Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22443Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 黃天偉(Tian-Wei Huang) | |
| dc.contributor.author | Yu-Hsuan Lin | en |
| dc.contributor.author | 林祐亘 | zh_TW |
| dc.date.accessioned | 2021-06-08T04:17:55Z | - |
| dc.date.copyright | 2011-08-23 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-18 | |
| dc.identifier.citation | [1] 劉深淵, 楊清淵 著, “鎖相迴路, ”滄海書局出版.
[2] Lianming Li, Patrick Reynaert, and Michiel S. J. Steyaert, “Design and Analysis of a 90 nm mm-Wave Oscillator Using Inductive Division LC Tank, “IEEE J. Solid-State Circuits, Vol. 44, No. 7, July 2009. [3] C. Y. Yang, The Single Chip Design and Application of Dual-Modulus Scaling PLL Frequency Synthesizer, MS Thesis, Dept. of Electrical Engineering, Nation Taiwan University, June 1996. [4] J. Yuan and C. Svensson, “High speed CMOS circuit technique”, IEEE Journal of Solid-State Circuits, vol. 24, pp. 62-70, Feb. 1989. [5] G. Gonzalez, “Microwave Transistor Amplifier,“ 2nd edition, Prentice Hall, Upper Saddle River, New Jersey 07458, 1997. [6] Y. Su, J.-J. Lin, and K. K. O, “A 20-GHz CMOS RF down-conversion with an on-chip antenna,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 270–271, Feb. 2005. [7] H. Hashemi, X. Guan, A. Komijani, and A. Hajimiri, “A 24-GHz SiGe phased-array receiver—LO phase-shifting approach,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 2, pp. 614–626, Feb. 2005. [8] A. Natarajan, A. Komijani, and A. Hajimiri, “A 24 GHz phased-array transmitter in 0.18 um CMOS,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp.212–213, Feb. 2005. [9] K.-W. Yu, Y.-L. Lu, D.-C. Chang, V. Liang, and M. F. Chang, “K-band low-noise amplifiers using 0.18 um CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 3, pp. 106–108, Mar. 2004. [10] Ali Hajimiri, Thomas H. Lee, “A General Theory of Phase Noise in Electrical Oscillators”, IEEE J. Solid-State Circuits, Vol. 33, No. 2, 1998. [11] Jaemo Yang, Choul-Young Kim, Dong-Wook Kim, and Songcheol Hong, “Design of a 24-GHz CMOS VCO With an Asymmetric-Width Transformer”, IEEE Trans. Circuits and Systems- II, Vol. 57, No. 3, MAR 2010. [12] C-C. Chen, H. Wang, H-W. Tsao, C-H. Wang, “3 mW V-Band Divided-by-2 and W-band Divided-by-4 Wide locking Range Frequency Dividers in 90-nm CMOS, ” Microwave Symposium Digest,2009. MTT ’09 IEEE MTT-S International, 7-12 June 2009 Page(s):1089 – 1092. [13] B. Razavi, “A study of injection locking and pulling in oscillators, ” IEEE, J. Solid-State Circuits, vol. 39, no.9, Sep 2004. [14] J.Lee, M.Liu, and H.Wang, “A 75-GHz phase-lock-loop in 90nm technology, ” IEEE J. Solid-State Circuits, vol. 43, no.6, June 2008. [15] 林盈達, “應用於24 GHz 頻率合成器之多模除數除頻器, ”國立台灣大學電機資訊學院電信工程學研究所碩士論文. [16] D. Ham, A. Hajimiri, “Concepts and methods in optimization of a integrated LC VCOs ”, IEEE J. Solid-State Circuits, vol. 36, no.6, June 2001. [17] Yanping Ding, and Kenneth K. O, ”A 21-GHz 8-Modulus Prescaler and a 20-GHz Phase-Locked Loop Fabricated in 130-nm CMOS”, IEEE J. Solid-State Circuits, Vol. 42, No. 6, June 2007 [18] Jaeha Kim, Jeong-Kyoum Kim, Bong-Joon Lee,Namhoon Kim, Deog-Kyoon Jeong, and Wonchan Kim “A 20-GHz Phase-Locked Loop for 40-Gb/s Serializing Transmitter in 0.13-um CMOS”, IEEE J. Solid-State Circuits, Vol. 41, No. 4, APRIL 2006. [19] Alan W. L. Ng, Gerry C. T. Leung, Ka-Chun Kwok, Lincoln L. K. Leung, and Howard C. Luong ”A 1-V 24-GHz 17.5-mW Phase-Locked Loop in a 0.18-um CMOS Process”, IEEE J. Solid-State Circuits, VOL. 41, NO. 6, JUNE 2006. [20] Ahmad Yazdi, Michael M. Green, ” A 40Gb/s Full-Rate 2:1 MUX in 0.18 um CMOS”, IEEE Int. Solid-State Circuits Conf. 2009. [21] Jri Lee, ”High-Speed Circuit Designs for Transmitters in Broadband Data Links”, J. Solid-State Circuits 2006. [22] A. Hajimiri, H. Hashemi, A. Natarajan, X. Guan and A. Komijani, “Integrated Phased Array Systems in Silicon, ” Proceedings of the IEEE, vol.93, pp.1637-1655, sep. 2005. [23] T-N. Luo, S-Y. Bai, and Y-J. Emery. Chen, “A 60-GHz 0.13 mm CMOS Divided-By-Three Frequency Divider,” IEEE Transaction on Microwave Theory and Techniques, Vol. 56, No. 11, Nov 2008. [24] John G. Maneatis, “Low-jitter process-independent DLL and PLL based on self-biased techniques, ” IEEE J. Solid-State Circuits, Vol. 31, No. 11, Nov 1996. [25] Rhee. W, “Design of high-performance CMOS charge pumps in phase-locked loops, ” IEEE Int. Symposium on Circuits and Systems, Vol. 2, pp.545-548, 1999. [26] E. Hegazi, H. Sjoland, A-A. Abidi, “A filtering technique to lower LC oscillator phase noise, ” IEEE J. Solid-State Circuits, vol. 36, no. 12, Dec 2001. [27] A. Jerng, C-G, Sodini, “The impact of device type and sizing on phase noise mechanisms, ” IEEE J. Solid-State Circuits, vol. 40, no.2, Feb 2005. [28] M. Kashif, Z-Y. Malik, M. Yasin, M-I. Nawaz, ” K-Band PLL Based Frequency Synthesizer ”, Proceedings of international Bhurban Conference on Applied Sciences & Technology Islamabad, Pakistan, January 19 - 22,2009. [29] Olivier Richard, Alexandre Siligaris, Franck Badets, Cedric Dehos, Cedric Dufis, Pierre Busson, Pierre Vincent, Didier Belot, Pascal Urard, ”A 17.5-to-20.94GHz and 35-to-41.88GHz PLL in 65nm CMOS for Wireless HD Applications”, IEEE Int. Solid-State Circuits Conf. 2010. [30] P. Mayr, C. Weyers, U. Langmann, “A 90GHz 65nm CMOS Injection-Locked Frequency Divider, ” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb., 2007, pp. 189–199. [31] Y-H. Kuo, J-H. Tsai, H-Y. Chang, T-W. Huang, “Design and Analysis of A 77.3% Locking Range Divided-By-Four Frequency Divider,” Accepted in IEEE Transaction on Microwave Theory and Techniques. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22443 | - |
| dc.description.abstract | 高頻以及高速鎖相迴路在現代有線或是無線通訊系統中扮演了一個重要的角色,然而高頻的鎖相迴路在實現上有相當的難度,故成為在各大國際期刊與會議的熱門題材。在本論文中主要介紹了使用CMOS製程所實現的各種用途之射頻鎖相迴路應用,而驗證鎖相迴路中的高頻壓控振盪器與除頻鍊為此論文首要驗證之電路,待電路驗證無誤後進行第二階段的設計,也就是實現整體鎖相迴路。以TSMC CMOS 0.18um,先後實現出24-GHz 鎖相迴路之前端電路設計、應用於汽車防撞雷達系統之24-GHz低功耗鎖相迴路。在這些電路中我們廣泛的使用了變壓器型態之壓控振盪器,來達到較低之功耗、較好之相位雜訊以及更大的輸出功率。並使用了疊接除法器的方式來達到電流再利用以減低功耗。
第一章大致的描述了鎖相迴路所需要之基本元件特性以及設計要點。接著在第二章提出一個24-GHz變壓器形態之壓控振盪器與除頻鍊揭開了製作24-GHz鎖相迴路之序幕,整體功耗為45mW而其相位雜訊為-93dBc/Hz@1-MHz。前端除頻鏈在鎖相迴路中乃相當重要之部分,高頻部分的精準度能夠掌握後,實現一個鎖相迴路指日可待。爾後,將集聚先前經驗,將驗證過的24-GHz 鎖相迴路前端,加以改版在第三章設計成應用於汽車防撞雷達系統之超低功耗24-GHz鎖相迴路,達到超低功耗29.8mW,低相位雜訊:-122dBc/Hz@10-MHz以及20.8-GHz to 23.37-GHz 之寬操作範圍。 | zh_TW |
| dc.description.abstract | In present generation, high-frequency and high-speed phase-lock-loop plays an important role in wireline or wireless communication systems. However, high frequency PLL has considerable difficulty in realization. Thus, it has become a popular topic in the IEEE journals and conferences. In this thesis, a variety of PLLs has been proposed and fabricated in CMOS technology. The first step of implementation of the PLL is to accomplish a VCO and high-frequency divider chain, which is the most difficult part of high speed PLL. Once the VCO and high-frequency divider chain has been proven and measured correctly, the rest parts of the PLL such as PFD, CP, loop-filter, and static dividers will be fulfilled in my next work in chapter 3, and then the phase-lock-loop is complete. By using TSMC CMOS 0.18μm process, this thesis has proposed a 24-GHz PLL front-end circuit design, and an ultra low-power 24-GHz Phase-Lock-Loop for collision avoidance radar system. In those works, we widely use a wide range of transformer feedback voltage control oscillator, achieving lower power consumption issue and better phase noise and higher output power. And using the cascade divider to achieve the current re-use to minimize the power consumption.
The first chapter describes the general use of the basic phase-lock-loop device characteristics and design features. In chapter 2, a 24-GHz transformer feedback VCO and divider chain opened a prelude to making 24-GHz PLL, consuming DC power of 45mW and the measured phase noise is -93dBc/Hz @ 1-MHz. Later on, gathering previous experience of circuits implementation, the 24-GHz PLL front-end has been modified and accomplish into an ultra low-power PLL in chapter 3, consuming DC power of 29.8mW, ultra low phase noise: -122dBc/Hz @ 10-MHz and wide tuning range of 20.8-23.37-GHz. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T04:17:55Z (GMT). No. of bitstreams: 1 ntu-100-R98942030-1.pdf: 9456292 bytes, checksum: 334d7d1d9e2d3be76ae62d541380a644 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 中文摘要 iii
ABSTRACT iv CONTENTS v LIST OF FIGURES vii LIST OF TABLES xii Chapter 1 Introduction 1 1.1 Phase-Lock-Loop Fundamentals introduction 1 1.1.1 LC Tank Voltage Control Oscillator (VCO) 2 1.1.2 Phase Frequency Detector (PFD) and Charge Pump (CP) 10 1.1.3 Loop Analysis [1] 11 1.1.4 Frequency Dividers 15 1.2 Phase Noise and Jitter Analysis 16 1.2.1 Phase Noise Analysis 16 1.2.2 Reference Spur 18 1.3 Chapter Outline 19 Chapter 2 Design of the Low-Power 24-GHz Frequency Synthesizer Front-End 21 2.1 Introduction 21 2.2 Architecture and Circuits Design 23 2.2.1 Transformer Feedback VCO 23 2.2.2 Injection-Locked Frequency Divider 27 2.2.3 Current Mode Logic (CML) Divider and Multi-Modulus 64 to 67 Divider [15] 29 2.3 Simulation Results and Measurement 32 2.3.1 Simulation Results 32 2.3.2 Measurement and Analysis 43 2.4 Conclusion 56 Chapter 3 Design of the Ultra Low-Power 24-GHz Phase-Lock-Loop with Cascoded Divider Embedded 57 3.1 Introduction of Phase-Lock-loop 57 3.2 Architecture and Circuits Design 59 3.2.1 Transformer Feedback VCO (TF-VCO) 59 3.2.2 Injection-Locked Frequency Divider (ILFD) 60 3.2.3 Cascoded Dividers of Injection-Locked Frequency Divider (ILFD) and current mode logic divider (CML) 62 3.2.4 Phase Frequency Detector (PFD) and Charge Pump (CP) 63 3.2.5 Design and Analysis of Phase-Lock-Loop 65 3.3 Simulation Results and Measurement 70 3.3.1 Simulation Results 70 3.3.2 Frequency Arrangement 81 3.3.3 Simulation and Analysis of the Proposed Low-Power 24-GHz PLL 83 3.3.4 Measurement and Analysis of Proposed Low-Power 24-GHz PLL 84 3.4 Conclusion 94 Chapter 4 Conclusion 95 Reference 96 | |
| dc.language.iso | en | |
| dc.subject | 鎖相迴路 | zh_TW |
| dc.subject | 注入鎖定除頻器 | zh_TW |
| dc.subject | 壓控震盪器 | zh_TW |
| dc.subject | PLL | en |
| dc.subject | ILFD | en |
| dc.subject | VCO | en |
| dc.title | 具疊接式除頻器之低功耗互補式金氧半導體射頻鎖相迴路之設計研究 | zh_TW |
| dc.title | Design and Implementation of Low Power CMOS RF Phase-Lock-Loop with Cascoded Divider | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡政翰,張鴻埜 | |
| dc.subject.keyword | 鎖相迴路,壓控震盪器,注入鎖定除頻器, | zh_TW |
| dc.subject.keyword | PLL,VCO,ILFD, | en |
| dc.relation.page | 99 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2011-08-18 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| Appears in Collections: | 電信工程學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-100-1.pdf Restricted Access | 9.23 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
