請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22385完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周子賓(Tze-Bin Chou) | |
| dc.contributor.author | Wei-Hong Shen | en |
| dc.contributor.author | 沈偉宏 | zh_TW |
| dc.date.accessioned | 2021-06-08T04:16:41Z | - |
| dc.date.copyright | 2010-08-02 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-02 | |
| dc.identifier.citation | Reference
Abeygunawardana, C., D. J. Weber, et al. (1995). 'Solution structure of the MutT enzyme, a nucleoside triphosphate pyrophosphohydrolase.' Biochemistry 34(46): 14997-15005. Aizer, A. and Y. Shav-Tal (2008). 'Intracellular trafficking and dynamics of P bodies.' Prion 2(4): 131-134. Anderson, P. and N. Kedersha (2006). 'RNA granules.' J Cell Biol 172(6): 803-808. Anderson, P. and N. Kedersha (2008). 'Stress granules: the Tao of RNA triage.' Trends Biochem Sci 33(3): 141-150. Andrei, M. A., D. Ingelfinger, et al. (2005). 'A role for eIF4E and eIF4E-transporter in targeting mRNPs to mammalian processing bodies.' RNA 11(5): 717-727. Bahler, J., G. Hagens, et al. (1994). 'Saccharomyces cerevisiae cells lacking the homologous pairing protein p175SEP1 arrest at pachytene during meiotic prophase.' Chromosoma 103(2): 129-141. Balagopal, V. and R. Parker (2009). 'Polysomes, P bodies and stress granules: states and fates of eukaryotic mRNAs.' Curr Opin Cell Biol 21(3): 403-408. Beelman, C. A. and R. Parker (1994). 'Differential effects of translational inhibition in cis and in trans on the decay of the unstable yeast MFA2 mRNA.' J Biol Chem 269(13): 9687-9692. Beelman, C. A., A. Stevens, et al. (1996). 'An essential component of the decapping enzyme required for normal rates of mRNA turnover.' Nature 382(6592): 642-646. Belmont, L., T. Mitchison, et al. (1996). 'Catastrophic revelations about Op18/stathmin.' Trends Biochem Sci 21(6): 197-198. Ben-Ze'ev, A., S. R. Farmer, et al. (1979). 'Mechanisms of regulating tubulin synthesis in cultured mammalian cells.' Cell 17(2): 319-325. Berleth, T., M. Burri, et al. (1988). 'The role of localization of bicoid RNA in organizing the anterior pattern of the Drosophila embryo.' EMBO J 7(6): 1749-1756. Bhattacharyya, S. and S. Das (2006). 'An apical GAGA loop within 5' UTR of the coxsackievirus B3 RNA maintains structural organization of the IRES element required for efficient ribosome entry.' RNA Biol 3(2): 60-68. Bonne, D., C. Heusele, et al. (1985). '4',6-Diamidino-2-phenylindole, a fluorescent probe for tubulin and microtubules.' J Biol Chem 260(5): 2819-2825. Breitwieser, W., F. H. Markussen, et al. (1996). 'Oskar protein interaction with Vasa represents an essential step in polar granule assembly.' Genes Dev 10(17): 2179-2188. Brendza, R. P., L. R. Serbus, et al. (2000). 'A function for kinesin I in the posterior transport of oskar mRNA and Staufen protein.' Science 289(5487): 2120-2122. Brengues, M., D. Teixeira, et al. (2005). 'Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies.' Science 310(5747): 486-489. Buchan, J. R., D. Muhlrad, et al. (2008). 'P bodies promote stress granule assembly in Saccharomyces cerevisiae.' J Cell Biol 183(3): 441-455. Burns, R. G. (1991). 'Alpha-, beta-, and gamma-tubulins: sequence comparisons and structural constraints.' Cell Motil Cytoskeleton 20(3): 181-189. Caponigro, G. and R. Parker (1996). 'Mechanisms and control of mRNA turnover in Saccharomyces cerevisiae.' Microbiol Rev 60(1): 233-249. Caron, J. M., A. L. Jones, et al. (1985). 'Autoregulation of tubulin synthesis in hepatocytes and fibroblasts.' J Cell Biol 101(5 Pt 1): 1763-1772. Cha, B. J., B. S. Koppetsch, et al. (2001). 'In vivo analysis of Drosophila bicoid mRNA localization reveals a novel microtubule-dependent axis specification pathway.' Cell 106(1): 35-46. Cha, B. J., L. R. Serbus, et al. (2002). 'Kinesin I-dependent cortical exclusion restricts pole plasm to the oocyte posterior.' Nat Cell Biol 4(8): 592-598. Chernov, K. G., A. Mechulam, et al. (2008). 'YB-1 promotes microtubule assembly in vitro through interaction with tubulin and microtubules.' BMC Biochem 9: 23. Clark, I., E. Giniger, et al. (1994). 'Transient posterior localization of a kinesin fusion protein reflects anteroposterior polarity of the Drosophila oocyte.' Curr Biol 4(4): 289-300. Clark, I. E., L. Y. Jan, et al. (1997). 'Reciprocal localization of Nod and kinesin fusion proteins indicates microtubule polarity in the Drosophila oocyte, epithelium, neuron and muscle.' Development 124(2): 461-470. Cleveland, D. W. (1989). 'Gene regulation through messenger RNA stability.' Curr Opin Cell Biol 1(6): 1148-1153. Cleveland, D. W., M. A. Lopata, et al. (1981). 'Unpolymerized tubulin modulates the level of tubulin mRNAs.' Cell 25(2): 537-546. Cleveland, D. W., M. F. Pittenger, et al. (1983). 'Autoregulatory control of expression of alpha and beta tubulin.' J Submicrosc Cytol 15(1): 353-358. Cohen, L. S., C. Mikhli, et al. (2005). 'Dcp2 Decaps m2,2,7GpppN-capped RNAs, and its activity is sequence and context dependent.' Mol Cell Biol 25(20): 8779-8791. Coller, J. and R. Parker (2005). 'General translational repression by activators of mRNA decapping.' Cell 122(6): 875-886. Cougot, N., S. Babajko, et al. (2004). 'Cytoplasmic foci are sites of mRNA decay in human cells.' J Cell Biol 165(1): 31-40. Dahlgaard, K., A. A. Raposo, et al. (2007). 'Capu and Spire assemble a cytoplasmic actin mesh that maintains microtubule organization in the Drosophila oocyte.' Dev Cell 13(4): 539-553. Desai, A. and T. J. Mitchison (1997). 'Microtubule polymerization dynamics.' Annu Rev Cell Dev Biol 13: 83-117. Deshmukh, M. V., B. N. Jones, et al. (2008). 'mRNA decapping is promoted by an RNA-binding channel in Dcp2.' Mol Cell 29(3): 324-336. Dobens, L. L., J. S. Peterson, et al. (2000). 'Drosophila bunched integrates opposing DPP and EGF signals to set the operculum boundary.' Development 127(4): 745-754. Doerflinger, H., R. Benton, et al. (2003). 'The role of PAR-1 in regulating the polarised microtubule cytoskeleton in the Drosophila follicular epithelium.' Development 130(17): 3965-3975. Dollar, G., E. Struckhoff, et al. (2002). 'Rab11 polarization of the Drosophila oocyte: a novel link between membrane trafficking, microtubule organization, and oskar mRNA localization and translation.' Development 129(2): 517-526. Duchek, P. and P. Rorth (2001). 'Guidance of cell migration by EGF receptor signaling during Drosophila oogenesis.' Science 291(5501): 131-133. Duchek, P., K. Somogyi, et al. (2001). 'Guidance of cell migration by the Drosophila PDGF/VEGF receptor.' Cell 107(1): 17-26. Dunckley, T. and R. Parker (1999). 'The DCP2 protein is required for mRNA decapping in Saccharomyces cerevisiae and contains a functional MutT motif.' EMBO J 18(19): 5411-5422. Ephrussi, A., L. K. Dickinson, et al. (1991). 'Oskar organizes the germ plasm and directs localization of the posterior determinant nanos.' Cell 66(1): 37-50. Ephrussi, A. and R. Lehmann (1992). 'Induction of germ cell formation by oskar.' Nature 358(6385): 387-392. Erickson, H. P. and E. T. O'Brien (1992). 'Microtubule dynamic instability and GTP hydrolysis.' Annu Rev Biophys Biomol Struct 21: 145-166. Eulalio, A., I. Behm-Ansmant, et al. (2007). 'P bodies: at the crossroads of post-transcriptional pathways.' Nat Rev Mol Cell Biol 8(1): 9-22. Fenger-Gron, M., C. Fillman, et al. (2005). 'Multiple processing body factors and the ARE binding protein TTP activate mRNA decapping.' Mol Cell 20(6): 905-915. Ferrandon, D., L. Elphick, et al. (1994). 'Staufen protein associates with the 3'UTR of bicoid mRNA to form particles that move in a microtubule-dependent manner.' Cell 79(7): 1221-1232. Fischer, T., K. Strasser, et al. (2002). 'The mRNA export machinery requires the novel Sac3p-Thp1p complex to dock at the nucleoplasmic entrance of the nuclear pores.' EMBO J 21(21): 5843-5852. Fletcher, G. and P. Rorth (2007). 'Drosophila stathmin is required to maintain tubulin pools.' Curr Biol 17(12): 1067-1071. Gay, D. A., S. S. Sisodia, et al. (1989). 'Autoregulatory control of beta-tubulin mRNA stability is linked to translation elongation.' Proc Natl Acad Sci U S A 86(15): 5763-5767. Gay, D. A., T. J. Yen, et al. (1987). 'Sequences that confer beta-tubulin autoregulation through modulated mRNA stability reside within exon 1 of a beta-tubulin mRNA.' Cell 50(5): 671-679. Gonzalez-Reyes, A. (2003). 'Stem cells, niches and cadherins: a view from Drosophila.' J Cell Sci 116(Pt 6): 949-954. Gonzalez-Reyes, A., H. Elliott, et al. (1995). 'Polarization of both major body axes in Drosophila by gurken-torpedo signalling.' Nature 375(6533): 654-658. Gonzalez-Reyes, A. and D. St Johnston (1998). 'Patterning of the follicle cell epithelium along the anterior-posterior axis during Drosophila oogenesis.' Development 125(15): 2837-2846. Grieder, N. C., M. de Cuevas, et al. (2000). 'The fusome organizes the microtubule network during oocyte differentiation in Drosophila.' Development 127(19): 4253-4264. Gupta, M. L., Jr., C. J. Bode, et al. (2003). 'Understanding tubulin-Taxol interactions: mutations that impart Taxol binding to yeast tubulin.' Proc Natl Acad Sci U S A 100(11): 6394-6397. Hachet, O. and A. Ephrussi (2004). 'Splicing of oskar RNA in the nucleus is coupled to its cytoplasmic localization.' Nature 428(6986): 959-963. Hastie, S. B. (1991). 'Interactions of colchicine with tubulin.' Pharmacol Ther 51(3): 377-401. Heidemann, S. R. and P. T. Gallas (1980). 'The effect of taxol on living eggs of Xenopus laevis.' Dev Biol 80(2): 489-494. Henry, Y., H. Wood, et al. (1994). 'The 5' end of yeast 5.8S rRNA is generated by exonucleases from an upstream cleavage site.' EMBO J 13(10): 2452-2463. Holmes, L. E., S. G. Campbell, et al. (2004). 'Loss of translational control in yeast compromised for the major mRNA decay pathway.' Mol Cell Biol 24(7): 2998-3010. Hu, W., T. J. Sweet, et al. (2009). 'Co-translational mRNA decay in Saccharomyces cerevisiae.' Nature 461(7261): 225-229. Huang, Y. S., J. H. Carson, et al. (2003). 'Facilitation of dendritic mRNA transport by CPEB.' Genes Dev 17(5): 638-653. Huynh, J. R., T. P. Munro, et al. (2004). 'The Drosophila hnRNPA/B homolog, Hrp48, is specifically required for a distinct step in osk mRNA localization.' Dev Cell 6(5): 625-635. Inoue, S., G. G. Borisy, et al. (1974). 'Growth and lability of Chaetopterus oocyte mitotic spindles isolated in the presence of porcine brain tubulin.' J Cell Biol 62(1): 175-184. Interthal, H., C. Bellocq, et al. (1995). 'A role of Sep1 (= Kem1, Xrn1) as a microtubule-associated protein in Saccharomyces cerevisiae.' EMBO J 14(6): 1057-1066. Jin, S., L. Pan, et al. (2009). 'Drosophila Tubulin-specific chaperone E functions at neuromuscular synapses and is required for microtubule network formation.' Development 136(9): 1571-1581. Jourdain, L., P. Curmi, et al. (1997). 'Stathmin: a tubulin-sequestering protein which forms a ternary T2S complex with two tubulin molecules.' Biochemistry 36(36): 10817-10821. Kedersha, N., G. Stoecklin, et al. (2005). 'Stress granules and processing bodies are dynamically linked sites of mRNP remodeling.' J Cell Biol 169(6): 871-884. Keyes, L. N. and A. C. Spradling (1997). 'The Drosophila gene fs(2)cup interacts with otu to define a cytoplasmic pathway required for the structure and function of germ-line chromosomes.' Development 124(7): 1419-1431. Kim-Ha, J., J. L. Smith, et al. (1991). 'oskar mRNA is localized to the posterior pole of the Drosophila oocyte.' Cell 66(1): 23-35. Kim-Ha, J., P. J. Webster, et al. (1993). 'Multiple RNA regulatory elements mediate distinct steps in localization of oskar mRNA.' Development 119(1): 169-178. King, R. C. (1970). 'The meiotic behavior of the Drosophila oocyte.' Int Rev Cytol 28: 125-168. Koonin, E. V. (1993). 'A highly conserved sequence motif defining the family of MutT-related proteins from eubacteria, eukaryotes and viruses.' Nucleic Acids Res 21(20): 4847. Krichevsky, A. M. and K. S. Kosik (2001). 'Neuronal RNA granules: a link between RNA localization and stimulation-dependent translation.' Neuron 32(4): 683-696. Kuwano, M., T. Uchiumi, et al. (2003). 'The basic and clinical implications of ABC transporters, Y-box-binding protein-1 (YB-1) and angiogenesis-related factors in human malignancies.' Cancer Sci 94(1): 9-14. Lantz, V., J. S. Chang, et al. (1994). 'The Drosophila orb RNA-binding protein is required for the formation of the egg chamber and establishment of polarity.' Genes Dev 8(5): 598-613. Lau, J. T., M. F. Pittenger, et al. (1985). 'Reconstruction of appropriate tubulin and actin gene regulation after transient transfection of cloned beta-tubulin and beta-actin genes.' Mol Cell Biol 5(7): 1611-1620. Lehmann, R. and C. Nusslein-Volhard (1991). 'The maternal gene nanos has a central role in posterior pattern formation of the Drosophila embryo.' Development 112(3): 679-691. Lewis, S. A., G. Tian, et al. (1997). 'The alpha- and beta-tubulin folding pathways.' Trends Cell Biol 7(12): 479-484. Lin, H., L. Yue, et al. (1994). 'The Drosophila fusome, a germline-specific organelle, contains membrane skeletal proteins and functions in cyst formation.' Development 120(4): 947-956. Lin, M. D., S. J. Fan, et al. (2006). 'Drosophila decapping protein 1, dDcp1, is a component of the oskar mRNP complex and directs its posterior localization in the oocyte.' Dev Cell 10(5): 601-613. Lin, M. D., X. Jiao, et al. (2008). 'Drosophila processing bodies in oogenesis.' Dev Biol 322(2): 276-288. Loschi, M., C. C. Leishman, et al. (2009). 'Dynein and kinesin regulate stress-granule and P-body dynamics.' J Cell Sci 122(Pt 21): 3973-3982. Lykke-Andersen, J. (2002). 'Identification of a human decapping complex associated with hUpf proteins in nonsense-mediated decay.' Mol Cell Biol 22(23): 8114-8121. Macdonald, P. M., S. K. Luk, et al. (1991). 'Protein encoded by the exuperantia gene is concentrated at sites of bicoid mRNA accumulation in Drosophila nurse cells but not in oocytes or embryos.' Genes Dev 5(12B): 2455-2466. Marklund, U., N. Larsson, et al. (1996). 'Oncoprotein 18 is a phosphorylation-responsive regulator of microtubule dynamics.' EMBO J 15(19): 5290-5298. Matsumoto, K. and A. P. Wolffe (1998). 'Gene regulation by Y-box proteins: coupling control of transcription and translation.' Trends Cell Biol 8(8): 318-323. Meng, J. and E. C. Stephenson (2002). 'Oocyte and embryonic cytoskeletal defects caused by mutations in the Drosophila swallow gene.' Dev Genes Evol 212(5): 239-247. Muhlrad, D., C. J. Decker, et al. (1994). 'Deadenylation of the unstable mRNA encoded by the yeast MFA2 gene leads to decapping followed by 5'-->3' digestion of the transcript.' Genes Dev 8(7): 855-866. Neuman-Silberberg, F. S. and T. Schupbach (1993). 'The Drosophila dorsoventral patterning gene gurken produces a dorsally localized RNA and encodes a TGF alpha-like protein.' Cell 75(1): 165-174. Neuman-Silberberg, F. S. and T. Schupbach (1996). 'The Drosophila TGF-alpha-like protein Gurken: expression and cellular localization during Drosophila oogenesis.' Mech Dev 59(2): 105-113. Nilson, L. A. and T. Schupbach (1999). 'EGF receptor signaling in Drosophila oogenesis.' Curr Top Dev Biol 44: 203-243. Nogales, E. (2001). 'Structural insight into microtubule function.' Annu Rev Biophys Biomol Struct 30: 397-420. Nusslein-Volhard, C., H. G. Frohnhofer, et al. (1987). 'Determination of anteroposterior polarity in Drosophila.' Science 238(4834): 1675-1681. Nusslein-Volhard, C. and S. Roth (1989). 'Axis determination in insect embryos.' Ciba Found Symp 144: 37-55; discussion 55-64, 92-38. Ozon, S., A. Guichet, et al. (2002). 'Drosophila stathmin: a microtubule-destabilizing factor involved in nervous system formation.' Mol Biol Cell 13(2): 698-710. Pachter, J. S., T. J. Yen, et al. (1987). 'Autoregulation of tubulin expression is achieved through specific degradation of polysomal tubulin mRNAs.' Cell 51(2): 283-292. Palacios, I. M., D. Gatfield, et al. (2004). 'An eIF4AIII-containing complex required for mRNA localization and nonsense-mediated mRNA decay.' Nature 427(6976): 753-757. Pantaloni, D., M. F. Carlier, et al. (1981). 'Mechanism of tubulin assembly: role of rings in the nucleation process and of associated proteins in the stabilization of microtubules.' Biochemistry 20(16): 4709-4716. Parker, J. S., S. M. Roe, et al. (2005). 'Structural insights into mRNA recognition from a PIWI domain-siRNA guide complex.' Nature 434(7033): 663-666. Parker, R. and H. Song (2004). 'The enzymes and control of eukaryotic mRNA turnover.' Nat Struct Mol Biol 11(2): 121-127. Piccirillo, C., R. Khanna, et al. (2003). 'Functional characterization of the mammalian mRNA decapping enzyme hDcp2.' RNA 9(9): 1138-1147. Pittenger, M. F. and D. W. Cleveland (1985). 'Retention of autoregulatory control of tubulin synthesis in cytoplasts: demonstration of a cytoplasmic mechanism that regulates the level of tubulin expression.' J Cell Biol 101(5 Pt 1): 1941-1952. Pokrywka, N. J. and E. C. Stephenson (1995). 'Microtubules are a general component of mRNA localization systems in Drosophila oocytes.' Dev Biol 167(1): 363-370. Purich, D. L. and R. K. MacNeal (1978). 'Properties of tubulin treated with alkaline phosphatase to remove guanine nucleotides from the exchangeable binding site.' FEBS Lett 96(1): 83-86. Ravelli, R. B., B. Gigant, et al. (2004). 'Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain.' Nature 428(6979): 198-202. Riechmann, V. and A. Ephrussi (2001). 'Axis formation during Drosophila oogenesis.' Curr Opin Genet Dev 11(4): 374-383. Riparbelli, M. G. and G. Callaini (2007). 'The Drosophila parkin homologue is required for normal mitochondrial dynamics during spermiogenesis.' Dev Biol 303(1): 108-120. Rosales-Nieves, A. E., J. E. Johndrow, et al. (2006). 'Coordination of microtubule and microfilament dynamics by Drosophila Rho1, Spire and Cappuccino.' Nat Cell Biol 8(4): 367-376. Roth, S., F. S. Neuman-Silberberg, et al. (1995). 'cornichon and the EGF receptor signaling process are necessary for both anterior-posterior and dorsal-ventral pattern formation in Drosophila.' Cell 81(6): 967-978. Sakuno, T., Y. Araki, et al. (2004). 'Decapping reaction of mRNA requires Dcp1 in fission yeast: its characterization in different species from yeast to human.' J Biochem 136(6): 805-812. Saunders, C. and R. S. Cohen (1999). 'The role of oocyte transcription, the 5'UTR, and translation repression and derepression in Drosophila gurken mRNA and protein localization.' Mol Cell 3(1): 43-54. Schiff, P. B., J. Fant, et al. (1979). 'Promotion of microtubule assembly in vitro by taxol.' Nature 277(5698): 665-667. Schnorrer, F., K. Bohmann, et al. (2000). 'The molecular motor dynein is involved in targeting swallow and bicoid RNA to the anterior pole of Drosophila oocytes.' Nat Cell Biol 2(4): 185-190. Schnorrer, F., S. Luschnig, et al. (2002). 'Gamma-tubulin37C and gamma-tubulin ring complex protein 75 are essential for bicoid RNA localization during drosophila oogenesis.' Dev Cell 3(5): 685-696. Serbus, L. R., B. J. Cha, et al. (2005). 'Dynein and the actin cytoskeleton control kinesin-driven cytoplasmic streaming in Drosophila oocytes.' Development 132(16): 3743-3752. She, M., C. J. Decker, et al. (2006). 'Crystal structure and functional analysis of Dcp2p from Schizosaccharomyces pombe.' Nat Struct Mol Biol 13(1): 63-70. She, M., C. J. Decker, et al. (2004). 'Crystal structure of Dcp1p and its functional implications in mRNA decapping.' Nat Struct Mol Biol 11(3): 249-256. She, M., C. J. Decker, et al. (2008). 'Structural basis of dcp2 recognition and activation by dcp1.' Mol Cell 29(3): 337-349. Shelanski, M. L., F. Gaskin, et al. (1973). 'Microtubule assembly in the absence of added nucleotides.' Proc Natl Acad Sci U S A 70(3): 765-768. Sheth, U. and R. Parker (2003). 'Decapping and decay of messenger RNA occur in cytoplasmic processing bodies.' Science 300(5620): 805-808. Shulman, J. M., R. Benton, et al. (2000). 'The Drosophila homolog of C. elegans PAR-1 organizes the oocyte cytoskeleton and directs oskar mRNA localization to the posterior pole.' Cell 101(4): 377-388. Smillie, D. A. and J. Sommerville (2002). 'RNA helicase p54 (DDX6) is a shuttling protein involved in nuclear assembly of stored mRNP particles.' J Cell Sci 115(Pt 2): 395-407. Solinger, J. A., D. Pascolini, et al. (1999). 'Active-site mutations in the Xrn1p exoribonuclease of Saccharomyces cerevisiae reveal a specific role in meiosis.' Mol Cell Biol 19(9): 5930-5942. Spiegelman, B. M., S. M. Penningroth, et al. (1977). 'Turnover of tubulin and the N site GTP in Chinese hamster ovary cells.' Cell 12(3): 587-600. Spradling, A., D. Drummond-Barbosa, et al. (2001). 'Stem cells find their niche.' Nature 414(6859): 98-104. St Johnston, D., D. Beuchle, et al. (1991). 'Staufen, a gene required to localize maternal RNAs in the Drosophila egg.' Cell 66(1): 51-63. Steiger, M., A. Carr-Schmid, et al. (2003). 'Analysis of recombinant yeast decapping enzyme.' RNA 9(2): 231-238. Steinhauer, J. and D. Kalderon (2006). 'Microtubule polarity and axis formation in the Drosophila oocyte.' Dev Dyn 235(6): 1455-1468. Steinmetz, M. O., R. A. Kammerer, et al. (2000). 'Op18/stathmin caps a kinked protofilament-like tubulin tetramer.' EMBO J 19(4): 572-580. Stevens, A., C. L. Hsu, et al. (1991). 'Fragments of the internal transcribed spacer 1 of pre-rRNA accumulate in Saccharomyces cerevisiae lacking 5'----3' exoribonuclease 1.' J Bacteriol 173(21): 7024-7028. Stoecklin, G. and P. Anderson (2007). 'In a tight spot: ARE-mRNAs at processing bodies.' Genes Dev 21(6): 627-631. Stoecklin, G., T. Mayo, et al. (2006). 'ARE-mRNA degradation requires the 5'-3' decay pathway.' EMBO Rep 7(1): 72-77. Sweet, T. J., B. Boyer, et al. (2007). 'Microtubule disruption stimulates P-body formation.' RNA 13(4): 493-502. Teixeira, D., U. Sheth, et al. (2005). 'Processing bodies require RNA for assembly and contain nontranslating mRNAs.' RNA 11(4): 371-382. Tharun, S. and R. Parker (1999). 'Analysis of mutations in the yeast mRNA decapping enzyme.' Genetics 151(4): 1273-1285. Theurkauf, W. E. (1994). 'Premature microtubule-dependent cytoplasmic streaming in cappuccino and spire mutant oocytes.' Science 265(5181): 2093-2096. Theurkauf, W. E., S. Smiley, et al. (1992). 'Reorganization of the cytoskeleton during Drosophila oogenesis: implications for axis specification and intercellular transport.' Development 115(4): 923-936. Thomas, M. G., L. J. Martinez Tosar, et al. (2005). 'Staufen recruitment into stress granules does not affect early mRNA transport in oligodendrocytes.' Mol Biol Cell 16(1): 405-420. Tishkoff, D. X., B. Rockmill, et al. (1995). 'The sep1 mutant of Saccharomyces cerevisiae arrests in pachytene and is deficient in meiotic recombination.' Genetics 139(2): 495-509. Townsley, F. M. and M. Bienz (2000). 'Actin-dependent membrane association of a Drosophila epithelial APC protein and its effect on junctional Armadillo.' Curr Biol 10(21): 1339-1348. Vallee, R. B., J. C. Williams, et al. (2004). 'Dynein: An ancient motor protein involved in multiple modes of transport.' J Neurobiol 58(2): 189-200. van Dijk, E., N. Cougot, et al. (2002). 'Human Dcp2: a catalytically active mRNA decapping enzyme located in specific cytoplasmic structures.' EMBO J 21(24): 6915-6924. van Eeden, F. and D. St Johnston (1999). 'The polarisation of the anterior-posterior and dorsal-ventral axes during Drosophila oogenesis.' Curr Opin Genet Dev 9(4): 396-404. van Eeden, F. J., I. M. Palacios, et al. (2001). 'Barentsz is essential for the posterior localization of oskar mRNA and colocalizes with it to the posterior pole.' J Cell Biol 154(3): 511-523. Wang, Y., G. Tian, et al. (2006). 'Mutations affecting beta-tubulin folding and degradation.' J Biol Chem 281(19): 13628-13635. Weisenberg, R. C., G. G. Borisy, et al. (1968). 'The colchicine-binding protein of mammalian brain and its relation to microtubules.' Biochemistry 7(12): 4466-4479. Wilson, L. and M. A. Jordan (2004). 'New microtubule/tubulin-targeted anticancer drugs and novel chemotherapeutic strategies.' J Chemother 16 Suppl 4: 83-85. Xu, J., J. Y. Yang, et al. (2006). 'Arabidopsis DCP2, DCP1, and VARICOSE form a decapping complex required for postembryonic development.' Plant Cell 18(12): 3386-3398. Yano, T., S. Lopez de Quinto, et al. (2004). 'Hrp48, a Drosophila hnRNPA/B homolog, binds and regulates translation of oskar mRNA.' Dev Cell 6(5): 637-648. Yu, J. H., W. H. Yang, et al. (2005). 'Ge-1 is a central component of the mammalian cytoplasmic mRNA processing body.' RNA 11(12): 1795-1802. Zou, J., M. A. Hallen, et al. (2008). 'A microtubule-destabilizing kinesin motor regulates spindle length and anchoring in oocytes.' J Cell Biol 180(3): 459-466. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22385 | - |
| dc.description.abstract | 轉譯抑制的訊息核醣蛋白質(mRNP)會和訊息核醣核酸(mRNA)結合聚集成
裂解體。裂解體內的蛋白質成員包含了訊息核醣核酸去頭蓋的複合體、去頭蓋蛋 白質的活化者、核醣核酸外切酶和其他等。去頭蓋蛋白質2(decapping protein 2) 則是負責在訊息核醣核酸去頭蓋的催化酵素。 在果蠅去頭蓋蛋白質2(Drosophila decapping protein 2)基因突變的卵母細胞 中,呈現不正常的肌動蛋白(actin)塊狀結構和細胞質流(ooplasmic streaming)缺 陷。由於細胞質流是一個依靠微管(microtubule)運作的行為,所以在果蠅去頭蓋 蛋白質2 基因突變的卵母細胞中,其細胞骨架與微管可能受到影響。 雖然果蠅去頭蓋蛋白質2 是一個去除頭蓋的酵素,且會參與訊息核醣核酸分 解;然而,在其突變的卵母細胞中所呈現的異常肌動蛋白塊狀結構,卻與肌動蛋 白基因的表現量無關。另一方面,在這些突變的卵母細胞中,除了細胞質流以外, 同時也觀察到與微管作用有關的性狀。第一,osk 訊息核醣核酸座落位置錯誤。 果蠅去頭蓋蛋白質1 (Drosophila decapping protein 1)是osk 訊息核醣核酸蛋白質 複合物之一員並主導osk 訊息核醣核酸的運輸;在果蠅去頭蓋蛋白質2 突變或秋 水仙素(colchicine)處理後的卵母細胞內,果蠅去頭蓋蛋白質1 仍會和錯位的osk 訊息核醣核酸座落在一起;此結果顯示果蠅去頭蓋蛋白質2 突變或秋水仙素處理 會影響卵母細胞內的微管,以至於運輸出現問題。第二,在野生型果蠅的卵腔, 第九期卵母細胞會表現微管梯度,第十期則呈現平行排列的維管束;但突變種的 微管梯度和微管束皆無法形成。第三,果蠅去蓋蛋白質2 突變的卵母細胞所表現 的微管崩解分散樣式,與野生型卵母細胞處理秋水仙素後,所展現的微管崩解樣 式非常類似。第四,為了要測試是否在果蠅去頭蓋蛋白質2 突變卵母細胞內,殘 存微管蛋白可以再重組成微管,於是加入了紫杉醇(taxol)促進微管蛋白結合並發 現有回復些許較細小的微管絲;也就是說,taxol 可部分抑制果蠅去頭蓋蛋白質2 突變所造成的影響。再者,雖然在果蠅去頭蓋蛋白質2 突變的幼蟲中,α-微管蛋白 (α-tubulin) 的蛋白質表現量下降,但是其訊息核醣核酸的表現量卻測不到明顯影響。 為了解果蠅去頭蓋蛋白質2在α/β-微管蛋白組成微管與微管間的動態平衡的角色,我們純化果蠅去頭蓋蛋白質2並做體外微管合成測試。果蠅去頭蓋蛋白質2的B表現形蛋白,雖然不像紫杉醇一樣可以影響到微管合成的階段,但是卻可維持平原期後的吸收曲線,而其他控制組的曲線已逐漸下降。更訝異的,在果蠅去頭蓋蛋白質2的A表現形蛋白中,扣除B表現形蛋白之外多出來的一段N端區域,也可以達到此現象。但是,具有催化活性以及核醣核酸結合區段的蛋白質,則對微管合成沒有影響。 在去除核糖核酸頭蓋的酵素功能外,果蠅去頭蓋蛋白質2可藉由刺激微管的合成或壓抑分解而調控微管的動態調控。 | zh_TW |
| dc.description.abstract | Processing bodies are aggregates of translationally repressed mRNPs associated
with mRNA decay machinery. The protein components of P-bodies include mRNA decapping complex, activators of decapping protein, exonuclease and others. Decapping protein 2, Dcp2, is the catalytic enzyme of mRNA decapping. In dDcp2 mutant oocytes, they displayed abnormal actin clumps and defects in ooplasmic streaming. Since streaming is a microtubule-based action, the cytoskeletons abd microtubules in dDcp2 mutant oocytes might be affected. dDcp2 is a decapping enzyme participating mRNA decay; however, the ectopic actin clumps in dDcp2 mutant oocyte is not related to the quantity of actin gene expression. On the other hand, in dDcp2de21 mutant oocyte, several phenotypes related to microtubule function are observed besides ooplasmic streaming. First, the osk mRNA is mislocalized. dDcp1 which is a member of osk mRNP complex can direct the osk mRNA transport. In dDcp2 mutant or colchicine-treated oocyte, the mislocalized osk mRNA colocalizes with dDcp1. This result indicates that both dDcp2 mutation and colchicine treatment disturb microtubules in the oocyte, and in turn affecting the transportation of osk mRNA. Second, in wild-type egg chambers, microtubules display a gradient at stage 9 oocyte and a parallel array of microtubule bundles at stage 10 oocyte. However, both the gradient and bundles are disrupted in v dDcp2de21 mutant oocyte. Third, the microtubule expression pattern in dDcp2de21 mutant oocyte is very similar to the microtubule depolymerized situation when wild-type oocyte treated with colchicine. Fourth, to test whether the remaining tubulin in dDcp2de21 mutant oocyte could reorganize to microtubule, a narrow microtubule fibers is re-formed while the microtubule polymerizing drug, taxol, is added. That is, taoxl can partially suppress the phenotype caused by dDcp2 mutation. Further, though the expression of α-tubulin protein is decreased in dDcp2de21 mutant larvae, there is no significant deviation of tubulin mRNA level measured. Currently, we propose that dDcp2 is required for microtubule organization in Drosophila oocyte. In order to know the role of dDcp2 in dynamics between α/β tubulin heterodimers and microtubule, we purify dDcp2 protein to perform in vitro microtubule polymerization assay. dDcp2 B-form protein, which is not like taxol, can not influence the polymerization phase; however, it can maintain the absorbent curve from decreasing after plateau stage, while the curve has been gradually decreased in control protein. More strikingly, the unique N terminal domain in dDcp2A except for the dDcp2B can also achieve the situation. However, the protein containing catalytic and RNA-binding domain has no effect on microtubule polymerization. We suggest that, as a decapping enzyme, dDcp2 can participate in the regulation of microtubule dynamics by affecting the polymerization/depolymerization state. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T04:16:41Z (GMT). No. of bitstreams: 1 ntu-99-R96b43021-1.pdf: 5681079 bytes, checksum: 3800b716b932d010d298c0f2399e1ab0 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | Table of contents
口試委員會審定書………………………………………………………………...i 中文摘要…………………………………….……………………..…….………... ii Abstract…………………………………….……………………...…….…………iv Abbreviations………………………………………….…………….…...…….....vi Introduction.......………….…….…………………….......…......….......................p1 1. Drosophila oogenesis.......………………….…………………….......…......….....p1 1.1 Drosophila early oogenesis.………………….………………….….……..….....p1 1.1.1 The germarium development…………….…………………….….…....….....p1 1.1.2 Microtubules in early stages of the egg chamber…………….….…....……...p2 1.2 Mid-oogenesis.……………………………….……………………..……..….....p3 1.2.1 Establishment of anterior-posterior axis of the oocyte…….….……..…….....p3 1.2.2 Patterning of the dorsal-ventral axis…….………………….….….…....….....p3 1.2.3 Localization of the embryo polarity determinants………….….……....….....p4 1.2.3.1 bicoid mRNA localization…….………….……………….….……....….....p5 1.2.3.2 oskar mRNA localization…….………….……………….….…….....….....p5 1.3 Late oogenesis…….………….………………………………...….….....….....p6 1.3.1 Ooplasmic streaming……….…………………….…………...……......….....p6 2. Overview of microtubule……………..………………….…..…...……......….....p8 2.1.1 autoregulation of α/β-tubulin mRNA………………………...……...….....p8 2.1.1.1 The regulatory region in tubulin mRNA…………………...……...…......p9 2.1.1.2 Degradation of specific polysomal tubulin mRNA………...……...…......p9 2.1.1.3 Models for the autoregulated degradation of tubulin mRNA……...…....p10 2.1.2 α/β-Tubulin folding with cytosolic chaperonin CCT………...……...…....p10 2.1.3 Post-modification of α/β-tubulin…………………...………………..…...p11 2.1.3.2 Tubulin tyrosination…………………...…...……………................…...p12 2.1.4 α/β-tubulin protein degradation………...…...…………….................…...p13 2.2 Microtubule organization…………………...…...…………….................…...p14 2.2.1 Microtubule structure…………………...…...…………….................…...p14 2.2.2 The dynamic stability of microtubule…...…...…………….................…..p14 2.2.3 The polarity of microtubule……………...…...……………................…...p15 2.3 Microtubule network……………...…...……………................................…...p16 2.3.1 Microtubule motor proteins…...…...……………................................…...p16 2.3.1.1 Kinesin……………...…...……………..........................................…...p17 2.3.1.2 Dynein……………...…...……………...........................................…...p17 2.3.2 Microtubule associated proteins…………...........................................…...p17 2.3.2.1 Stathmin/Op18………...…...………….............................................…...p18 2.3.2.2 Others………...…...…………..........................................................…...p19 3. mRNA degradation and Processing body...................................................…...p19 3.1 General mRNA degradation is triggered by deadenylation........................p20 3.1.1 Dcp2, decapping protein 2, removes the 5’-cap from mRNA..............…...p21 3.1.2 Dcp1, decapping protein 1, enhances decapping activity of Dcp2.............p22 3.1.3 Xrn1 is the exonuclease from 5’ to 3’ degradation......................................p23 3.2 The dynamics of mRNA in processing body.................................................p24 3.2.1 mRNA can be degraded or temporarily stored in P bodies.........................p24 3.2.1.1 mRNA degradation in P bodies is associated with polysomes.................p25 3.2.2 mRNA in P bodies can shuttle between P body and other mRNP complex 3.2.2.1 Stress granules contain non-translating mRNAs......................................p25 3.2.2.2 mRNA cycles among P boby, stress granule and polysome.....................p26 3.2.2.3 mRNA can be transported in neuronal granules.......................................p27 3.3 The mobility of processing body....................................................................p27 3.3.1 Processing bodies are associated with microtubule....................................p28 4. Previous studies on Drosophila decapping protein 2.........................................p29 5. The aim of this thesis............................................................................................p31 Material and method..........................................................................................p32 Result.......................................................................................................................p42 1. Aberrant actin patterns in dDcp2 mutant GLC egg chambers......................p46 1.1 dDcp2 mutation affects actin cytoskeleton.......................................................p46 1.2 actin mRNA is not significant change in dDcp2 mutant GLC egg chambers...p47 2. dDcp2 mutation affectes the proper localization of osk mRNA.....................p48 2.1 osk mRNA is mis-localized in dDcp2de21 GLC oocyte.....................................p49 2.2 The localization of grk mRNA is not affected in dDcp2de21 GLC oocyte.........p51 3. Both dDcp2 mutation and colchicine treatment disturb the distribution of osk mRNA and dDcp1..............................................................................................p53 3.1 Microtubule disruption affectes the localization of osk mRNA.......................p54 3.2 osk mRNA colocalizes with dDcp1 and Staufen in the oocyte, but not with dDcp2................................................................................................................p55 3.3 dDcp2 mutation and microtubule disruption cause dDcp1 foci enlargement in nurse cells and mis-localization in the oocyte...................................................p57 3.4 The mis-localized dDcp1 colocalizes with osk mRNA under dDcp2 mutant or microtubule-disrupted background....................................................................p59 4. dDcp2 is required for microtubule organization in the oocyte......................p61 4.1 dDcp2 mutation resultes in microtubule disruption..........................................p63 4.1.1 Microtubule bundles are almost abolished in dDcp2 null mutation..........p64 4.1.2 Microtubule bundles are slightly impaired in dDcp2E133/134A mutant GLC oocyte.............................................................................................................p66 4.1.3 Microtubule disruption is rescued in 10.8k transgenic fragment of dDcp2 genomic sequence under dDcp2de21 GLC oocyte...........................................p67 4.2 dDcp2 mutation and colchicine treatment cause the same phenotype of microtubule disruption......................................................................................p69 4.3 Microtubule fibers are partially reformed in dDcp2de21 GLC oocyte after treating with Taxol.............................................................................................p69 4.4 The expression of α-tubulin mRNA does not decrease in dDcp2 mutants.......p71 5. dDcp2 protein participates in the regulation of microtubule dynamics........p74 5.1 The property of microtubule and microtubule polymerization assay................p74 5.1.1 Microtubule polymerization assay is a useful tool to monitor the growing state of microtubules......................................................................................p75 5.1.2 Tubulin extracts used for polymerization assay are isolated from Cyprinus carpio sperm...................................................................................................p77 5.2 dDcp2 protein affects the amplitude of polymerization curve in microtubule polymerization assay.........................................................................................p77 5.2.1 The design of different dDcp2 protein fragments......................................p78 5.2.2 dDcp2NA protein can maintain the polymerization curve after plateau stage 5.2.3 dDcp2M protein has no effects on the polymerization curve in the in vitro microtubule polymerization assay..................................................................p81 Discussion 1. dDcp2 may not invole in transport of osk mRNA directly...............................p84 2. dDcp2 mutation does not affect mRNA expression level...................................p86 2.1 The quantity of actin mRNA expression in dDcp2 mutation is not significantly changed............................................................................................................p86 2.2 tubulin mRNA expression is not significantly changes in dDcp2 mutants.......p89 3. dDcp2 regulates microtubule organization........................................................p91 3.1 dDcp2 is required for the proper microtubule organization in oocyte..............p91 3.2 dDcp2 is required for maintaining the equilibrium between microtubule and tubulin pools.......................................................................................................p95 3.3 dDcp2 protein participates in the regulation of microtubule dynamics............p99 3.3.1 dDcp2B may have the ability to stabilize polymerized microtubules or repress the depolymerization of microtubule...................................................p99 3.3.2 Box A region may have the ability to sustain polymerized microtubules.p100 Figures...................................................................................................................p104 Reference..............................................................................................................p141 Supplement..........................................................................................................p152 | |
| dc.language.iso | zh-TW | |
| dc.subject | 裂解體 | zh_TW |
| dc.subject | 微管 | zh_TW |
| dc.subject | 果蠅去蓋頭半白質2 | zh_TW |
| dc.subject | Drosophila decapping protein 2 | en |
| dc.subject | processing body | en |
| dc.subject | microtubule | en |
| dc.title | 果蠅去頭蓋蛋白質2參與微管動態行為的調控 | zh_TW |
| dc.title | Drosophila decapping protein 2, dDcp2, participates in the regulation of microtubule dynamics | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 董桂書,朱家瑩,柯逢春 | |
| dc.subject.keyword | 微管,果蠅去蓋頭半白質2,裂解體, | zh_TW |
| dc.subject.keyword | microtubule,Drosophila decapping protein 2,processing body, | en |
| dc.relation.page | 160 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2010-08-02 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 5.55 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
