Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 口腔生物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22474
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張正琪(Cheng-Chi Chang)
dc.contributor.authorChen-Chien Wangen
dc.contributor.author王禎謙zh_TW
dc.date.accessioned2021-06-08T04:18:38Z-
dc.date.copyright2010-09-09
dc.date.issued2010
dc.date.submitted2010-07-27
dc.identifier.citationAikawa, T., Gunn, J., Spong, S. M., Klaus, S. J., and Korc, M. (2006). Connective tissue growth factor-specific antibody attenuates tumor growth, metastasis, and angiogenesis in an orthotopic mouse model of pancreatic cancer. Mol Cancer Ther 5, 1108-1116.
Baltus, G. A., Kowalski, M. P., Tutter, A. V., and Kadam, S. (2009). A positive regulatory role for the mSin3A-HDAC complex in pluripotency through Nanog and Sox2. J Biol Chem 284, 6998-7006.
Bork, P. (1993). The modular architecture of a new family of growth regulators related to connective tissue growth factor. FEBS Lett 327, 125-130.
Bradham, D. M., Igarashi, A., Potter, R. L., and Grotendorst, G. R. (1991). Connective tissue growth factor: a cysteine-rich mitogen secreted by human vascular endothelial cells is related to the SRC-induced immediate early gene product CEF-10. J Cell Biol 114, 1285-1294.
Brigstock, D. R. (1999). The connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed (CCN) family. Endocr Rev 20, 189-206.
Chang, C. C., Shih, J. Y., Jeng, Y. M., Su, J. L., Lin, B. Z., Chen, S. T., Chau, Y. P., Yang, P. C., and Kuo, M. L. (2004). Connective tissue growth factor and its role in lung adenocarcinoma invasion and metastasis. J Natl Cancer Inst 96, 364-375.
Chen, P. P., Li, W. J., Wang, Y., Zhao, S., Li, D. Y., Feng, L. Y., Shi, X. L., Koeffler, H. P., Tong, X. J., and Xie, D. (2007). Expression of Cyr61, CTGF, and WISP-1 correlates with clinical features of lung cancer. PLoS One 2, e534.
Chien, W., Yin, D., Gui, D., Mori, A., Frank, J. M., Said, J., Kusuanco, D., Marchevsky, A., McKenna, R., and Koeffler, H. P. (2006). Suppression of cell proliferation and signaling transduction by connective tissue growth factor in non-small cell lung cancer
cells. Mol Cancer Res 4, 591-598.
Chu, C. Y., Chang, C. C., Prakash, E., and Kuo, M. L. (2008). Connective tissue growth factor (CTGF) and cancer progression. J Biomed Sci 15, 675-685.
Dornhofer, N., Spong, S., Bennewith, K., Salim, A., Klaus, S., Kambham, N., Wong, C., Kaper, F., Sutphin, P., Nacamuli, R., et al. (2006). Connective tissue growth factor-specific monoclonal antibody therapy inhibits pancreatic tumor growth and metastasis. Cancer Res 66, 5816-5827.
Frank, N. Y., Schatton, T., and Frank, M. H. (2010). The therapeutic promise of the cancer stem cell concept. J Clin Invest 120, 41-50.
Ihn, H. (2002). Pathogenesis of fibrosis: role of TGF-beta and CTGF. Curr Opin Rheumatol 14, 681-685.
Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., and Thun, M. J. (2009). Cancer statistics, 2009. CA Cancer J Clin 59, 225-249.
Kang, Y., Siegel, P. M., Shu, W., Drobnjak, M., Kakonen, S. M., Cordon-Cardo, C., Guise, T. A., and Massague, J. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3, 537-549.
Kikuchi, R., Tsuda, H., Kanai, Y., Kasamatsu, T., Sengoku, K., Hirohashi, S., Inazawa, J., and Imoto, I. (2007). Promoter hypermethylation contributes to frequent inactivation of a putative conditional tumor suppressor gene connective tissue growth factor in ovarian cancer. Cancer Res 67, 7095-7105.
Koliopanos, A., Friess, H., di Mola, F. F., Tang, W. H., Kubulus, D., Brigstock, D., Zimmermann, A., and Buchler, M. W. (2002). Connective tissue growth factor gene expression alters tumor progression in esophageal cancer. World J Surg 26, 420-427.
Kondo, T. (2007). Stem cell-like cancer cells in cancer cell lines. Cancer Biomark 3,
245-250.
Kubo, M., Kikuchi, K., Nashiro, K., Kakinuma, T., Hayashi, N., Nanko, H., and Tamaki, K. (1998). Expression of fibrogenic cytokines in desmoplastic malignant melanoma. Br J Dermatol 139, 192-197.
Kuroda, T., Tada, M., Kubota, H., Kimura, H., Hatano, S. Y., Suemori, H., Nakatsuji, N., and Tada, T. (2005). Octamer and Sox elements are required for transcriptional cis regulation of Nanog gene expression. Mol Cell Biol 25, 2475-2485.
Lau, L. F., and Lam, S. C. (1999). The CCN family of angiogenic regulators: the integrin connection. Exp Cell Res 248, 44-57.
Lin, T., Chao, C., Saito, S., Mazur, S. J., Murphy, M. E., Appella, E., and Xu, Y. (2005). p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat Cell Biol 7, 165-171.
Liu, L., Li, Z., Feng, G., You, W., and Li, J. (2007). Expression of connective tissue growth factor is in agreement with the expression of VEGF, VEGF-C, -D and associated with shorter survival in gastric cancer. Pathol Int 57, 712-718.
O'Brien, C. A., Kreso, A., and Dick, J. E. (2009). Cancer stem cells in solid tumors: an overview. Semin Radiat Oncol 19, 71-77.
Pan, G., Li, J., Zhou, Y., Zheng, H., and Pei, D. (2006). A negative feedback loop of transcription factors that controls stem cell pluripotency and self-renewal. FASEB J 20, 1730-1732.
Pan, G., and Thomson, J. A. (2007). Nanog and transcriptional networks in embryonic stem cell pluripotency. Cell Res 17, 42-49.
Perbal, B. (2001a). The CCN family of genes: a brief history. Mol Pathol 54, 103-104.
Perbal, B. (2001b). NOV (nephroblastoma overexpressed) and the CCN family of genes:
structural and functional issues. Mol Pathol 54, 57-79.
Pereira, L., Yi, F., and Merrill, B. J. (2006). Repression of Nanog gene transcription by Tcf3 limits embryonic stem cell self-renewal. Mol Cell Biol 26, 7479-7491.
Planque, N., and Perbal, B. (2003). A structural approach to the role of CCN (CYR61/CTGF/NOV) proteins in tumourigenesis. Cancer Cell Int 3, 15.
Reya, T., Morrison, S. J., Clarke, M. F., and Weissman, I. L. (2001). Stem cells, cancer, and cancer stem cells. Nature 414, 105-111.
Rodda, D. J., Chew, J. L., Lim, L. H., Loh, Y. H., Wang, B., Ng, H. H., and Robson, P. (2005). Transcriptional regulation of nanog by OCT4 and SOX2. J Biol Chem 280, 24731-24737.
Shakunaga, T., Ozaki, T., Ohara, N., Asaumi, K., Doi, T., Nishida, K., Kawai, A., Nakanishi, T., Takigawa, M., and Inoue, H. (2000). Expression of connective tissue growth factor in cartilaginous tumors. Cancer 89, 1466-1473.
Shimo, T., Kubota, S., Yoshioka, N., Ibaragi, S., Isowa, S., Eguchi, T., Sasaki, A., and Takigawa, M. (2006). Pathogenic role of connective tissue growth factor (CTGF/CCN2) in osteolytic metastasis of breast cancer. J Bone Miner Res 21, 1045-1059.
Suzuki, A., Raya, A., Kawakami, Y., Morita, M., Matsui, T., Nakashima, K., Gage, F. H., Rodriguez-Esteban, C., and Izpisua Belmonte, J. C. (2006). Nanog binds to Smad1 and blocks bone morphogenetic protein-induced differentiation of embryonic stem cells. Proc Natl Acad Sci U S A 103, 10294-10299.
Wellner, U., Schubert, J., Burk, U. C., Schmalhofer, O., Zhu, F., Sonntag, A., Waldvogel, B., Vannier, C., Darling, D., zur Hausen, A., et al. (2009). The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol
11, 1487-1495.
Wenger, C., Ellenrieder, V., Alber, B., Lacher, U., Menke, A., Hameister, H., Wilda, M., Iwamura, T., Beger, H. G., Adler, G., and Gress, T. M. (1999). Expression and differential regulation of connective tissue growth factor in pancreatic cancer cells. Oncogene 18, 1073-1080.
Wiseman, B. S., and Werb, Z. (2002). Stromal effects on mammary gland development and breast cancer. Science 296, 1046-1049.
Wong, Y. F., Cheung, T. H., Tsao, G. S., Lo, K. W., Yim, S. F., Wang, V. W., Heung, M. M., Chan, S. C., Chan, L. K., Ho, T. W., et al. (2006). Genome-wide gene expression profiling of cervical cancer in Hong Kong women by oligonucleotide microarray. Int J Cancer 118, 2461-2469.
Xie, D., Yin, D., Wang, H. J., Liu, G. T., Elashoff, R., Black, K., and Koeffler, H. P. (2004). Levels of expression of CYR61 and CTGF are prognostic for tumor progression and survival of individuals with gliomas. Clin Cancer Res 10, 2072-2081.
Yang, M. H., Wu, M. Z., Chiou, S. H., Chen, P. M., Chang, S. Y., Liu, C. J., Teng, S. C., and Wu, K. J. (2008). Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nat Cell Biol 10, 295-305.
Zeng, Z. J., Yang, L. Y., Ding, X., and Wang, W. (2004). Expressions of cysteine-rich61, connective tissue growth factor and Nov genes in hepatocellular carcinoma and their clinical significance. World J Gastroenterol 10, 3414-3418.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22474-
dc.description.abstract幹細胞龕(Stem cell niche),可以維持幹細胞原有的特性,像是自我更新以及分化成不同細胞類型的能力,而一但幹細胞離開龕(Niche)就會喪失了這些幹細胞特性,開始進行分化。幹細胞龕是由一群基質細胞(Stromal cell)所組成,過去已知基質細胞所分泌的生長因子與維持幹細胞的特性有相關大的關係,而基質細胞的組成中又以纖維母細胞(Fibroblast)占絕大部分,纖維母細胞所分泌最多的生長因子就是結締組織生長因子(CTGF)。此外,從腫瘤的形成中也已經知道會有一群基質細胞包圍,同樣地,這一群基質細胞也會分泌生長因子支撐癌幹細胞(cancer stem cell)的幹細胞特性。另外,在之前的研究中發現頭頸癌病人的組織切片其CD44(+)細胞群大都鄰近基質細胞,這就暗示說癌幹細胞與基質細胞存在著一種重要的關係。因此,我們認為結締組織生長因子與幹細胞特性可能有相關。結締組織生長因子是屬於CCN(Cyr61/CTGF/Nov)家族的一員,是一種分泌型的蛋白質,目前已知參與了許多生物功能,如細胞分裂、細胞凋亡、細胞附著、細胞移動、細胞外基質製造與血管新生等,也常在許多不同的癌症中扮演不同的角色。在本篇研究中,將要探討結締組織生長因子與頭頸癌細胞的幹細胞特性之間的關聯性。實驗中我們利用結締組織生長因子的重組蛋白模擬外生性的結締組織生長因子蛋白,另外利用結締組織生長因子的質體外送入內生性結締組織生長因子表現量低的頭頸癌細胞中,使其大量表現內生性的結締組織生長因子蛋白,觀察外生性與內生性結締組織生長因子對於頭頸癌細胞幹細胞特性的影響。我們發現不論經由結締組織生長因子的重組蛋白或質體處理後,都會促進頭頸癌細胞的幹細胞基因(Nanog、Oct4、Sox2)表現與富裕幹細胞的標記(CD44、ALDH1、Side population)。此外,也利用細胞非貼附性生長實驗(Soft agar assay)與聚球實驗(Sphere formation assay)證實結締組織生長因子不僅促進幹細胞基因與標記的增加外,更使頭頸癌細胞獲得幹細胞的特性。最後,我們證實結締組織生長因子調控幹細胞基因表現是需要透過ESR1與JUN轉錄因子。綜合以上實驗結果,說明了結締組織生長因子與幹細胞特性的關係,同時證實不論外生性或內生性的結締組織生長因子皆可促進頭頸癌細胞的幹細胞特性。zh_TW
dc.description.abstractFibroblasts, the major population of stromal cells in microenvironment, compose niches as well as tumoral microenvironment and secrete many growth factors; one of the most growth factors is connective tissue growth factor (CTGF/CCN2). CTGF is a member of the CCN family, which exhibit diverse cellular functions in areas such as regulation of cell division, chemotaxis, apoptosis, adhesion, motility, and ion transport. CTGF is also involved in the development of many different types of cancers. In the study, we investigated the role of CTGF, a cytokine providing crucial impact in different types of human cancers, in regulating the stem-like properties of head and neck cancer cells. We found that Sox2, Nanog and Oct4, three of the most important stemness genes, were up-regulated in SAS cells treated by recombinant CTGF (rCTGF) or ectopic over-expressing CTGF. We subsequently analyzed the putative stem cell markers in SAS cells treated by rCTGF or overexpressing CTGF versus control. It revealed that SAS cells treated by rCTGF and SAS/CTGF stable clones enriched the side population, CD44-positive population and aldehyde dehydrogenase 1(ALDH1) activity, indicating the stem-like phenotype, of oral cancer cells significantly. Moreover, functional assays for evaluating the self-renew property showed a increase in spheroid-forming ability in FaDu cells treated with rCTGF. Over-expression of CTGF also enhanced the clonogenecity in SAS cells. Finally, we demonstrated the downstream critical factors, ESR1 and JUN, responsible for CTGF-induced Oct4, Nanog and Sox2 genes expression. Overall, excessive endogenous (over-expression) or exogenous (recombinant) CTGF both promote stem-like properties of head and neck cancer cells. These findings suggest that CTGF promote stemness in head and neck cancer cells.en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:18:38Z (GMT). No. of bitstreams: 1
ntu-99-R97450012-1.pdf: 1429733 bytes, checksum: 518a26f6f6177ac9851a9a0dfcae1ecd (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents*Signature Page----------------------------------------------------------------------------------2
*Acknowledgments------------------------------------------------------------------------------3
*Chinese Abstract-------------------------------------------------------------------------------5
*English Abstract--------------------------------------------------------------------------------6
*Introduction-------------------------------------------------------------------------------------7
*Aim of The Study-----------------------------------------------------------------------------11
*Materials and Methods----------------------------------------------------------------------12
*Results-------------------------------------------------------------------------------------------17
1. CTGF expression is positively correlated with expression of stemness genes.
2. CTGF up-regulates stemness genes and is responsible for stem-like properties.
3. CTGF enriches head and neck cancer cells harboring stem cell markers.
4. CTGF promotes stem-like properties in head and neck cancer cells.
5. ESR1 and JUN are the critical factors responsible for CTGF-induced Oct4, Nanog
and Sox2 gene expression.
6. CTGF expression is positively correlated with stemness genes expression in primary
HNC samples.
*Discussion--------------------------------------------------------------------------------------24
*References--------------------------------------------------------------------------------------28
*Tables--------------------------------------------------------------------------------------------33
*Figures and Figure Legends----------------------------------------------------------------36
*Supplemental Figures------------------------------------------------------------------------46
*Appendix---------------------------------------------------------------------------------------49
dc.language.isoen
dc.title結締組織生長因子促進頭頸癌細胞的幹細胞特性zh_TW
dc.titleConnective Tissue Growth Factor (CTGF) Promotes Stem-like Properties of Head and Neck Cancer Cellsen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.coadvisor郭彥彬(Mark Yen-Ping Kuo),楊慕華(Muh-Hwa Yang)
dc.contributor.oralexamcommittee#VALUE!
dc.subject.keyword結締組織生長因子,幹細胞特性,頭頸癌,zh_TW
dc.subject.keywordCTGF,Stem-like properties,Head and neck cancer,en
dc.relation.page49
dc.rights.note未授權
dc.date.accepted2010-07-27
dc.contributor.author-college牙醫專業學院zh_TW
dc.contributor.author-dept口腔生物科學研究所zh_TW
顯示於系所單位:口腔生物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
1.4 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved