Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22461
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳國慶教授
dc.contributor.authorChi-Hao Linen
dc.contributor.author林祺皓zh_TW
dc.date.accessioned2021-06-08T04:18:20Z-
dc.date.copyright2010-07-29
dc.date.issued2010
dc.date.submitted2010-07-27
dc.identifier.citation1. J. Duran, 'Sands, powders, and grains: An introduction to the physics of granular materials'. 2000: Springer Verlag, Berlin, Germany.
2. H. Jaeger, S. Nagel, and R. Behringer, 'Granular solids, liquids, and gases'. Reviews of Modern Physics, 1996. 68: p. 1259-1273.
3. K. van der Weele, 'Granular gas dynamics: how Maxwell's demon rules in a non-equilibrium system'. Contemporary Physics, 2008. 49(3): p. 157-178.
4. T. M. Knowlton, J. W. Carson, G. E. Klinzing, and W. C. Yang, 'The importance of storage, transfer, and collection'. Chemical Engineering Progress, 1994. 90: p. 44-54.
5. E. F. F. Chladni, 'Entdeckungen ueber die Theorie des Klanges'. 1787: Breitkopf und Hartel, Leipzig.
6. M. Faraday, 'On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces'. Philosophical Transactions of the Royal Society London, 1831. 121: p. 299-340.
7. R. A. Bagnold, 'The Physics of Blown Sand and Sand Dunes'. 1941: Methuen, London.
8. S. B. Savage and K. Hutter, 'The motion of a finite mass of granular material down a rough incline'. Journal of Fluid Mechanics, 1989. 199: p. 177-215.
9. Y. C. Tai and Y. C. Lin, 'A focused view of the behavior of granular flows down a confined inclined chute into the horizontal run-out zone'. Physics of Fluids, 2008. 20: p. 123302(12).
10. A. Rosato, K. J. Strandburg, F. Prinz, and R. H. Swendsen, 'Why the Brazil nuts are on top: Size segregation of particulate matter by shaking'. Physical Review Letters, 1987. 58(10): p. 1038-1040.
11. J. B. Knight, H. M. Jaeger, and S. R. Nagel, 'Vibration-induced size separation in granular media: The convection connection'. Physical Review Letters, 1993. 70(24): p. 3728-3731.
12. D. C. Hong and P. V. Quinn, 'Reverse Brazil Nut Problem: Competition between Percolation and Condensation'. Physical Review Letters, 2001. 86(15): p. 3423-3426.
13. F. F. Chung, S. S. Liaw, and M. C. Ho, 'Energy and phase transition in a horizontally vibrating granular system'. Granular Matter, 2010. 12: p. 369-374.
14. F. F. Chung, C. Y. Ju, and S. S. Liaw, 'Spiral trajectory in the horizontal Brazil nut effect'. Physical Review E, 2008. 77(6): p. 061304(5).
15. H. J. van Gerner, G. A. Caballero-Robledo, D. van der Meer, K. van der Weele, and M. A. van der Hoef, 'Coarsening of Faraday Heaps: Experiment, Simulation, and Theory'. Physical Review Letters, 2009. 103(2): p. 028001(4).
16. H. J. van Gerner, M. A. van der Hoef, D. van der Meer, and K. van der Weele, 'Interplay of air and sand: Faraday heaping unravelled'. Physical Review E, 2007. 76(5): p. 051305(7).
17. I. Goldhirsch and G. Zanetti, 'Clustering instability in dissipative systems'. Physical Review Letters, 1993. 70: p. 1619-1622.
18. J.C. Maxwell, 'Theory of Heat'. 1871: Longmans, Green, London.
19. Maxwell's Demon. http://en.wikipedia.org/wiki/Maxwell%27s_demon.
20. H. J. Schlichting and V. Nordmeier, 'Strukturen im Sand'. Math. Naturwiss. Unterr., 1996. 49(6): p. 323-332.
21. K. van der Weele, D. van der Meer, M. Versluis, and D. Lohse, 'Hysteretic clustering in granular gas'. Europhysics Letters, 2001. 53(3): p. 328-334.
22. D. van der Meer, K. van der Weele, and D. Lohse, 'Bifurcation diagram for compartmentalized granular gases'. Physical Review E, 2001. 63(6): p. 061304(9).
23. R. Mikkelsen, K. van der Weele, D. van der Meer, M. van Hecke, and D. Lohse, 'Small-number statistics near the clustering transition in a compartmentalized granular gas'. Physical Review E, 2005. 71(4): p. 041302(12).
24. D. van der Meer, K. van der Weele, and D. Lohse, 'Sudden Collapse of a Granular Cluster'. Physical Review Letters, 2002. 88(17): p. 174302(4).
25. R. Mikkelsen, 'GRANULAR DYNAMICS: CLUSTERING AND SHEAR FLOWS'. 2005: Doctoral Dissertation, Department of Applied Physics, University of Twente.
26. R. Mikkelsen, D. van der Meer, K. van der Weele, and D. Lohse, 'Competitive Clustering in a Bidisperse Granular Gas'. Physical Review Letters, 2002. 89(21): p. 214301(4).
27. R. Mikkelsen, D. van der Meer, K. van der Weele, and D. Lohse, 'Competitive clustering in a bidisperse granular gas: Experiment, molecular dynamics, and flux model'. Physical Review E, 2004. 70(6): p. 061307(12).
28. S. Viridi, M. Schmick, and M. Markus, 'Experimental observations of oscillations and segregation in a binary granular mixture'. Physical Review E, 2006. 74(4): p. 041301(4).
29. S. Viridi, M. Schmick, and M. Markus, 'Granular Clock and Full Segregation in a Shaken, Binary Granular Medium: Experiments and Simulations'. Nonlinear Phenomena in Complex Systems, 2006. 9(4): p. 352-359.
30. R. M. Noyes, R. Field, and E. Koros, 'Oscillations in chemical systems. I. Detailed mechanism in a system showing temporal oscillations'. Journal of the American Chemical Society, 1972. 94(4): p. 1394-1395.
31. G. Nicolis and J. Portnow, 'Chemical Oscillations'. Chemical Reviews, 1973. 73(4): p. 365-384.
32. J. J. Brey, F. Moreno, R. Garcıa-Rojo, and M. J. Ruiz-Montero, 'Hydrodynamic Maxwell demon in granular systems'. Physical Review E, 2001. 65(1): p. 011305(4).
33. J. J. Brey, R. Garcıa-Rojo, F. Moreno, and M. J. Ruiz-Montero, 'Symmetry breaking and clustering in a vibrated granular gas with several macroscopically connected compartments'. The European Physical Journal Special Topics, 2007. 146: p. 323-330.
34. P. Eshuis, K. van der Weele, D. Lohse, and D. van der Meer, 'Experimental Realization of a Rotational Ratchet in a Granular Gas'. Physical Review Letters, 2010. 104(24): p. 248001(4).
35. P. Eshuis, K. van der Weele, D. van der Meer, and D. Lohse, 'Granular Leidenfrost Effect: Experiment and Theory of Floating Particle Clusters'. Physical Review Letters, 2005. 95(25): p. 258001(4).
36. U. M. B. Marconi and A. Puglisi, 'Statistical mechanics of granular gases in compartmentalized systems'. Physical Review E, 2003. 68(3): p. 031306(9).
37. U. M. B. Marconi, G. Costantini, and D. Paolotti, 'Granular gases in compartmentalized systems'. Journal of Physics: Condensed Matter, 2005. 17: p. S2641-S2656.
38. U. M. B. Marconi and M. Conti, 'Dynamics of vibrofluidized granular gases in periodic structures'. Physical Review E, 2004. 69(1): p. 011302(8).
39. A. Lipowski and M. Droz, 'Urn model of separation of sand'. Physical Review E, 2002. 65(3): p. 031307(7).
40. J. Eggers, 'Sand as Maxwell's Demon'. Physical Review Letters, 1999. 83(25): p. 5322-5325.
41. C. C. Li, 'On the Critical Conditions of Granular Oscillation'. 2008: Master Thesis, Institute of Applied Mechanics, National Taiwan University.
42. K. C. Chen, C. H. Lin, C. C. Li, and J. J. Li, 'Dual Granular Temperature Oscillation of a Compartmentalized Bidisperse Granular Gas'. Journal of the Physical Society of Japan, 2009. 78(4): p. 044401(7).
43. M. Hou, H. Tu, R. Liu, Y. Li, K. Lu, P. Y. Lai, and C. K. Chan, 'Temperature Oscillations in a Compartmentalized Bidisperse Granular Gas'. Physical Review Letters, 2008. 100(6): p. 068001(4).
44. K. C. Chen, C. C. Li, C. H. Lin, and G. H. Guo, 'Clustering and phases of compartmentalized granular gases'. Physical Review E, 2009. 79(2): p. 021307(9).
45. B. J. Alder and T. E. Wainwright, 'Phase Transition for a Hard Sphere System'. Journal of Chemical Physics, 1957. 27: p. 1208-1209.
46. B. J. Alder and T. E. Wainwright, 'Studies in Molecular Dynamics. I: General Method'. Journal of Chemical Physics, 1959. 31: p. 459-466.
47. B. J. Alder and T. E. Wainwright, 'Studies in Molecular Dynamics. II: Behaviour of a Small Number of Elastic Spheres'. Journal of Chemical Physics, 1960. 33: p. 1439-1451.
48. W. G. Hoover, 'Molecular Dynamics'. 1986: Springer-Verlag, Berlin Heidelberg New York.
49. D. C. Rapaport, 'The Art of Molecular Dynamics Simulation'. 1995: Cambridge University Press, Cambridge.
50. D. Frenkel and B. Smit, 'Understanding Molecular Simulations: From Algorithms to Applications'. 1996: Academic Press, San Diego.
51. M. P. Allen and D. J. Tildesley, 'Computer Simulations of Liquids'. 1987: Clarendon Press, Oxford.
52. P. A. Cundall and O. D. L. Strack, 'A Discrete Numerical Model for Granular Assemblies'. Geotechnique, 1979. 29: p. 47-65.
53. P. K. Haff and B. T. Werner, 'Computer Simulation of the Mechanical Sorting of Grains'. Powder Technology, 1986. 48(3): p. 239-245.
54. J. A. C. Gallas, H. J. Herrmann, and S. Sokolowski, 'Convection Cells in Vibrating Granular Media'. Physical Review Letters, 1992. 69(9): p. 1371(4).
55. O. R. Walton and R. L. Braun, 'Viscosity, Granular Temperature, and Stress Calculations for Shearing Assemblies of Inelastic, Frictional Disk'. Journal of Rheology, 1986. 30(5): p. 949-980.
56. H. Hertz, 'Uber die Beruhrung fester elastischer Korper'. Journal für die reine und angewandte Mathematik, 1882. 92: p. 156-171.
57. N. V. Brilliantov, F. Spahn, J.-M. Hertzsch, and T. Poschel, 'A model for collisions in granular gases'. Physical Review E, 1996. 53(5): p. 5382-5392.
58. T. Poschel and T. Schwager, 'Computational Granular Dynamics: Models and Algorithms'. 2005: Springer-Verlag, Berlin Heidelberg.
59. R. Lambiotte, J. M. Salazar, and L. Brenig, 'From particle segregation to the granular clock'. Physics Letters A, 2005. 343: p. 224-230.
60. R. Lambiotte and L. Brenig, 'Energy nonequipartition in multicomponent granular mixtures'. Physical Review E, 2005. 72(4): p. 042301(4).
61. G. Costantini, D. Paolotti, C. Cattuto, and U. M. B. Marconi, 'Bistable clustering in driven granular mixtures'. Physica A, 2005. 347: p. 411-428.
62. L. M. Ju, 'Granular Follower'. 2007: Master Thesis, Institute of Applied Mechanics, National Taiwan University.
63. K. C. Chen, C. C. Li, C. H. Lin, L. M. Ju, and C. S. Yeh, 'Experimental Study of Three-Compartmentalized Granular Follower'. Journal of the Physical Society of Japan, 2008. 77(8): p. 084403(7).
64. G.H. Guo, 'Oscillation, clustering, and horizontal segregation in a two-compartmentalized bi-dispersed granular gas'. 2008: Master Thesis, Institute of Applied Mechanics, National Taiwan University.
65. W. L. Hsieh, 'On the Critical Clustering Temperature of Granular Gases with Intruder'. 2010: Master Thesis, Institute of Applied Mechanics, National Taiwan University.
66. J. J. Brey, J. W. Dufty, C. S. Kim, and A. Santos, 'Hydrodynamics for granular flow at low density'. Physical Review E, 1998. 58(4): p. 4638-4653.
67. F. C. Chiu, 'Clustering and Oscillation of the Granular Gas in a Non-symmetrical Container'. 2009: Master Thesis, Institute of Applied Mechanics, National Taiwan University.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22461-
dc.description.abstract本文主要在探討分格容器中顆粒物質受到底部垂直震動的運動行為。因為該系統中,顆粒的碰撞時間遠小於顆粒連續兩次碰撞的間隔時間,故此系統可視為顆粒氣體(granular gases)。吾人建立了分子動力學方法(molecular dynamics simulations,MD)來模擬二元顆粒物質受外部振動所產生的各類狀態(如均勻分布、單格聚集、顆粒振盪與二格聚集等狀態)。在顆粒振盪狀態時,顆粒溫度的計算證實了該過程中,溫度確實呈現了振盪狀態。然而,溫度振盪過程產生的二區溫度差異,並非整體宏觀行為的唯一機制(高溫流向低溫)。
因此,吾人將振盪過程區分為二個階段,分別為輕顆粒流動階段(L-stage)與重顆粒流動階段(H-stage),其中L階段又區分為2個階段(L1與L2)。L1階段顆粒流動方向與溫度差異互為相反方向,故吾人針對此一階段提出濃度驅動的機制來解釋宏觀行為。為了進一步地證實濃度驅動的概念,吾人將分格容器拓展至非對稱分格系統。由實驗觀察,因左右二室體積不同使得顆粒的濃度造成差異,導致顆粒由大區流動至小區的時間與反向流動時間產生了差異,且時間差異隨著非對稱比值的增加有愈顯著差距。
除此之外,二元顆粒振盪亦會受到二元顆粒數目的多寡而有相反的差異。當顆粒數較少時,顆粒由小區流動至大區的時間較反向流動長;而在顆粒較多的時候,顆粒由小區流動至大區的時間卻較反向流動短。對於此一特殊又有趣的現象,吾人以能量低點解釋了其物理機制,並由MD的方式得到了證實。當顆粒數較少時,顆粒聚集於小區的能量低於顆粒聚集於大區,相較而言小區較為穩定,故停留時間較長;而顆粒數較多時卻是恰為相反,使得大區較為穩定進而顆粒的停留時間較長。
最後,吾人針對Hsieh的侵入顆粒議題,提出了2T模型來描述凝結溫度的下降。2T模型主要結合了二室間的通量平衡與驅動力平衡。藉由二個平衡概念,證實了侵入顆粒愈重,則凝結溫度下降愈大的結果。
zh_TW
dc.description.abstractThis article studies the behavior of granular materials in a compartmentalized container by the vertical vibration. Because the time of the collision between particles is much smaller than the time interval between two successive collisions, so the system can be regarded as granular gases. We establish a molecular dynamics (molecular dynamics simulations, MD) to simulate the vibration of binary particles generated by various external input energy. There are several states can be observed, such as uniform state, one clustering state, granule oscillation and two-clustering state). In granular oscillation, the granular temperature shows an oscillatory state. Furthermore, the temperature difference between two zones is not the only mechanism for granular oscillation.
The oscillation process is divided into two stages. One is L-stage to describe the movement of light particles, and another one is H-stage to describe the movement of heavy particles. L-stage can be divided into two stages (L1 and L2). In L1-stage, the of difference of concentration is the macro-driven mechanism. In order to further confirm the concept of concentration, we extended to non-symmetrical systems. From the experimental observations, the concentration difference leads to time differences between the movement of particles from large zone to small zone and the reverse flow. Furthermore, the time difference will increase with the increase of the non-symmetrical ratio .
In addition, we observed that there are two types of granular oscillations. When the number of particles is small, the time required for particles moved from the large zone to small zone is smaller than the reverse direction. However, when the number of particles is large, the time required for particles moved from the large zone to small zone is larger than the reverse direction. For this special phenomenon, we use the particle flux model calculate the period bifurcation and the period switch. Besides, we use the concept of energy to explain the physical mechanism by the MD simulations. When the number of particles is small, the averaged energy for particles cluster in the small zone is smaller than the one for particles cluster in the large zone. However, when the number of particles is much more, the averaged energy for particles cluster in the small zone is greater than the one for particles cluster in the large zone.
Finally, we propose the 2T model to describe the intruder effect. The intruder effect is that the condensation temperature will drop when the intruder is added into the based particles. 2T model combine the flux balance with the balance of driving force. By the two balanced concepts, we successfully calculate the drop of the condensation temperature.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:18:20Z (GMT). No. of bitstreams: 1
ntu-99-D95543001-1.pdf: 14171286 bytes, checksum: 605f2b88851c8b95b0e7e09a3a7276c2 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents誌謝……………………I
摘要…………………….II
ABSTRACT…………………IV
目錄……………………VI
圖目錄……………………VIII
表目錄……………………XII
第一章 緒論…………………1
1.1 文獻回顧 4
1.1.1 Eggers顆粒通量模型 4
1.1.2 多格系統之顆粒聚集 5
1.1.3 顆粒聚集之突崩 9
1.1.4二元二格顆粒氣體之競爭聚集 10
1.1.5 顆粒鐘 12
1.1.6 水平顆粒聚集 13
1.2 本文架構 15
第二章 理論背景…………………17
2.1 J. Eggers顆粒通量函數 17
2.2 Chen et al.二元顆粒通量模型 24
2.2.1能量獲得率(input energy rate) 25
2.2.2 能量消散率(energy dissipation rate) 27
2.2.3 能量守恆 28
2.2.4 顆粒通量函數 28
2.3 Hou et al.顆粒振盪模型 29
第三章 顆粒計算動力學………………33
3.1 運動方程式 33
3.2 球體顆粒模型 35
3.2.1 球體接觸 35
3.2.2 正向接觸力 35
3.2.3 碰撞過程(Duration of Collisions) 36
3.2.4 切向接觸力 38
3.3時間積分方法 38
3.3.1 尤拉演算法 39
3.3.2 Verlet演算法 39
3.3.3 跳蛙法 40
3.3.4 速度Verlet演算法 42
3.3.5 Gear演算法 42
3.4 球體接觸搜索 44
第四章 顆粒追隨之Viridi顆粒通量模型…………47
4.1 Lambiotte與Viridi之通量模型 48
4.2顆粒追隨之通量模型建立 50
4.3 參數分析 51
4.4顆粒追隨現象模擬 57
第五章 二元二格顆粒氣體雙重溫度振盪之分子動力學模擬……61
5.1 顆粒溫度概念與驅逐-捕捉模型 61
5.2二元顆粒材料參數 63
5.3一元二格顆粒氣體之溫度分析 64
5.4二元二格顆粒氣體之運動狀態 66
5.5二元顆粒振盪之溫度分析 67
第六章 顆粒通量模型探討與應用……………73
6.1 顆粒追隨之應用 75
6.2 對稱系統之顆粒振盪 78
6.3 非對稱系統之顆粒振盪 87
6.3.1 實驗設置 87
6.3.2 MD模擬 90
6.3.3 顆粒通量模型分析 93
6.3.4 時間分岔 94
6.4 侵入顆粒效應 104
第七章 總結與未來展望………………111
7.1 結論 111
7.2 未來展望 112
參考文獻…………………114
dc.language.isozh-TW
dc.title分格顆粒氣體之分子動力學模擬與顆粒通量模型之研究zh_TW
dc.titleOn Molecular Dynamics Simulations and Particle Flux Model for Compartmentalized Granular Gasesen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree博士
dc.contributor.oralexamcommittee葉超雄教授,廖思善教授,張建成教授,蕭述三教授,趙聖德教授
dc.subject.keyword顆粒氣體,顆粒振盪,分子動力學,顆粒通量,凝結溫度,zh_TW
dc.subject.keywordgranular gases,granular oscillation,molecular dynamics,particle flux,condensation temperature,en
dc.relation.page119
dc.rights.note未授權
dc.date.accepted2010-07-28
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
13.84 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved