Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22457
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張慶源(Chin-Yuan Chang)
dc.contributor.authorDar-Ren Jien
dc.contributor.author嵇達人zh_TW
dc.date.accessioned2021-06-08T04:18:14Z-
dc.date.copyright2010-07-29
dc.date.issued2010
dc.date.submitted2010-07-28
dc.identifier.citation英文部分
1. Ahlen, A.T., “Strong Black Liquor Oxidation at Northwood Pulp and Timber Limited,” Pulp Pap. -Canada, 74(10), 104-106 (1973).
2. Alborzfar, M., K. Escande and S.J. Allen, “Removal of 3,4-dichlorobut-1-ene using Ozone Oxidation,” Water Res., 34(11), 2963-2970 (2000).
3. APHA (American Public Health Association, American Water Works Association), “Standard Methods for the Examination of Water and Wastewater,” 20th Ed., APHA, New York (1998).
4. Baillod, C.R. and B.M. Faith, Wet Oxidation and Ozonation of Specific Organic Pollutants, EPA-6600/2-83-060, National Service Center for Environmental Publications, OH (1983) (1983).
5. Beltran, F.J. and P. Alvarez, “Rate Constant Determination of Ozone-Organic Fast Reactions in Water Using an Agitated Cell,” J. Environ. Sci. Health Part A-Environ. Sci. Eng. Toxic Hazard. Subst. Control, 31(5), 1159-1178 (1996).
6. Bila, D.M., A.F. Montalvao, A.C. Silva and M. Dezotti, “Ozonation of a Landfill Leachate: Evaluation of Toxicity Removal and Biodegradability Improvement,” J. Hazard. Mater., 117(2-3), 235-242 (2005).
7. Boye, B., G. Sandonà, M. Giomo, A. Buso and G. Farnia, Electro-Fenton-based treatments of real effluents from tanning processes and landfills. J. Environ. Eng. Manage., 19(5), 283-289 (2009).
8. Carlsson, P.A., L. Österlunda, P. Thormählen, A. Palmqvist, E. Fridell, J. Jansson and M. Skoglundh, A transient in situ FTIR and XANES study of CO oxidation over Pt/Al2O3 catalysts. J. Catal., 226, 422–434 (2004).
9. Chang, C.C., C.Y. Chiu, C.Y. Chang, C.F. Chang, Y.H. Chen, D.R. Ji, Y.H. Yu and P.C. Chiang, “Combined Photolysis and Catalytic Ozonation of Dimethyl Phthalate in a High-gravity Rotating Packed Bed,” J. Hazard. Mater., 161(1), 287-293 (2009).
10. Chang, C.F., C.Y. Chang and W. Holl, “Adsorption Behavior of 2-Naphthalenesulfonate on Activated Carbon from Aqueous Systems,” Ind. Eng. Chem. Res., 42(26), 6904-6910 (2003).
11. Chang, C.F., C.Y. Chang and W. Holl, “Investigating the Adsorption of 2-Mercaptothiazoline on Activated Carbon from Aqueous Systems,” J. Colloid Interf. Sci., 272(1), 52-58 (2004a).
12. Chang, C.F., C.Y. Chang, W. Holl, M. Ulmer, Y.H. Chen and H.J. Groβ, “Adsorption Kinetics of Polyethylene Glycol from Aqueous Solution onto Activated Carbon,” Water Res., 38(10), 2559-2570 (2004b).
13. Chang, C.P. and M.C. Lu, “Effect of Ferric Ions on the Photocatalytic Oxidation of 2-Chlorophenol with 254 and 365 nm UV Lights,” J. Environ. Eng. Manage.,17(4), 235-243 (2007).
14. Chen, K.C. and S.J. Masten, “Effect of Combined Ozonation-ultrafiltration on Membrane Fouling and Water Quality,” J. Chin. Inst. Environ. Eng., 15(4), 263-268 (2005).
15. Chen, Y.H., C.Y. Chang, W.L. Su, C.Y. Chiu, Y.H. Yu, P.C. Chiang, C.F. Chang, J.L. Shie, C.S. Chiou and Sally I.M. Chiang, “Ozonation of CI Reactive Black 5 Using Rotating Packed Bed and Completely Stirred Tank Reactor,” J. Chem. Technol. Biot., 80(1), 68-75 (2005a).
16. Chen, Y.H., C.Y. Chiu, C.Y. Chang, Y.H. Huang, Y.H. Yu, P.C. Chiang, J.L. Shie and C.S. Chiou, “Modeling Ozonation Process with Pollutant in a Rotating Packed Bed,” Ind. Eng. Chem. Res., 44(1), 21-29 (2005b).
17. Chen, Y.H., C.Y. Chang, C.C. Chen and C.Y. Chiu, “Kinetics of Ozonation of 2-Mercaptothiazoline in an Electroplating Solution Combined with UV Radiation,” Ind. Eng. Chem. Res., 45(14), 4936-4943 (2006).
18. Cheng, W.Y., “A High Accuracy Plastic Color Filter Development by Using Time-Recovery and Stress-Free Methods,” Proceedings of the 9th Asian Symposium on Information Display (Proc. of ASID ’06), Oct. 8-12, New Delhi, India (2006).
19. Chung, J., “Review of the FPD Industry for First Half Year 2007 and Further Prospects,” The Industrial Economics and Knowledge Center of the Industrial Technology Research Institute, http://www.itis.org.tw/rptDetailFree.screen?rptidno=F41B837390B5DF954825735B0003372F (accessed on March 20, 2008) (in Chinese).
20. Coffinet, S., C. Cossu-Leguille, A. Basseres, J.F. Gonnet and P. Vasseur, Response of the Bivalve Unio Tumidus and Freshwater Communities in Artificial Streams for Hazard Assessment of Methyl Methacrylate. Environ. Toxicol. Chem., 27(6), 1371-1382 (2008).
21. Copa, W.M. and W.B. Gitchel, In: H.M. Freeman (Ed.), Standard Handbook of Hazardous Waste Treatment and Disposal, McGraw-Hill, New York, pp. 8.77-8.90 (1988).
22. Devlin, H.R. and I.J. Harris, “Mechanism of the Oxidation of Aqueous Phenol with Dissolved-Oxygen,” Ind. Eng. Chem. Fund., 23(4), 387-392 (1984).
23. Displaysearch Taiwan, “Free Shipment Data for the Display Industry,” http://www.displaysearch.com/cps/rde/xchg/SID-0A424DE8-B9ED5B69/displaysearch/hs.xsl/research_paneltrack.asp (accessed on March 20, 2008).
24. Everlight Chemical Industrial Co., ENR110, ENG210, ENB310 Chromaticity Design (2005) (http://www.ecic.com/product/elec/pro-ec-110-c.htm).
25. Garg, A., I.M. Mishra and S. Chand, “Catalytic Wet Oxidation of the Pretreated Synthetic Pulp and Paper Mill Effluent under Moderate Conditions,” Chemosphere, 66(9), 1799-1805 (2007).
26. Gea, G., M.B. Murillo and J. Arauzo, Thermal degradation of alkaline black liquor from straw. Thermogravimetric study. Ind. Eng. Chem. Res., 41 (19), 4714–4721 (2002). (DOI: 10.1021/ie020283z).
27. Hautaniemi, M., J. Kallas, R. Munter and M. Trapido, “Modelling of Chlorophenol Treatment in Aqueous Solutions. 1. Ozonation and Ozonation Combined with UV Radiation under Acidic Conditions,” Ozone-Sci. Eng., 20(4), 259-282 (1998).
28. Hong, P.K.A., Y. Huang, C.F. Lin and A.Y.C. Lin, “Pressure-assisted O3/H2O2 Process for Degradation of MTBE,” J. Environ. Eng. Manage.,18(4), 239-247 (2008).
29. Hsu, R.B., P.I. Lin and P.H. Sheng, “Photo-sensible Resin for Color Filter,” Taiwan Patent Application No. 95112322 (2006).
30. Huang, L.Y., “An Integration of Quality Management System and Performance Management System on TFT LCD Industry,” Master Thesis, National Sun Yat-Sen University, Kaohsiung, Taiwan (2005). (in Chinese)
31. Huang, T.C. and D.H. Chen, Kinetics of ozone decomposition in aqueous solution with and without ultraviolet radiation. J. Chin. Inst. Chem. Eng., 24(4), 207-212 (1993).
32. Huang, W.J., Y.L. Cheng and B.L. Cheng, “Effect of Water Quality on Destruction of Odor Causing Substances during Ozonation Processes,” J. Environ. Eng. Manage., 17(4), 257-265 (2007).
33. Hung, C.M., “Catalytic Wet Oxidation of Ammonia Solution with Platinum-Palladium-Rhodium Composite Oxide Catalyst,” J. Environ. Eng. Manage.,18(2) 85-91 (2008).
34. IEKC-ITRI (the Industrial Economics and Knowledge Center of the Industrial Technology Research Institute, “Review and prospect of FPD industry in the first quarter (Q1) of 2007,” ITRI of Taiwan (2006), http:// www.itri.org.tw/chi/services/ieknews/200706211036516107E-0.doc (accessed on 20 March, 2008) (in Chinese).
35. Imamura, S., H. Kinunaka and N. Kawabata, “The Wet Oxidation of Organic-Compounds Catalyzed by Co-Bi Complex Oxide,” Bull. Chem. Soc. Jpn., 55(11), 3679-3680 (1982).
36. Ingale, M.N., J.B. Joshi, V.V. Mahajani and M.K. Gada, Waste treatment of an aqueous waste stream from a cyclohexane oxidation unit: A case study. Process Saf. Environ., 74(4), 265-272 (1996).
37. Ito, M.M., K. Akita and H. Inoue, “Wet Oxidation of Oxygen-Containing and Nitrogen-Containing Organic-Compounds Catalyzed by Cobalt(III) Oxide,” Ind. Eng. Chem. Res., 28(7), 894-899 (1989).
38. Joglekar H.S., S.D. Samant and J.B. Joshi, “Kinetics of Wet Air Oxidation of Phenol and Substituted Phenols, ” Water Res., 25(2), 135-145 (1991).
39. Juang, L.C., C.C. Wang, C.K. Lee and T.C. Hsu, “Dyes Adsorption onto Organoclay and MCM-41,” J. Environ. Eng. Manage.,17(1), 29-38 (2007).
40. Kastanek, F., J. Zahradnik, J. Kratochvil and J. Cermak, Chemical Reactors for Gas-Liquid Systems, Ellis Horwood, New York (1993).
41. Klinghoffer, A.A., R.L. Cerro and M.A. Abraham, Catalytic Wet Oxidation of Acetic Acid Using Platinum on Alumina Monolith Catalyst. Catal. Today, 40(1), 59-71 (1998).
42. Langlias, B., D.A. Reckhow and D.R. Brink, Ozone in Water Treatment Application and Engineering, Lewis publishers, Chelsea, MI (1991).
43. Legube, B. and N.K. Vel Leitner, “Catalystic Ozonation: A Promising Advanced Oxidation Technology for Water Treatment,” Catal. Today, 53(1), 61-72 (1999).
44. Leggat, P.A. and U. Kedjarune, Toxicity of Methyl Methacrylate in Dentistry. Int. Dent. J., 53(3), 126-131 (2003).
45. Levec, J., M. Herskowitz and J.M. Smith, “Active Catalyst for Oxidation of Acetic-Acid Solutions,” AICHE J., 22(5), 919-920 (1976).
46. Leyva-Ramos, R., A. Jacobo-Azuara, O.L. Torres-Rivera, R.M. Guerrero-Coronado, M.S. Berber-Mendoza and P. Alonso-Davila, “Adsorption of Chromium (VI) from Water Solution onto Organobentonite,” J. Environ. Eng. Manage., 18(5), 311-317 (2008b).
47. Leyva-Ramos, R., A. Jacobo-Azuara, O.L. Torres-Rivera, R.M. Guerrero-Coronado, M.S. Berber-Mendoza and P. Alonso-Davila, “Adsorption of Chromium (VI) from Water Solution onto Organobentonite,” J. Environ. Eng. Manage.,18(5), 311-317 (2008b).
48. Li, L.X., P.S. Chen and E.F. Gloyna, “Generalized Kinetic-model for Wet Oxidation of Organic-Compounds,” AIChE J., 37(11), 1687-1697 (1991).
49. Li, W.H., J.L. Huang, H.Wang, A.J.Qi and J. Xie, “Treatment of Acrylic Acid Waste Water by Catalytic Wet Oxidation,” J. Jilin Inst. Chem. Technol., 24(3), 3-6 (2007) (in Chinese).
50. Liljelind, I.E., A. Hagenbjork-Gustafsson and L.O. Nilssonb, Potential Dermal Exposure to Methyl Methacrylate Among Dental Technicians; Variability and Determinants in a Field Study. J. Environ. Monitor., 11(1), 160-165 (2009).
51. Lin, S.H. and Y.F. Wu, “Catalytic Wet Air Oxidation of Phenolic Wastewaters,” Environ. Technol., 17(2), 175-181 (1996).
52. Lin, S.H. and S.J. Ho, “Treatment of High-Strength Industrial Wastewater by Wet Air Oxidation - A Case Study,” Waste Manage., 17(1), 71-78 (1997a).
53. Lin, S.H. and S.J. Ho, “Kinetics of Wet Air Oxidation of High-Strength Industrial Wastewater,” J. Environ. Eng. ASCE, 123(9), 852-858 (1997b)
54. Mishra, V.S., V.V. Mahajani and J.B. Joshi, Wet air oxidation. Ind. Eng. Chem. Res., 34(1), 2-48 (1995).
55. Namasivayam, C. and M.V. Sureshkumar, “Removal of Sulfate from Water and Wastewater by Surfactant-modified Coir Pith, An Agricultural Solid ‘Waste’ by Adsorption Methodology,” J. Environ. Eng. Manage., 17(2), 129-135 (2007).
56. No, T.W., D.W. Im, S.S. Kim and S.W. Lee, “Pigment-dispersed Photoresist composition for Color Filter of Liquid Crystal Display,” US Patent 5,811,219 (1998).
57. NSCT (National Science Council of Taiwan), “Regulation for the Use and Management of Wastewater Treatment and Sewage System in the Science-based Industrial Park,” Order No. 0920005526-1 (January 24, 2003).
58. Oh, B.S., Y.J. Jung, Y.J. Oh, Y.S. Yoo and J.W. Kang, “Application of O3, UV and O3/UV Processes to Reduce Diethyl Phthalate and Its Estrogenic Activity,” Sci. Total Environ., 367(2-3), 681-693 (2006).
59. Oettinger, T.P. and M.G. Fontana, Austenitic stainless steels and titanium for wet oxidation of sewage sludge. Mater. Performance, 15(11), 29-35 (1976).
60. Oturan N., I. Sirés, M.A. Oturan and E. Brillas, Degradation of pesticides in aqueous medium by electro-Fenton and related methods. A Review. J. Environ. Eng. Manage., 19(5), 235-255 (2009).
61. Özcan, A., Y.l Şahin, A.S. Koparal and M.A. Oturan, Electro-Fenton removal of the cationic dye basic blue 3 by using carbon felt cathode. J. Environ. Eng. Manage., 19(5), 267-275 (2009).
62. Pa, P.S., Mechanism of Design of the Precision Recycle Process of a Color Filter Using Electrochemical Etching, J. Electrochem. Soc., 155(4), D327-D331 (2008a) (DOI: 10.1149/1.2839621).
63. Pa, P.S., Precision removal of ITO layer using plate-form tool design, Journal of Solid State Electrochemistry, 12(11), 1445-1451 (2008b) (DOI: 10.1007/s10008-007-0492-0).
64. Pa, P.S., Reclaim System Design of Indium Tin Oxide Thin-Film Removal from Color Filters of Displays, Jpn. J. Appl. Phys., 47(9), 7444-7447 (2008c) (DOI: 10.1143/JJAP.47.7444).
65. Pa, P.S., Yield improvement for displays’ color filters surface by establishing a precision reclaim-module, Applied Physics A: Materials Science & Processing, 92(3), 607-614 (2008d) (DOI: 10.1007/s00339-008-4625-9).
66. Pa, P.S., Effective tool design of three-rank form as precision removal-process of ITO thin-films, Trans. Nonferrous Met. Soc. China, 19(z1), s232-s237 (2009).
67. Papelis, C., P.V. Roberts and J.O. Leckie, “Modeling the Rate of Cadium and Selenite Adsorption on Micro- and Mesoporous Transition Aluminas,” Environ. Sci. Technol., 29(4), 1099-1108 (1995).
68. Peralta-Hernández, J.M., C.A. Martínez-Huitle, J.L. Guzmán-Mar and A. ernández-Ramírez, Recent advances in the application of electro-fenton and photoelectro-Fenton process for removal of synthetic dyes in wastewater treatment. J. Environ. Eng. Manage., 19(5), 257-265 (2009).
69. Perkow, H., R. Steiner and H. Vollmuller, Ger. Chem. Eng. 4, 193-201(1981).
70. Peterscheck, H.W. and D.R. Sillerud, Apparatus and method for effecting chemical reactions. European Patent EP0282276 (1992).
71. Peyton, G.R. and W.H. Glaze, “Destruction Pollutants in Water with Ozone in Combination with Ultraviolet Radiation. 3. Photolysis of Aqueous Ozone,” Environ. Sci. Technol., 22(7), 761-767 (1988).
72. Pray, H.A., C.E. Schweickert and B.H. Minnich, Solubility of Hydrogen, Oxygen, Nitrogen, and Helium in Water. Ind. Eng. Chem., 44(5), 1146–1151 (1952).
73. Pruden, B.B. and H. Le, WAO of soluble components in waste water, Can. J. Chem. Eng., 54(4), 319-325 (1976).
74. Reynolds, T.D., Unit Operations and Processes in Environmental Engineering, Wadsworth, Inc., Belmont, California, USA (1982).
75. Sabnis, R.W., “Color Filter Technology for Liquid Crystal Displays,” Displays, 20(3), 119-129 (1999).
76. Sadana, A. and J.R. Katzer, “Catalytic-oxidation of Phenol in Aqueous-Solution over Copper Oxide,” Industrial & Engineering Chemistry Fundamentals, 13(2), 127-134 (1974).
77. Schwarzenbach, R.P., P.M. Gschwend, D.M. Imboden, Environmental Organic Chemistry, John Wiley and Sons, New York (1993).
78. Shah, Y.T., B.G. Kelkar, S.P. Godbole and W.-D. Deckwer, Design parameters estimations for bubble column reactors. AIChE J., 28(3), 353-379 (1982) DOI: 10.1002/aic.690280302.
79. Shang, N.C., Y.H. Chen, H.W. Ma, C.W. Lee, C.H. Chang, Y.H. Yu and C.H. Lee, Oxidation of Methyl Methacrylate from Semiconductor Wastewater by O3 and O3/UV Processes. J. Hazard. Mater., 147(1-2), 307–312 (2007).
80. Sotelo, J.L., F. J. Beltran, F. J. Benitez and J. Beltran-Heredia, Ozone decomposition in water: kinetic study. Ind. Emg. Chem. Res., 26, 39-47 (1987).
81. Sotelo, J.L., F.J Beltrán, F.J. Benitez and J Beltrán-Heredia, Henry's law constant for the ozone-water system. Water Res., 23(10), 1239-1246 (1989).
82. Subha, R. and C. Namasivayam, “Modeling of Adsorption Isotherms and Kinetics of 2,4,6-Trichlorophenol onto Microporous ZnCl2 Activated Coir Pith Carbon,” J. Environ. Eng. Manage., 18(4), 275-280 (2008).
83. Tsukada, T., State-of-the art of a-Si TFT/LCD. Electron. Comm. Jpn. 2, 77(7), 38-45 (1994).
84. U.S. Environmental Protection Agency (USEPA), Toxicological Review of Methyl Methacrylate (CAS no. 80-62-6). In Support of Summary Information on the Integrated Risk Information System (IRIS), Washington, DC (1998). 5093738
85. Vatanpour, V., N. Daneshvar and M.H. Rasoulifard, Electro-Fenton degradation of synthetic dye mixture: influence of intermediates. J. Environ. Eng. Manage., 19(5), 277-282 (2009).
86. Watanabe, H. and K. Aoki, “Color Filter Manufacturing Method Using Negative Photoresist Material for the Filter,” US Patent 5,093,738 (1992).
87. Yang, S., Z. Liu, X. Huang and B. Zhang, Wet air oxidation of epoxy acrylate monomer industrial wastewater. J. Hazard. Mater., 178(1-3), 786-791 (2010).
88. Yeber, M.C., J. Rodriguez, J. Freer, J. Baeza, N. Duran and H.D. Mansilla, “Advanced Oxidation of a Pulp Mill Bleaching Wastewater,” Chemosphere, 39(10), 1679-1688 (1999).
89. Yeh, P.C., “Reworking Method of Color Filter Substrate,” Taiwan Patent, I249044 (2004).
中文部分
1. 中央日報網路報,「台灣半導體今年產值1.58兆,年增24.8%」http://www.cdnews.com.tw/cdnews_site/docDetail.jsp?coluid=112&docid=101131918 (2010-04-18)
2. 王信陽,「台灣TFT-LCD關鍵零組件發展與競爭力分析」,光連雙月刊No. 44,6-11(Mar, 2003)(www.pida.org.tw/optolink/optolink_pdf/92034401.pdf)
3. 達興材料股份有限公司,「彩色光阻」,http://www.daxinmat.com/www/product/ index_cht_product_ColorResist.html (Dec., 2009)
4. 何雍,「儀器分析總整理」,鼎茂圖書出版社出版,第五版,台北 (2004)。
5. 李奇威,「以臭氧與紫外光處理半導體製造業廢水中之甲基丙烯酸甲酯」,國立台灣大學環境工程學研究所碩士論文,台北 (2002)。
6. 柯富祥,蔡輝嘉,「光學微影術中光阻的發展趨勢」,奈米通訊,5(3),p. 42-49 (1993)(http://www.ndl.org.tw/cht/ndlcomm/P5_3/42.htm)。
7. 陳仁仲、盧文俊、李士畦,工業用水效率與回收率的內涵探討,工業污染防治No. 77,122-159 (Jan, 2001)
8. 電子工程專輯,「DisplaySearch:玻璃基板缺貨將延續至Q3」,http://www.eettaiwan.com/ART_8800578898_480702_NT_14f07ac7.HTM(上網時間: 2009年07月20日)
9. 電子工程專輯,「PIDA:全球光電市場2010年可望成長16%」,http://www.eettaiwan.com/ART_8800595451_480702_NT_f04d6b22.HTM(上網時間:2010年01月15日)。
10. 嵇達人、王天財、李嘉益、張慶源,彩色濾光片玻璃基板再生強鹼廢水之電透析-電合成處理以回收KOH並電合成KOH與NaOCl,中華民國環境工程學會2007廢水處理技術研討會,高雄,2007。
11. 財團法人工業技街研究院工業安全衛生技街發展中心,甲基丙烯酸甲酯物質安全資料表,物質安全資料表No. 495 (2000)(http://www.iosh.gov.tw/
userfiles/file/database/material_safety/msds0495.pdf)。
12. 財團法人工業技街研究院工業安全衛生技街發展中心,甲基丙烯酸物質安全資料表,物質安全資料表No. 880 (2000)(http://www.iosh.gov.tw/ userfiles/
file/database/material_safety/msds0880.pdf)。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22457-
dc.description.abstract本研究探討如何處理彩色濾光片玻璃(color filter glass, CFG)再生製程之鹼性廢水(alkaline wastewater, A-water)及其壓克力樹脂相關成分之合成廢水。CFG再生製程之A-廢水含有4 M的氫氧根離子及由溶解的壓克力樹脂所形成的化學需氧量(chemical oxygen demand, COD)80,446 mg L-1。A-廢水經過濾程序去除懸浮固體物(suspended solid, SS)後的濾液(effluent after filtration, F-water),再以高級氧化程序(advanced oxidation processes, AOPs)如臭氧(ozonation, O3)、臭氧/紫外光(O3/ultra-violet, O3/UV)、鉑催化臭氧/紫外光(catalytic O3/UV with Pt/γ-Al2O3, O3/UV/Pt)三種方式進行處理。過濾程序使用0.5 µm 鐵氟龍濾紙(PTFE filter), 其濾液(F-廢水)相對於原廢水(A-廢水)的COD去除率(removal efficiency of COD (ηC) relative to A-water, ηC,FA )約為 30.7% 。相近的去除率亦可以重力沉降(gravity sedimentation, GS)7.5 h達到(33.7%)。以高級氧化方式處理F-廢水,於反應時間為60 h時,其相對於F-廢水所含COD之去除率ηC,OF 約為 8-12%。相對於A-廢水的整體COD去除率ηC,OA可以達 36.2-39.1%。
為進一步瞭解製程基本成分之去除效能,本研究亦討論如何藉由催化濕式氧化法來處理壓克力樹脂相關成分甲基丙烯酸甲酯(methyl methacrylate, MMA)的人工廢水。藉由改變系統的主要操作參數來評估MMA及COD的相對去除率(ηMMA = (1 - CMMA/CMMA0)及ηC = (1 - CCOD/CCOD0))。這些參數包括1)所設定的操作溫度(setting temperature, TST);2)鉑催化劑(Pt/Al2O3)的有無;3)工作氣體的有無或種類;4)催化劑的量(mPt)及5)氧的分壓(pO2)。此外,實驗過程中亦持續監測pH的變化,以瞭解其與MMA的分解或COD的礦化情形相關性。實驗結果顯示,在沒有觸媒的狀況下,TST對CMMA/CMMA0具有極為顯著的影響,CMMA/CMMA0 由TST = 180 ºC時的0.89降到TST = 200 ºC時的0.62;再降到220 ºC 時的0.09(反應時間reaction time (tFR) = 180 min, pO2 = 2 MPa,由參考溫度 Trf = 180 ºC所得)。相對於此,TST對CCOD/CCOD0則影響較小,在 tFR = 180 min且TST 為 160-220 ºC時,CCOD/CCOD0 僅為 0.78-0.87 。當以mPt = 30.38 g鉑觸媒(Pt/Al2O3)進行催化濕式氧化,反應時間 tFR = 180 min 且TST 在 160 ºC 及 180-220 ºC 時,CMMA/CMMA0分別為0.15及0.01-0.05;其CCOD/CCOD0在TST為160-220 ºC時也降低到0.16-0.34。亦即,使用鉑觸媒不僅增進MMA及COD的去除效率,也降低了反應所需的溫度以減少所需能源。此結果也顯示,以氧作為氧化氣體可以藉由催化濕式氧化有效將COD礦化。然而且儘管較高的氧氣分壓(1-2 MPa)可以在催化濕式氧化系統的液相中提供較高的溶氧,但並未顯著增進反應效率。此外,催化濕式氧化對COD的去除效率較文獻中以其他高級氧化程序如UV、O3及UV/ O3處理MMA為高。
本研究亦以高級氧化(AOPs)與催化濕式氧化(CWAO)兩種方式來處理壓克力樹脂另一主要成分甲基丙烯酸(methacrylic acid, MAA)的人工廢水。所探討之三種AOPs程序為UV、O3和O3/UV。UV程序的CMMA/CMMA0與CCOD/CCOD0幾乎接近1,顯示無處理效果。O3和O3/UV二者的處理效果則相近,CMMA/CMMA0均近於0,而CCOD/CCOD0則均為0.5左右,此結果顯示O3及O3/UV對酸性物質之礦化有其瓶頸之處。當O3處理效能已受侷限時,UV之助益亦有限。濕式氧化部分,在未先通氮氣的狀況下,當pO2 = 0與1 MPa,反應時間tFR = 180 min時,其CMAA/CMAA0值分別為0.85和0.42,CCOD/CCOD0值分別為0.85和0.40,因此pO2之增加可有效降低MAA與COD之濃度。在先通氮氣的狀況下以CWAO程序處理MAA,在pO2 = 1-2 MPa觸媒mPt = 10 g狀況下,於t = 30及60 min時,CMAA/CMAA0可降至0.08及~0%;CCOD/CCOD0於t = 60 min時可降至0.14-0.19%,同時pH則在t = 30 min後,由3.3逐漸增高至約5.18-5.43。顯示觸媒確實會改變反應機制以增加反應速率。但增加mPt為20及30 g時,其結果與mPt = 10 g時的定性與定量結果相近。顯示過量添加觸媒,其增進效果不大。比較CWAO及AOPs對MAA之處理效果,結果顯示前者優於後者。此結論與MMA之處理效果一致。本研究所得到的結果可供半導體工業未來處理含PMMA(poly MMA, 聚甲基丙烯酸甲酯)、MMA及MAA廢水的參考。
zh_TW
dc.description.abstractThe treatment of alkaline wastewater (noted as A-water) from cleaning of color filter glass (CFG) was studied. The A-water contains hydroxide ion and dissolved acrylic resin of high concentrations of 4 M and 80,446 mg L-1 chemical oxygen demand (COD), respectively. The suspended solid (SS) of A-water was removed via filtration. The effluent after filtration process (noted as F-water) was further treated via advanced oxidation processes (AOPs) such as ozonation (O3), O3/ultra-violet (UV) irradiation (O3/UV) and catalytic O3/UV with Pt/γ-Al2O3 (O3/UV/Pt). The filtration process employing 0.5 µm PTFE filter yielded the F-water containing 55,749 mg L-1 COD with the removal efficiency of COD (ηC) relative to A-water (ηC,FA) of about 30.7% for treating the A-water. It was noted that about 33.7% COD of A-water can be also removed using the gravity sedimentation (GS). However, the GS time was as long as about 7.5 h. The values of ηC relative to F-water (ηC,OF) via AOPs for treating the F-water were about 8-12% at the reaction time of 60 h. The overall ηC relative to A-water (ηC,OA) can reach about 36.2-39.1% after filtration process and AOPs. The results indicate that the combined processes using filtration and AOPs are applicable for treating the A-water from cleaning of CFG.
Noting that the acrylic resin of A-water was manufactured using substances including methyl methacrylate (MMA) and methacrylic acid (MAA), this study then conducted the treatment of MMA-containing wastewater via catalytic wet oxidation (CWAO) as an alternative of AOPs. Effects of major operating parameters on the system performances in terms of the normalized concentrations of MMA and COD relative to their initial values, namely CMMA/CMMA0 and CCOD/CCOD0, were investigated. These parameters include 1) the setting temperature TST of operation, 2) the presence of catalyst Pt/Al2O3, 3) the presence of working gas, 4) the amount of Pt/Al2O3 (mPt) and 5) the partial pressure of O2 (pO2). The change of pH value during the course of CWAO was also examined to elucidate the extents of decomposition of MMA and mineralization of COD.
The results indicate that the effects of TST on the CMMA/CMMA0 are very vigorous for the case of sole wet oxidation (WAO) without catalyst. At the reaction time tFR = 180 min, the CMMA/CMMA0 decreases from 0.89 at TST = 180 ºC to 0.62 at 200 ºC and 0.09 at 220 ºC with pO2 = 2 MPa (based on the reference temperature Trf of 180 ºC). The effects of TST on the CCOD/CCOD0 are not strong for the WAO, reducing the CCOD/CCOD0 only to about 0.78-0.87 at tFR = 180 min with TST in 160-220 ºC. As for the CWAO in the presence of Pt/Al2O3 with mPt = 30.38 g, the CMMA/CMMA0 reduces greatly to 0.15 and 0.01-0.05 at tFR = 180 min with TST at 160 ºC and in 180-220 ºC, respectively, while the CCOD/CCOD0 decreases to about 0.16-0.34 with TST in 160-220 ºC. The use of Pt/Al2O3 not only improves the removals of MMA and COD but also reduces the TST required for the efficient removals of MMA and COD, saving the energy needed. The results also reveal that the oxidizing gas such as O2 is required for effective mineralization of COD via CWAO. However the enhancement effect of increasing pO2 is not significant if the supplied pO2 is high enough, say 1-2 MPa, to proceed the CWAO in liquid phase with sufficient dissolved oxygen. Further, the CWAO is more efficient than the advanced oxidation processes of direct ultra violet irradiation UV, sole ozonation O3 and combined process of O3 and UV for the effective removal of COD in the treatment of MMA.
As a major componet, methacrylic acid (MAA) was treated via AOPs and CWAO process. The results reveal that the CMMA/CMMA0 and CCOD/CCOD0 via UV process are near 1, indicating no effect of UV process. As for O3 and O3/UV processes, the treatment efficiencies are about the same with CMMA/CMMA0 of near 0 and CCOD/CCOD0 of 0.5. The results via WAO process without pre-purge using N2 show that, at pO2 = 0 and 1 MPa and tFR = 180 min, the values of CMAA/CMAA0 are 0.85 and 0.42, while those of CCOD/CCOD0 are 0.85 and 0.40, respectively. It illustrates that the values of CMAA and CCOD are effectively reduced with increasing pO2. The results of CWAO process using Pt catalyst (mPt = 10 g) with pre-purge employing N2 indicate that, at pO2 = 0 to 1 MPa, the value of CMAA/CMAA0 are 0.08 and ~0% at tFR = 30 and 60 min, respectively; at tFR = 60 min, CCOD/CCOD0 is 0.14-0.19%; the pH value icreases from 3.3 at beginning to 5.18-5.43 after tFR = 30 min. Thus, the catalyst may change the reaction mechanism to improve the reaction rate. Note that the increasing use of mPt (say, 20 and 30 g) does not enhance the reaction rate extent significantly.
The information obtained in this study is useful for the proper operation and rational design of the AOPs and CWAO systems for the effective treatment of PMMA-, MMA- and MAA-containing wastewater from the semiconductor industry.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:18:14Z (GMT). No. of bitstreams: 1
ntu-99-D90541006-1.pdf: 2028202 bytes, checksum: f4e6fe5308318c1618ba27ab8eebb2f2 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents致謝 i
中文摘要 ii
Abstract v
目錄 viii
表目錄 xi
圖目錄 xii
符號說明 xvii
第一章 緒論
1.1 研究背景 1
1.2 研究目的
1.2.1 高濃度有機廢水的處理 2
1.2.2 含MMA及MAA廢水的處理參數 2
第二章 文獻回顧
2.1 電子、光電產業與光學微影術
2.1.1 光學微影術 4
2.1.2 彩色濾光片與光阻劑 5
2.1.3 彩色濾光片玻璃基板的回收與再生 11
2.2 高懸浮固體及高濃度廢水之處理 12
2.3 高級氧化法及其應用於廢水處理 14
2.4 濕式氧化法及其應用於甲基丙烯酸甲酯廢水之處理 18
第三章 實驗設備與研究方法
3.1 實驗藥品與材料 23
3.2 設備
3.2.1 高級氧化系統 24
3.2.2 濕式氧化系統 26
3.2.3 分析儀器設備 28
3.3 實驗步驟
3.3.1 高濃度有機廢水的處理
3.3.1.1 廢水前處理 28
3.3.1.2 高級氧化處理 29
3.3.2 濕式氧化 30
第四章 結果與討論
4.1 彩色濾光片玻璃基板再生程序廢水之處理
4.1.1懸浮固體物的去除
4.1.1.1重力沉降(Gravity sedimentation) 36
4.1.1.2 過濾(Filtration) 36
4.1.2高級氧化(AOPs)
4.1.2.1臭氧處理(Ozonation) 40
4.1.2.2 臭氧/紫外線處理(O3/UV) 40
4.1.2.3 臭氧/紫外線處理/鉑觸媒(O3/UV/Pt) 40
4.1.2.4 高級氧化程序的比較 44
4.1.3廢水中的可燃份 44
4.2 MMA廢水處理
4.2.1 溫度設定的影響 50
4.2.2 氧化劑的影響 56
4.2.3 Pt/Al2O3使用量的影響 61
4.2.4 pO2應用的影響 61
4.2.5 WAO與CWAO操作期間pH值的變化 64
4.2.6 CWAO與AOPs的比較 64
4.3 高級氧化程序及濕式氧化程序處理MAA廢水
4.3.1 高級氧化程序處理MAA廢水 69
4.3.2 濕式氧化程序程序處理MAA廢水 73
4.3.3 催化AOPs處理MAA廢水 89
第五章 結論與建議
5.1 結論
5.1.1 彩色濾光片玻璃基板再生程序廢水之處理 94
5.1.2 MMA廢水之處理 95
5.1.3 MAA廢水之處理 96
5.2 建議 96
參考文獻
英文部分 97
中文部分 106
附錄
附錄A 原廢水經砂濾之出流水水量 A1
表目錄
表3.1 Some properties of Pt/γ-Al2O3 catalyst used in this study
(Shie et al., 2005) 31
表3.2 Operation parameters of catalytic wet oxidation for the
decomposition of MMA 32
表4.1 The characteristics of A-water from color filter recycling process 37
表4.2 於105 ºC經不同時間乾燥後的乾固體重 47
表4.3 800 ºC下的可燃分試驗 48
表4.4 700 ºC下的可燃分試驗 49
表4.5 MMA的物質特性 51
表4.6 MAA的物質特性 72
圖目錄
圖2.1 TFT-LCD 運作原理 7
圖2.2 彩色濾光片剖面圖 8
圖2.3 矩陣層與各色層的製作流程 9
圖2.4 彩色濾光片玻璃基板再生處理程序 13
圖2.5 MMA在臭氧分解反應中的可能反應路徑 17
圖2.6 水中的氧溶解度 22
圖3.1 高級氧化處理設備圖 25
圖3.2 濕式氧化處理設備圖 27
圖4.1 A-廢水水中懸浮固體物(SS)去除率(ηS,GA)隨重力沉降時間
(tS)的變化圖。採樣位置:液面下1.5 cm 處。液體總體積(VL)
= 1 L。每次採樣體積(VLS) = 5 mL 38
圖4.2 A-廢水經不同時間之重力沉降,COD去除率ηC,GA變化 39
圖4.3 A-廢水經不同過濾程序之ηCOD變化。M11、M1P2、和MP5:
經過11、1.2、及0.5 μm濾膜過濾之濾液 41
圖4.4 MP5-廢水經臭氧化處理之ηC,ZF隨時間之變化 42
圖4.5 MP5-廢水經O3/UV處理之ηC,UF隨時間之變化 43
圖4.6 MP5-廢水經O3/UV/Pt (HGRPB)處理之ηC,PtF隨時間之變化 45
圖4.7 MP5-廢水經O3、O3/UV、及O3/UV/Pt (HGRPB)三種處理方式
對ηC隨時間之變化的比較 46
圖4.8 Effect of TST on the time variations of CMMA/CMMA0 for the
decomposition of MMA without catalyst. ‾: TST = 160 ºC, C0 =
495 mg L-1; : TST = 180 ºC, C0 = 479 mg L-1; r: TST = 200 ºC,
C0 = 482 mg L-1; £: TST = 220 ºC, C0 = 488 mg L-1. pO2 = 2 MPa
at reference temperature Trf = 180 ºC. 52
圖4.9 Effect of TST on the time variations of CCOD/CCOD0 for the
decomposition of MMA without catalyst. ‾: TST = 160 ºC, C0 =
495 mg L-1; : TST = 180 ºC, C0 = 479 mg L-1; r: TST = 200 ºC,
C0 = 482 mg L-1; £: TST = 220 ºC, C0 = 488 mg L-1. pO2 = 2 MPa at
reference temperature Trf = 180 ºC. 53
圖4.10 Variations of temperature (T) and total pressure (P) of system with
real time (t) for the treatment of MMA without catalyst. TST = 180 ºC,
pO2 = 2 MPa at TST. 55
圖4.11 Effect of TST on the time variations of CMMA/CMMA0 for the
decomposition of MMA with Pt/Al2O3. ‾: TST = 160 ºC, C0 = 495
mg L-1; : TST = 180 ºC, C0 = 489 mg L-1; r: TST = 200 ºC, C0 =
458 mg L-1; £: TST = 220 ºC, C0 = 501 mg L-1. pO2 = 2 MPa at Trf =
180 ºC. mPt: Mass of Pt/Al2O3 = 30.38 g. 57
圖4.12 Effect of TST on the time variations of CCOD/CCOD0 for the
decomposition of MMA with Pt/Al2O3. ‾: TST = 160 ºC, C0 = 495
mg L-1; : TST = 180 ºC, C0 = 489 mg L-1; r: TST = 200 ºC, C0 =
458 mg L-1; £: TST = 220 ºC, C0 = 501 mg L-1. pO2 = 2 MPa at Trf =
180 ºC. mPt: Mass of Pt/Al2O3 = 30.38 g. 58
圖4.13 Effect of working gas on the time variations of CMMA/CMMA0 for the decomposition of MMA at TST = 180 ºC with Pt/Al2O3. ‾: C0 =
489 mg L-1 with N2; : C0 = 481 mg L-1 with O2. pO2 or pN2 = 2 MPa
at TST. mPt = 30.38 g. 59
圖4.14 Effect of working gas on the time variations of CCOD/CCOD0 for the decomposition of MMA at TST = 180 ºC with Pt/Al2O3. ‾: C0 = 489
mg L-1 with N2; : C0 = 481 mg L-1 with O2. pO2 or pN2 = 2 MPa
at TST. mPt = 30.38 g. 60
圖4.15 Effect of mPt on the time variations of CMMA/CMMA0 for the decom-
position of MMA with pO2 = 2 MPa at TST = 180 ºC with
Pt/Al2O3. r: C0 = 479 mg L-1 without catalyst; ‾: C0 = 493 mg
L-1 with mPt = 15.19 g; : C0 = 489 mg L-1 with mPt = 30.38 g. 62
圖4.16 Effect of mPt on the time variations of CCOD/CCOD0 for the decom-
position of MMA with pO2 = 2 MPa at TST = 180 ºC with Pt/Al2O3.
r: C0 = 479 mg L-1 without catalyst; ‾: C0 = 493 mg L-1 with
mPt = 15.19 g; : C0 = 489 mg L-1 with mPt = 30.38 g. 63
圖4.17 Effect of pO2 on the time variations of CMMA/CMMA0 for the decom-
position of MMA at TST = 180 ºC with Pt/Al2O3. £: C0 = 509 mg L-1
, pO2 = 1 MPa; r: C0 = 502 mg L-1, pO2 = 1.5 MPa; : C0 = 489
mg L-1, pO2 = 2 MPa at TST. mPt = 30.38 g. 65
圖4.18 Effect of pO2 on the time variations of CCOD/CCOD0 for the de-
composition of MMA at TST = 180 ºC with Pt/Al2O3. £: C0 = 509
mg L-1, pO2 = 1 MPa; r: C0 = 502 mg L-1, pO2 = 1.5 MPa; : C0 =
489 mg L-1, pO2 = 2 MPa at TST. mPt = 30.38 g. 66
圖4.19 The pH change for the decomposition of MMA without catalyst. TST
= 180 ºC, pO2 = 2 MPa at TST. ‾: C0 = 479 mg L-1 and pH0 = 6.86
without catalyst; : C0 = 491 mg L-1 and pH0 = 7.64 with mPt =
30.38 g. 67
圖4.20 The pH change for the decomposition of MMA with catalyst. TST =
180 ºC, pO2 = 2 MPa at TST. ‾: C0 = 479 mg L-1 and pH0 = 6.86
without catalyst; : C0 = 491 mg L-1 and pH0 = 7.64 with mPt =
30.38 g. 68
圖4.21 甲基丙烯酸溶液通入氮氣、空氣與氧氣時pH的變化 70
圖4.22 甲基丙烯酸溶液通入氮氣、空氣與氧氣時CMAA/CMAA0的變化 71
圖4.23 甲基丙烯酸溶液以UV, O3 and O3/UV處理時pH的變化 74
圖4.24 甲基丙烯酸溶液以UV, O3 and O3/UV處理時CMAA/CMAA0的變化 85
圖4.25 甲基丙烯酸溶液以O3 處理時CCOD/CCOD0的變化 76
圖4.26 甲基丙烯酸溶液高壓反應槽無觸媒,以氧分壓0, 1 與2 MPa
處理時pH的變化 77
圖4.27 甲基丙烯酸溶液高壓反應槽無觸媒,以氧分壓0, 1 與2 MPa
處理時CMAA/CMAA0的變化 78
圖4.28 甲基丙烯酸溶液高壓反應槽無觸媒,以氧分壓0, 1 與2 MPa
處理時CCOD/CCOD0的變化 79
圖4.29 甲基丙烯酸溶液高壓反應槽以10 g鉑觸媒,氧分壓0, 1 與
2 MPa處理時pH的變化 80
圖4.30 甲基丙烯酸溶液高壓反應槽以10 g鉑觸媒,氧分壓1 與2 MPa
處理時CMAA/CMAA0的變化 81
圖4.31 甲基丙烯酸溶液高壓反應槽以10 g鉑觸媒,氧分壓0, 1 與
2 MPa處理時CCOD/CCOD0的變化 82
圖4.32 甲基丙烯酸溶液高壓反應槽以20 g鉑觸媒,氧分壓0, 1 與
2 MPa處理時pH的變化 83
圖4.33 甲基丙烯酸溶液高壓反應槽以20 g鉑觸媒,氧分壓2 MPa處
理時CMAA/CMAA0的變化 84
圖4.34 甲基丙烯酸溶液高壓反應槽以20 g鉑觸媒,氧分壓0, 1 與
2 MPa處理時CCOD/CCOD0的變化 85
圖4.35 甲基丙烯酸溶液高壓反應槽以30 g鉑觸媒,氧分壓0, 1 與
2 MPa處理時pH的變化 86
圖4.36 甲基丙烯酸溶液高壓反應槽以30 g鉑觸媒,氧分壓1 與2 MPa
處理時CMAA/CMAA0的變化 87
圖4.37 甲基丙烯酸溶液高壓反應槽以30 g鉑觸媒,氧分壓0, 1 與
2 MPa處理時CCOD/CCOD0的變化 88
圖4.38 pH values of MAA solution treated in a rotating packed bed by
‾, only catalyst; □, combined O2 and catalyst; r, only O3;
, O3/UV;*, combined O3 and catalyst. VL= 1 L, CMAA0 = 1000
mg L-1, QG = 1 L min-1, CO3,i = 50 mg L-1, tGU = 1 h, mS = 180 g. 91
圖4.39 CMAA/CMAA0 values of MAA solution treated in a rotating packed
bed by ‾, only catalyst; □, combined O2 and catalyst; r, only O3;
, O3/UV;*, combined O3 and catalyst. VL= 1 L, CMAA0 = 1000
mg L-1, QG = 1 L min-1, CO3,i = 50 mg L-1, tGU = 1 h, mS = 180 g. 92
圖4.40 CTOC/CTOC0 values of MAA solution treated in a rotating packed
bed by ‾, only catalyst; □, combined O2 and catalyst; r, only O3;
, O3/UV;*, combined O3 and catalyst. VL= 1 L, CMAA0 = 1000
mg L-1, QG = 1 L min-1, CO3,i = 50 mg L-1, tGU = 1 h, mS = 180 g. 93
圖A.1 原鹼洗廢水經砂濾之出流水量隨砂濾時間的變化圖。NBV, a:
累積出流水體積(以濾床體積BV之倍數表示); tF: 過濾
時間。1 BV = 31.40 mL. 線性區直線之斜率 = 1.35 BV h-1,
或 42.5 mL h-1 A1
dc.language.isozh-TW
dc.title以高級氧化法及濕式氧化法處理壓克力樹脂廢水zh_TW
dc.titleStudy on the Treatment of Acrylic Wastewater via Advanced Oxidation and Wet Oxidation Processesen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree博士
dc.contributor.oralexamcommittee曾四恭(Szu-Kung Tseng),李公哲(Kung-Cheh Li),張奉文(Feg-Wen Chang),施信民(Shin-Min Shih),李俊福(Jiunn-Fwu Lee),李元陞(Yuan-Shan Li)
dc.subject.keyword彩色濾光片,高級氧化,濕式氧化,濕式催化氧化,鉑觸媒,甲基丙烯酸甲酯,甲基丙烯酸,zh_TW
dc.subject.keywordFilter filtration (FF),Ozone,Ultraviolet (UV),Advanced oxidation processes (AOPs),Alkaline,Acrylic resin,Color filter,Methyl methacrylate (MMA),Methacrylic acid (MAA),Semiconductor wastewater,Catalytic wet oxidation (CWAO),en
dc.relation.page109
dc.rights.note未授權
dc.date.accepted2010-07-28
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
1.98 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved