and Karsenti, E. (2001). Ran-GTP coordinates regulation of microtubule nucleation and dynamics during mitotic-spindle assembly. Nat Cell Biol 3, 228-234. Carazo-Salas, R.E., Guarguaglini, G., Gruss, O.J., Segref, A., Karsenti, E., and Mattaj, I.W. (1999). Generation of GTP-bound Ran by RCC1 is required for chromatin-induced mitotic spindle formation. Nature 400, 178-181. Carl, M., Loosli, F., and Wittbrodt, J. (2002). Six3 inactivation reveals its essential role for the formation and patterning of the vertebrate eye. Development 129, 4057-4063. Carruthers, S., Mason, J., and Papalopulu, N. (2003). Depletion of the cell-cycle inhibitor p27(Xic1) impairs neuronal differentiation and increases the number of ElrC(+) progenitor cells in Xenopus tropicalis. Mech Dev 120, 607-616. Casarosa, S., Amato, M.A., Andreazzoli, M., Gestri, G., Barsacchi, G., and Cremisi, F. (2003). Xrx1 controls proliferation and multipotency of retinal progenitors. Mol Cell Neurosci 22, 25-36. Chow, R.L., and Lang, R.A. (2001). Early eye development in vertebrates. Annu Rev Cell Dev Biol 17, 255-296. Chuang, J.C., and Raymond, P.A. (2001). Zebrafish genes rx1 and rx2 help define the region of forebrain that gives rise to retina. Dev Biol 231, 13-30. Ciciarello, M., Mangiacasale, R., and Lavia, P. (2007). Spatial control of mitosis by the GTPase Ran. Cell Mol Life Sci 64, 1891-1914. Ciciarello, M., Mangiacasale, R., and Lavia, P. (2007). Spatial control of mitosis by the GTPase Ran. Cell Mol Life Sci 64, 1891-1914. Del Bene, F., Wehman, A.M., Link, B.A., and Baier, H. (2008). Regulation of neurogenesis by interkinetic nuclear migration through an apical-basal notch gradient. Cell 134, 1055-1065. Deng, M., Suraneni, P., Schultz, R.M., and Li, R. (2007). The Ran GTPase mediates chromatin signaling to control cortical polarity during polar body extrusion in mouse oocytes. Dev Cell 12, 301-308. Durand, B., and Raff, M. (2000). A cell-intrinsic timer that operates during oligodendrocyte development. Bioessays 22, 64-71. Ekstrom, P., and Johansson, K. (2003). Differentiation of ganglion cells and amacrine cells in the rat retina: correlation with expression of HuC/D and GAP-43 proteins. Brain Res Dev Brain Res 145, 1-8. Fan, S.S., and Ready, D.F. (1997). Glued participates in distinct microtubule-based activities in Drosophila eye development. Development 124, 1497-1507. Farah, M.H., Olson, J.M., Sucic, H.B., Hume, R.I., Tapscott, S.J., and Turner, D.L. (2000). Generation of neurons by transient expression of neural bHLH proteins in mammalian cells. Development 127, 693-702. Fashena, D., and Westerfield, M. (1999). Secondary motoneuron axons localize DM-GRASP on their fasciculated segments. J Comp Neurol 406, 415-424. Fornerod, M., Ohno, M., Yoshida, M., and Mattaj, I.W. (1997). CRM1 is an export receptor for leucine-rich nuclear export signals. Cell 90, 1051-1060. Fried, H., and Kutay, U. (2003). Nucleocytoplasmic transport: taking an inventory. Cell Mol Life Sci 60, 1659-1688. Fukuda, M., Asano, S., Nakamura, T., Adachi, M., Yoshida, M., Yanagida, M., and Nishida, E. (1997). CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature 390, 308-311. Gestri, G., Carl, M., Appolloni, I., Wilson, S.W., Barsacchi, G., and Andreazzoli, M. (2005). Six3 functions in anterior neural plate specification by promoting cell proliferation and inhibiting Bmp4 expression. Development 132, 2401-2413. Gorlich, D., Kostka, S., Kraft, R., Dingwall, C., Laskey, R.A., Hartmann, E., and Prehn, S. (1995). Two different subunits of importin cooperate to recognize nuclear localization signals and bind them to the nuclear envelope. Curr Biol 5, 383-392. Gorlich, D., and Kutay, U. (1999). Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol 15, 607-660. Graham, V., Khudyakov, J., Ellis, P., and Pevny, L. (2003). SOX2 functions to maintain neural progenitor identity. Neuron 39, 749-765. Green, E.S., Stubbs, J.L., and Levine, E.M. (2003). Genetic rescue of cell number in a mouse model of microphthalmia: interactions between Chx10 and G1-phase cell cycle regulators. Development 130, 539-552. Gruss, O.J., Carazo-Salas, R.E., Schatz, C.A., Guarguaglini, G., Kast, J., Wilm, M., Le Bot, N., Vernos, I., Karsenti, E., and Mattaj, I.W. (2001). Ran induces spindle assembly by reversing the inhibitory effect of importin alpha on TPX2 activity. Cell 104, 83-93. Hall, A. (1990). The cellular functions of small GTP-binding proteins. Science 249, 635-640. Heisenberg, C.P., Brennan, C., and Wilson, S.W. (1999). Zebrafish aussicht mutant embryos exhibit widespread overexpression of ace (fgf8) and coincident defects in CNS development. Development 126, 2129-2140. Hill, R.E., Favor, J., Hogan, B.L., Ton, C.C., Saunders, G.F., Hanson, I.M., Prosser, J., Jordan, T., Hastie, N.D., and van Heyningen, V. (1991). Mouse small eye results from mutations in a paired-like homeoboxcontaining gene. Nature 354, 522-525. Hu, M., and Easter, S.S. (1999). Retinal neurogenesis: the formation of the initial central patch of postmitotic cells. Dev Biol 207, 309-321. Huang, H.Y., Dai, E.S., Liu, J.T., Tu, C.T., Yang, T.C., and Tsai, H.J. (2009). The embryonic expression patterns and the knockdown phenotypes of zebrafish ADP-ribosylation factor-like 6 interacting protein gene. Dev Dyn 238, 232-240. Ingley, E., Williams, J.H., Walker, C.E., Tsai, S., Colley, S., Sayer, M.S., Tilbrook, P.A., Sarna, M., Beaumont, J.G., and Klinken, S.P. (1999). A novel ADP-ribosylation like factor (ARL-6), interacts with the protein-conducting channel SEC61beta subunit. FEBS Lett 459, 69-74. Kahn, R.A., and Gilman, A.G. (1984). Purification of a protein cofactor required for ADP-ribosylation of the stimulatory regulatory component of adenylate cyclase by cholera toxin. J Biol Chem 259, 6228-6234. Kalab, P., Pralle, A., Isacoff, E.Y., Heald, R., and Weis, K. (2006). Analysis of a RanGTP-regulated gradient in mitotic somatic cells. Nature 440, 697-701. Kalab, P., Pu, R.T., and Dasso, M. (1999). The ran GTPase regulates mitotic spindle assembly. Curr Biol 9, 481-484. Kanekar, S., Perron, M., Dorsky, R., Harris, W.A., Jan, L.Y., Jan, Y.N., and Vetter, M.L. (1997). Xath5 participates in a network of bHLH genes in the developing Xenopus retina. Neuron 19, 981-994. Kim, C.H., Ueshima, E., Muraoka, O., Tanaka, H., Yeo, S.Y., Huh, T.L., and Miki, N. (1996). Zebrafish elav/HuC homologue as a very early neuronal marker. Neurosci Lett 216, 109-112. Li, H.Y., Wirtz, D., and Zheng, Y. (2003). A mechanism of coupling RCC1 mobility to RanGTP production on the chromatin in vivo. J Cell Biol 160, 635-644. Li, Z., Hu, M., Ochocinska, M.J., Joseph, N.M., and Easter, S.S., Jr. (2000). Modulation of cell proliferation in the embryonic retina of zebrafish (Danio rerio). Dev Dyn 219, 391-401. Liao, J., He, J., and Gong, Z. (1997). An Abundant Zebrafish cDNA Clone Encodes a Ras-Like Protein which is Expressed Ubiquitously. Mitochondrial DNA 7, 313 — 317. Locker, M., Agathocleous, M., Amato, M.A., Parain, K., Harris, W.A., and Perron, M. (2006). Hedgehog signaling and the retina: insights into the mechanisms controlling the proliferative properties of neural precursors. Genes Dev 20, 3036-3048. Loosli, F., Koster, R.W., Carl, M., Krone, A., and Wittbrodt, J. (1998). Six3, a medaka homologue of the Drosophila homeobox gene sine oculis is expressed in the anterior embryonic shield and the developing eye. Mech Dev 74, 159-164. Loosli, F., Winkler, S., Burgtorf, C., Wurmbach, E., Ansorge, W., Henrich, T., Grabher, C., Arendt, D., Carl, M., Krone, A., et al. (2001). Medaka eyeless is the key factor linking retinal determination and eye growth. Development 128, 4035-4044. Lopez-Rios, J., Tessmar, K., Loosli, F., Wittbrodt, J., and Bovolenta, P. (2003). Six3 and Six6 activity is modulated by members of the groucho family. Development 130, 185-195. Lui, H.M., Chen, J., Wang, L., and Naumovski, L. (2003). ARMER, apoptotic regulator in the membrane of the endoplasmic reticulum, a novel inhibitor of apoptosis. Mol Cancer Res 1, 508-518. Macdonald, R., Barth, K.A., Xu, Q., Holder, N., Mikkola, I., and Wilson, S.W. (1995). Midline signalling is required for Pax gene regulation and patterning of the eyes. Development 121, 3267-3278. Mahajan, R., Delphin, C., Guan, T., Gerace, L., and Melchior, F. (1997). A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88, 97-107. Marquardt, T., Ashery-Padan, R., Andrejewski, N., Scardigli, R., Guillemot, F., and Gruss, P. (2001). Pax6 is required for the multipotent state of retinal progenitor cells. Cell 105, 43-55. Martinez-Morales, J.R., Del Bene, F., Nica, G., Hammerschmidt, M., Bovolenta, P., and Wittbrodt, J. (2005). Differentiation of the vertebrate retina is coordinated by an FGF signaling center. Dev Cell 8, 565-574. Matunis, M.J., Coutavas, E., and Blobel, G. (1996). A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J Cell Biol 135, 1457-1470. McCabe, K.L., Gunther, E.C., and Reh, T.A. (1999). The development of the pattern of retinal ganglion cells in the chick retina: mechanisms that control differentiation. Development 126, 5713-5724. Miyawaki, T., Uemura, A., Dezawa, M., Yu, R.T., Ide, C., Nishikawa, S., Honda, Y., Tanabe, Y., and Tanabe, T. (2004). Tlx, an orphan nuclear receptor, regulates cell numbers and astrocyte development in the developing retina. J Neurosci 24, 8124-8134. Morris, N.R. (2003). Nuclear positioning: the means is at the ends. Curr Opin Cell Biol 15, 54-59. Morrow, E.M., Furukawa, T., Lee, J.E., and Cepko, C.L. (1999). NeuroD regulates multiple functions in the developing neural retina in rodent. Development 126, 23-36. Nakano, A., and Muramatsu, M. (1989). A novel GTP-binding protein, Sar1p, is involved in transport from the endoplasmic reticulum to the Golgi apparatus. J Cell Biol 109, 2677-2691. Neumann, C.J., and Nuesslein-Volhard, C. (2000). Patterning of the zebrafish retina by a wave of sonic hedgehog activity. Science 289, 2137-2139. Nishi, K., Yoshida, M., Fujiwara, D., Nishikawa, M., Horinouchi, S., and Beppu, T. (1994). Leptomycin B targets a regulatory cascade of crm1, a fission yeast nuclear protein, involved in control of higher order chromosome structure and gene expression. J Biol Chem 269, 6320-6324. Norden, C., Young, S., Link, B.A., and Harris, W.A. (2009). Actomyosin is the main driver of interkinetic nuclear migration in the retina. Cell 138, 1195-1208. Ochocinska, M.J., and Hitchcock, P.F. (2009). NeuroD regulates proliferation of photoreceptor progenitors in the retina of the zebrafish. Mech Dev 126, 128-141. Ohba, T., Nakamura, M., Nishitani, H., and Nishimoto, T. (1999). Self-organization of microtubule asters induced in Xenopus egg extracts by GTP-bound Ran. Science 284, 1356-1358. Ohnuma, S., Hopper, S., Wang, K.C., Philpott, A., and Harris, W.A. (2002). Co-ordinating retinal histogenesis: early cell cycle exit enhances early cell fate determination in the Xenopus retina. Development 129, 2435-2446. Ohnuma, S., Philpott, A., Wang, K., Holt, C.E., and Harris, W.A. (1999). p27Xic1, a Cdk inhibitor, promotes the determination of glial cells in Xenopus retina. Cell 99, 499-510. Ohtsubo, M., Okazaki, H., and Nishimoto, T. (1989). The RCC1 protein, a regulator for the onset of chromosome condensation locates in the nucleus and binds to DNA. J Cell Biol 109, 1389-1397. Oron-Karni, V., Farhy, C., Elgart, M., Marquardt, T., Remizova, L., Yaron, O., Xie, Q., Cvekl, A., and Ashery-Padan, R. (2008). Dual requirement for Pax6 in retinal progenitor cells. Development 135, 4037-4047. Ossareh-Nazari, B., Bachelerie, F., and Dargemont, C. (1997). Evidence for a role of CRM1 in signal-mediated nuclear protein export. Science 278, 141-144. Park, H.C., Kim, C.H., Bae, Y.K., Yeo, S.Y., Kim, S.H., Hong, S.K., Shin, J., Yoo, K.W., Hibi, M., Hirano, T., et al. (2000). Analysis of upstream elements in the HuC promoter leads to the establishment of transgenic zebrafish with fluorescent neurons. Dev Biol 227, 279-293. Pemberton, L.F., and Paschal, B.M. (2005). Mechanisms of receptor-mediated nuclear import and nuclear export. Traffic 6, 187-198. Petosa, C., Schoehn, G., Askjaer, P., Bauer, U., Moulin, M., Steuerwald, U., Soler-Lopez, M., Baudin, F., Mattaj, I.W., and Muller, C.W. (2004). Architecture of CRM1/Exportin1 suggests how cooperativity is achieved during formation of a nuclear export complex. Mol Cell 16, 761-775. Pettersson, M., Bessonova, M., Gu, H.F., Groop, L.C., and Jonsson, J.I. (2000). Characterization, chromosomal localization, and expression during hematopoietic differentiation of the gene encoding Arl6ip, ADP-ribosylation-like factor-6 interacting protein (ARL6). Genomics 68, 351-354. Philips, G.T., Stair, C.N., Young Lee, H., Wroblewski, E., Berberoglu, M.A., Brown, N.L., and Mastick, G.S. (2005). Precocious retinal neurons: Pax6 controls timing of differentiation and determination of cell type. Dev Biol 279, 308-321. Ren, M., Coutavas, E., D'Eustachio, P., and Rush, M.G. (1994). Effects of mutant Ran/TC4 proteins on cell cycle progression. Mol Cell Biol 14, 4216-4224. Ren, M., Coutavas, E., D'Eustachio, P., and Rush, M.G. (1994). Effects of mutant Ran/TC4 proteins on cell cycle progression. Mol Cell Biol 14, 4216-4224. Richards, S.A., Lounsbury, K.M., Carey, K.L., and Macara, I.G. (1996). A nuclear export signal is essential for the cytosolic localization of the Ran binding protein, RanBP1. J Cell Biol 134, 1157-1168. Rush, M.G., Drivas, G., and D'Eustachio, P. (1996). The small nuclear GTPase Ran: how much does it run? Bioessays 18, 103-112. Sato, T., Takahoko, M., and Okamoto, H. (2006). HuC:Kaede, a useful tool to label neural morphologies in networks in vivo. Genesis 44, 136-142. Sazer, S. (1996). The search for the primary function of the Ran GTPase continues. Trends Cell Biol 6, 81-85. Sazer, S., and Dasso, M. (2000). The ran decathlon: multiple roles of Ran. J Cell Sci 113 ( Pt 7), 1111-1118. Sazer, S., and Nurse, P. (1994). A fission yeast RCC1-related protein is required for the mitosis to interphase transition. EMBO J 13, 606-615. Schroer, T.A. (2004). Dynactin. Annu Rev Cell Dev Biol 20, 759-779. Schwarz, M., Cecconi, F., Bernier, G., Andrejewski, N., Kammandel, B., Wagner, M., and Gruss, P. (2000). Spatial specification of mammalian eye territories by reciprocal transcriptional repression of Pax2 and Pax6. Development 127, 4325-4334. Seo, H.C., Drivenes, Ellingsen, S., and Fjose, A. (1998). Expression of two zebrafish homologues of the murine Six3 gene demarcates the initial eye primordia. Mech Dev 73, 45-57. Shi, W.Y., and Skeath, J.B. (2004). The Drosophila RCC1 homolog, Bj1, regulates nucleocytoplasmic transport and neural differentiation during Drosophila development. Dev Biol 270, 106-121. Shkumatava, A., Fischer, S., Muller, F., Strahle, U., and Neumann, C.J. (2004). Sonic hedgehog, secreted by amacrine cells, acts as a short-range signal to direct differentiation and lamination in the zebrafish retina. Development 131, 3849-3858. Shkumatava, A., and Neumann, C.J. (2005). Shh directs cell-cycle exit by activating p57Kip2 in the zebrafish retina. EMBO Rep 6, 563-569. Sicinski, P., Donaher, J.L., Parker, S.B., Li, T., Fazeli, A., Gardner, H., Haslam, S.Z., Bronson, R.T., Elledge, S.J., and Weinberg, R.A. (1995). Cyclin D1 provides a link between development and oncogenesis in the retina and breast. Cell 82, 621-630. Stade, K., Ford, C.S., Guthrie, C., and Weis, K. (1997). Exportin 1 (Crm1p) is an essential nuclear export factor. Cell 90, 1041-1050. Starr, D.A., and Fischer, J.A. (2005). KASH 'n Karry: the KASH domain family of cargo-specific cytoskeletal adaptor proteins. Bioessays 27, 1136-1146. Stigloher, C., Chapouton, P., Adolf, B., and Bally-Cuif, L. (2008). Identification of neural progenitor pools by E(Spl) factors in the embryonic and adult brain. Brain Res Bull 75, 266-273. Takai, Y., Sasaki, T., and Matozaki, T. (2001). Small GTP-binding proteins. Physiol Rev 81, 153-208. Tinsley, J.H., Minke, P.F., Bruno, K.S., and Plamann, M. (1996). p150Glued, the largest subunit of the dynactin complex, is nonessential in Neurospora but required for nuclear distribution. Mol Biol Cell 7, 731-742. Ueno, M., Katayama, K., Yamauchi, H., Nakayama, H., and Doi, K. (2006). Cell cycle progression is required for nuclear migration of neural progenitor cells. Brain Res 1088, 57-67. Van Raay, T.J., Moore, K.B., Iordanova, I., Steele, M., Jamrich, M., Harris, W.A., and Vetter, M.L. (2005). Frizzled 5 signaling governs the neural potential of progenitors in the developing Xenopus retina. Neuron 46, 23-36. Vernon, A.E., Devine, C., and Philpott, A. (2003). The cdk inhibitor p27Xic1 is required for differentiation of primary neurones in Xenopus. Development 130, 85-92. Wilde, A., Lizarraga, S.B., Zhang, L., Wiese, C., Gliksman, N.R., Walczak, C.E., and Zheng, Y. (2001). Ran stimulates spindle assembly by altering microtubule dynamics and the balance of motor activities. Nat Cell Biol 3, 221-227. Wilde, A., and Zheng, Y. (1999). Stimulation of microtubule aster formation and spindle assembly by the small GTPase Ran. Science 284, 1359-1362. Wilhelmsen, K., Ketema, M., Truong, H., and Sonnenberg, A. (2006). KASH-domain proteins in nuclear migration, anchorage and other processes. J Cell Sci 119, 5021-5029. Willardsen, M.I., Suli, A., Pan, Y., Marsh-Armstrong, N., Chien, C.B., El-Hodiri, H., Brown, N.L., Moore, K.B., and Vetter, M.L. (2009). Temporal regulation of Ath5 gene expression during eye development. Dev Biol 326, 471-481. Wittmann, T., Wilm, M., Karsenti, E., and Vernos, I. (2000). TPX2, A novel xenopus MAP involved in spindle pole organization. J Cell Biol 149, 1405-1418. Xiang, X., and Fischer, R. (2004). Nuclear migration and positioning in filamentous fungi. Fungal Genet Biol 41, 411-419. Zaghloul, N.A., and Moody, S.A. (2007). Alterations of rx1 and pax6 expression levels at neural plate stages differentially affect the production of retinal cell types and maintenance of retinal stem cell qualities. Dev Biol 306, 222-240. Zhang, C., Hughes, M., and Clarke, P.R. (1999). Ran-GTP stabilises microtubule asters and inhibits nuclear assembly in Xenopus egg extracts. J Cell Sci 112 ( Pt 14), 2453-2461. Zhang, G.F., Patton, W.A., Lee, F.J., Liyanage, M., Han, J.S., Rhee, S.G., Moss, J., and Vaughan, M. (1995). Different ARF domains are required for the activation of cholera toxin and phospholipase D. J Biol Chem 270, 21-24. Zhang, J., Gray, J., Wu, L., Leone, G., Rowan, S., Cepko, C.L., Zhu, X., Craft, C.M., and Dyer, M.A. (2004). Rb regulates proliferation and rod photoreceptor development in the mouse retina. Nat Genet 36, 351-360. Zuber, M.E., Gestri, G., Viczian, A.S., Barsacchi, G., and Harris, W.A. (2003). Specification of the vertebrate eye by a network of eye field transcription factors. Development 130, 5155-5167. Zuber, M.E., Perron, M., Philpott, A., Bang, A., and Harris, W.A. (1999). Giant eyes in Xenopus laevis by overexpression of XOptx2. Cell 98, 341-352. 劉政廷 (2008). ADP-Ribosylation Factor-like 6 Interacting Protein在斑馬魚眼睛發育功能的新發現。 國立台灣大學分子與細胞生物學研究所碩士論文。 盧冠銘 (2010). Arl6ip1與Ran在中心體之交互作用參與細胞週期的過程。 國立台灣大學分子與細胞生物學研究所碩士論文。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22496 | - |
| dc.description.abstract | 在過去Ras-realated nuclear protein (Ran) 的研究主要探討如何透過tubulin排列影響細胞分裂以及核內外運輸的相關研究,但它在發育的過程中扮演的角色仍是未知。於是,我們利用斑馬魚在發育生物學上的優勢來研究Ran與眼部發育相關基因的表現情形。我們發現在原腸胚期前的斑馬魚胚胎中ran有全身性的表現,發育到咽期後則會局部表現在頭部、眼睛。若對斑馬魚胚胎注射Ran morpholino去knockdown Ran蛋白在胚胎的表現量,可以觀察到斑馬魚在眼睛及腦部的有顯著缺陷,例如會出現小眼症以及視網膜細胞無規則排列且無分化的情況。接著觀察眼部區域增生的情況,我們發現在ran-morphants中,眼部區域BrdU的signals會提早下降且細胞分裂的marker cyclinD1的表現也會提早降低,顯示細胞週期異常提早結束。在進行了TUNEL assay之後發現這些細胞不論早期(24 hpf) 或是晚期(72 hpf)都沒有異常細胞凋亡的訊號;同時我們也發現在ran-morphants中,視網膜細胞早期決定眼部區域的基因rx1及pax6的表現僅輕微降低,顯示這些在眼部區域中的細胞確實還是有特化成為視網膜前驅細胞。但是在觀察與視網膜發育相關基因的表現情形,發現ran-morphants視網膜分化中(48 hpf)、晚期的細胞其shh、six3a等視網膜細胞分化的基因不能正常地表現,且shh下游基因p57kip2也不會表現; 而HuC和neurolin視網膜神經元的表現蛋白質也都受到抑制,由此得知視網膜細胞未進行分化導致視網膜結構沒有出現。若利用deltaC觀察分化中、晚期這群沒有表現HuC和neurolin的細胞,發現deltaC沒有在眼部區域表現甚至連視網膜幹細胞的niche ciliary marginal zone也沒有表現,顯示這群未分化的細胞也不再是視網膜前驅細胞。說明在視網膜發育晚期這些視網膜細胞是處於沒有分裂但也沒有分化的狀態。進一步地偵測能決定最早出現的神經ganglion cell layer命運的proneural gene ath5,以及能決定amacrine cell和photoreceptor 命運的proneural gene neuroD的表現,發現ath5以及neuroD的表現大量地降低甚至有未開啟的情況。總結,當Ran蛋白缺失時,眼部區域早期有特化出視網膜前驅細胞,但由於細胞週期異常提早停止以及proneural genes 表現降低,影響視網膜細胞命運無法決定,進而影響中、晚期細胞無法分化,最後導致視網膜發育的異常。 | zh_TW |
| dc.description.abstract | Ras-realated nuclear protein (Ran) has been reported to be involved in cell division by modulating assembly of tubulin and regulating nucleocytoplasmic transport. However, the biological function of Ran in embryonic development is unknown. In this study, we take the advantage of zebrafish as an animal model in developmental biology to study the molecular mechanism that how Ran is involved in eyes development. Using whole mount in situ hybridization showed ran transcripts were ubiquitously expressed throughout the whole embryo before gastrula period, but restrictedly expressed in brain and eyes after the pharyngula. We injected the anitsense morpholino oligonucleotides (MO) into zebrafish embryos to specifically knockdown Ran translation, and observed defects in eyes and brain. Particularly, the occurrence of microphthalmos was extremely predominant, in which the order layers with differentiated retinal cells was not so pronounced as that in wild-type eyes. Furthermore, we observed both the BrdU signals and the expression of cyclinD1 were declined earlier in the eye filed in embryos injected with ran-MO, indicating that cell cycle exit in retina is defective in ran-morphants. No apoptotic signal in eye field was found either at early (24 hpf) stage or late (72 hpf) embryonic stage by TUNEL assay. The expressions of rx1 and pax6, which are markers of the eye field in early embryonic stage, were only slightly reduced in ran-morphants, indicating that the retinal cells of ran-morphants were mostly specified to neural progenitor cells. However, when we examined the expressions of some retinal differentiating genes such as shh, six3a and p57kip2, a gene down stream of shh, we found that these genes were not expressed in the ran-morphants either at middle (48 hpf) stage or late stage of retinal development. We also observed the retinal neuron proteins such as HuC and Neurolin were repressed. This line of evidences suggested that retinal cells in ran-morphants were undifferentiated, which leaded to failure of developing normal retinal structure. In addition, we found that there was no deltac expression in HuC- and neurolin-negative cells, even nor in ciliary marginal zone, indicating that these cells were no longer progenitor cells. In other words these cells were not only undifferentiated but also unproliferated at late stage. Furthermore, the proneural gene ath5, which is the first gene to determine the cell fate of developing ganglion cell layer, and neuroD, which is needed to determine the cell fate of amacrine cell and photoreceptor, were dramatically decreased or even unexpressed in retinae of ran-morphants. Taken together, we concluded that the loss of Ran function causes the decrease expression of proneural genes, resulting in the cell fate of retinal cells are not determined to go further differentiate in the middle and late developmental stages, which in turn, the retinal development is disrupted, although the eye field can perform specification and process to retinal progenitor cells in early developmental stage. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T04:19:11Z (GMT). No. of bitstreams: 1 ntu-99-R97b43020-1.pdf: 12119871 bytes, checksum: 065a66c868fcef3255dbb91414e1ac6a (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 中文摘要 ------------------------------------------------------ 1
英文摘要 ------------------------------------------------------ 2 文獻回顧 ------------------------------------------------------ 4 前言 ----------------------------------------------------------- 13 實驗材料與方法 -------------------------------------------- 15 結果 ----------------------------------------------------------- 21 討論 ----------------------------------------------------------- 29 參考文獻 ----------------------------------------------------- 35 圖表 ----------------------------------------------------------- 47 附錄 ----------------------------------------------------------- 62 | |
| dc.language.iso | zh-TW | |
| dc.subject | 胚胎發育 | zh_TW |
| dc.subject | 斑馬魚 | zh_TW |
| dc.subject | 視網膜 | zh_TW |
| dc.subject | Ran | en |
| dc.subject | retina | en |
| dc.subject | zebrafish | en |
| dc.subject | Arl6ip | en |
| dc.title | Ran在斑馬魚視網膜發育的功能 | zh_TW |
| dc.title | Ran Functions in Retinal Development of Zebrafish | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 焦傳金(Chuan-Chin Chiao),王致恬(Chih-Tien Wang),鄭邑荃(Yi-Chuan Cheng) | |
| dc.subject.keyword | 斑馬魚,視網膜,胚胎發育, | zh_TW |
| dc.subject.keyword | Ran,Arl6ip,zebrafish,retina, | en |
| dc.relation.page | 66 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2010-07-23 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 11.84 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
