請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22376
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃慶璨(Ching-Tsan Huang) | |
dc.contributor.author | Ying-Jie Wu | en |
dc.contributor.author | 吳盈潔 | zh_TW |
dc.date.accessioned | 2021-06-08T04:16:29Z | - |
dc.date.copyright | 2011-08-22 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-08-17 | |
dc.identifier.citation | 1. Agaphonov, M. O., M. Beburov, M. D. Ter-Avanesyan, and V. N. Smirnov. 1995. A disruption-replacement approach for the targeted integration of foreign genes in Hansenula polymorpha. Yeast 11:1241-1247.
2. Babel, W., and K. H. Hofmann. 1982. The relation between the assimilation of methanol and glycerol in yeasts. Arch. Microbiol. 132:179-184. 3. Baerends, R. J., G. J. Sulter, T. W. Jeffries, J. M. Cregg, and M. Veenhuis. 2002. Molecular characterization of the Hansenula polymorpha FLD1 gene encoding formaldehyde dehydrogenase. Yeast 19:37-42. 4. Brito, N., M. D. Perez, G. Perdomo, C. Gonzalez, P. Garcia-Lugo, and J. M. Siverio. 1999. A set of Hansenula polymorpha integrative vectors to construct lacZ fusions. Appl. Microbiol. Biotechnol. 53:23-29. 5. Brondyk, W. H. 2009. Selecting an appropriate method for expressing a recombinant protein. Methods Enzymol 463:131-147. 6. Cereghino, J. L., and J. M. Cregg. 2000. Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 24:45-66. 7. Chen, C. C., P. H. Wu, C. T. Huang, and K. J. Cheng. 2004. A Pichia pastoris fermentation strategy for enhancing the heterologous expression of an Escherichia coli phytase. Enzyme Microb. Technol. 35:315-320. 8. Clare, J. J., F. B. Rayment, S. P. Ballantine, K. Sreekrishna, and M. A. Romanos. 1991. High-level expression of tetanus toxin fragment C in Pichia pastoris strains containing multiple tandem integrations of the gene. Biotechnology (N Y) 9:455-460. 9. Collins, T., C. Gerday, and G. Feller. 2005. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29:3-23. 10. Cregg, J. M., K. R. Madden, K. J. Barringer, G. P. Thill, and C. A. Stillman. 1989. Functional characterization of the two alcohol oxidase genes from the yeast Pichia pastoris. Mol Cell Biol 9:1316-1323. 11. Demain, A. L., and P. Vaishnav. 2009. Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 27:297-306. 12. Didion, T., and R. Roggenkamp. 1992. Targeting signal of the peroxisomal catalase in the methylotrophic yeast Hansenula polymorpha. FEBS Lett 303:113-116. 13. Faber, K. N., W. Harder, G. Ab, and M. Veenhuis. 1995. Review - Methylotrophic yeasts as facfactories for the production of foreign proteins. Yeast 11:1331-1344. 14. Fellinger, A. J., J. M. Verbakel, R. A. Veale, P. E. Sudbery, I. J. Bom, N. Overbeeke, and C. T. Verrips. 1991. Expression of the alpha-galactosidase from Cyamopsis tetragonoloba (guar) by Hansenula polymorpha. Yeast 7:463-473. 15. Gatzke, R., U. Weydemann, Z. A. Janowicz, and C. P. Hollenberg. 1995. Stable multicopy integration of vector sequences in Hansenula polymorpha. Appl. Microbiol. Biotechnol. 43:844-849. 16. Gellissen, G. 2000. Heterologous protein production in methylotrophic yeasts. Appl Microbiol Biotechnol 54:741-750. 17. Gellissen, G., and C. P. Hollenberg. 1997. Application of yeasts in gene expression studies: a comparison of Saccharomyces cerevisiae, Hansenula polymorpha and Kluyveromyces lactis -- a review. Gene 190:87-97. 18. Gellissen, G., Z. A. Janowicz, A. Merckelbach, M. Piontek, P. Keup, U. Weydemann, C. P. Hollenberg, and A. W. Strasser. 1991. Heterologous gene expression in Hansenula polymorpha: efficient secretion of glucoamylase. Biotechnology (N Y) 9:291-295. 19. Gellissen, G., Z. A. Janowicz, A. Merckelbach, M. Piontek, P. Keup, U. Weydemann, C. P. Hollenberg, and A. W. M. Strasser. 1991. Heterologous gene-expression in Hansenula polymorpha - efficient secretion of glucoamylase. Bio-Technol 9:291-295. 20. Gellissen, G., Z. A. Janowicz, U. Weydemann, K. Melber, A. W. Strasser, and C. P. Hollenberg. 1992. High-level expression of foreign genes in Hansenula polymorpha. Biotechnol Adv 10:179-189. 21. Gellissen, G., G. Kunze, C. Gaillardin, J. M. Cregg, E. Berardi, M. Veenhuis, and I. van der Klei. 2005. New yeast expression platforms based on methylotrophic Hansenula polymorpha and Pichia pastoris and on dimorphic Arxula adeninivorans and Yarrowia lipolytica - a comparison. FEMS Yeast Res 5:1079-1096. 22. Gellissen, G., M. Piontek, U. Dahlems, V. Jenzelewski, J. E. Gavagan, R. DiCosimo, D. L. Anton, and Z. A. Janowicz. 1996. Recombinant Hansenula polymorpha as a biocatalyst: Coexpression of the spinach glycolate oxidase (GO) and the S-cerevisiae catalase T (CTT1) gene. Appl. Microbiol. Biotechnol. 46:46-54. 23. Genu, V., S. Godecke, C. P. Hollenberg, and G. G. Pereira. 2003. The Hansenula polymorpha MOX gene presents two alternative transcription start points differentially utilized and sensitive to respiratory activity. Eur J Biochem 270:2467-2475. 24. Georis, J., F. Giannotta, J. Lamotte-Brasseur, B. Devreese, J. Van Beeumen, B. Granier, and J. M. Frere. 1999. Sequence, overproduction and purification of the family 11 endo-beta-1,4-xylanase encoded by the xyl1 gene of Streptomyces sp. S38. Gene 237:123-133. 25. Gilbert, S. C., H. van Urk, A. J. Greenfield, M. J. McAvoy, K. A. Denton, D. Coghlan, G. D. Jones, and D. J. Mead. 1994. Increase in copy number of an integrated vector during continuous culture of Hansenula polymorpha expressing functional human haemoglobin. Yeast 10:1569-1580. 26. Goustin, A. S., and F. H. Wilt. 1982. Direct measurement of histone peptide elongation rate in cleaving sea urchin embryos. Biochim Biophys Acta 699:22-27. 27. Harford, N., T. Cabezon, B. Colau, A. M. Delisse, T. Rutgers, and M. De Wilde. 1987. Construction and characterization of a Saccharomyces cerevisiae strain (RIT4376) expressing hepatitis B surface antigen. Postgrad Med J 63 Suppl 2:65-70. 28. Hartner, F. S., and A. Glieder. 2006. Regulation of methanol utilisation pathway genes in yeasts. Microb Cell Fact 5:39. 29. Hiep, T. T., V. N. Noskov, and Y. I. Pavlov. 1993. Transformation in the methylotrophic yeast Pichia methanolica utilizing homologous ADE1 and heterologous Saccharomyces cerevisiae ADE2 and LEU2 genes as genetic markers. Yeast 9:1189-1197. 30. Hitzeman, R. A., F. E. Hagie, H. L. Levine, D. V. Goeddel, G. Ammerer, and B. D. Hall. 1981. Expression of a human gene for interferon in yeast. Nature 293:717-722. 31. Hodgkins, M., D. Mead, D. J. Ballance, A. Goodey, and P. Sudbery. 1993. Expression of the glucose-oxidase gene from Aspergillus niger in Hansenula polymorpha and Its use as a reporter gene to isolate regulatory mutations. Yeast 9:625-635. 32. Hollenberg, C. P., and G. Gellissen. 1997. Production of recombinant proteins by methylotrophic yeasts. Curr Opin Biotechnol 8:554-560. 33. Hollenberg, C. P., and Z. Janowicz. 1988. DNA molecules coding for FMDH control regions and structured gene for a protein having FMDH-activity and their uses. Rhein Biotech, Düsseldorf, Germany. 34. Horiguchi, H., H. Yurimoto, T. Goh, T. Nakagawa, N. Kato, and Y. Sakai. 2001. Peroxisomal catalase in the methylotrophic yeast Candida boidinii: transport efficiency and metabolic significance. J Bacteriol 183:6372-6383. 35. Huang, Y. H., C. T. Huang, and R. S. Hseu. 2005. Effects of dockerin domains on Neocallimastix frontalis xylanases. FEMS Microbiol. Lett. 243:455-460. 36. Jana, S., and J. K. Deb. 2005. Strategies for efficient production of heterologous proteins in Escherichia coli. Appl Microbiol Biotechnol 67:289-298. 37. Janowicz, Z. A., M. R. Eckart, C. Drewke, R. O. Roggenkamp, C. P. Hollenberg, J. Maat, A. M. Ledeboer, C. Visser, and C. T. Verrips. 1985. Cloning and characterization of the DAS gene encoding the major methanol assimilatory enzyme from the methylotrophic yeast Hansenula polymorpha. Nucleic Acids Res 13:3043-3062. 38. Janowicz, Z. A., K. Melber, A. Merckelbach, E. Jacobs, N. Harford, M. Comberbach, and C. P. Hollenberg. 1991. Simultaneous expression of the S and L surface antigens of hepatitis B, and formation of mixed particles in the methylotrophic yeast, Hansenula polymorpha. Yeast 7:431-443. 39. Jenzelewski, V. 2002. Fermentation and primary product recovery. Wiley-VCH Verlag GmbH, Weinheim. 40. Kulkarni, N., A. Shendye, and M. Rao. 1999. Molecular and biotechnological aspects of xylanases. FEMS Microbiol Rev 23:411-456. 41. Kumagai, M. H., G. G. Sverlow, G. della-Cioppa, and L. K. Grill. 1993. Conversion of starch to ethanol in a recombinant Saccharomyces cerevisiae strain expressing rice alpha-amylase from a novel Pichia pastoris alcohol oxidase promoter. Biotechnology (N Y) 11:606-610. 42. Ledeboer, A. M., L. Edens, J. Maat, C. Visser, J. W. Bos, C. T. Verrips, Z. Janowicz, M. Eckart, R. Roggenkamp, and C. P. Hollenberg. 1985. Molecular cloning and characterization of a gene coding for methanol oxidase in Hansenula polymorpha. Nucleic Acids Res 13:3063-3082. 43. Lee, B., H. Yurimoto, Y. Sakai, and N. Kato. 2002. Physiological role of the glutathione-dependent formaldehyde dehydrogenase in the methylotrophic yeast Candida boidinii. Microbiology 148:2697-2704. 44. Liu, H., X. Tan, K. A. Russell, M. Veenhuis, and J. M. Cregg. 1995. PER3, a gene required for peroxisome biogenesis in Pichia pastoris, encodes a peroxisomal membrane protein involved in protein import. J Biol Chem 270:10940-10951. 45. Macauley-Patrick, S., M. L. Fazenda, B. McNeil, and L. M. Harvey. 2005. Heterologous protein production using the Pichia pastoris expression system. Yeast 22:249-270. 46. Mayer, A. F., K. Hellmuth, H. Schlieker, R. Lopez-Ulibarri, S. Oertel, U. Dahlems, A. W. Strasser, and A. P. van Loon. 1999. An expression system matures: a highly efficient and cost-effective process for phytase production by recombinant strains of Hansenula polymorpha. Biotechnol Bioeng 63:373-381. 47. Melmer, G. 2005. Biopharmaceuticals and the industrial environment. Wiley-VCH, Weinheim. 48. Middelhoven, W. J. 2005. History, habitat, variability, nomenclature and phylogenetic position of Hansenula polymorpha. Wiley-VCH Verlag GmbH, Weinheim. 49. Mueller, F. 2009. 3-D structural approach on the Hansenula polymorpha-derived PEGylated interferon-α2a. Digestive and Liver Disease Supplements 3:9-12. 50. Nakagawa, T., A. Inagaki, T. Ito, S. Fujimura, T. Miyaji, H. Yurimoto, N. Kato, Y. Sakai, and N. Tomizuka. 2006. Regulation of two distinct alcohol oxidase promoters in the methylotrophic yeast Pichia methanolica. Yeast 23:15-22. 51. Nakagawa, T., T. Ito, S. Fujimura, M. Chikui, T. Mizumura, T. Miyaji, H. Yurimoto, N. Kato, Y. Sakai, and N. Tomizuka. 2004. Molecular characterization of the glutathione-dependent formaldehyde dehydrogenase gene FLD1 from the methylotrophic yeast Pichia methanolica. Yeast 21:445-453. 52. Narciandi, R. E., L. Rodriguez, E. Rodriguez, R. Diaz, J. Delgado, and L. Herrera. 1995. High-level production of recombinant invertase in Hansenula polymorpha. Biotechnol Lett 17:949-952. 53. Nevoigt, E., and U. Stahl. 1997. Osmoregulation and glycerol metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 21:231-241. 54. Phongdara, A., A. Merckelbach, P. Keup, G. Gellissen, and C. P. Hollenberg. 1998. Cloning and characterization of the gene encoding a repressible acid phosphatase (PHO1) from the methylotrophic yeast Hansenula polymorpha. Appl Microbiol Biotechnol 50:77-84. 55. Porro, D., M. Sauer, P. Branduardi, and D. Mattanovich. 2005. Recombinant protein production in yeasts. Mol Biotechnol 31:245-259. 56. Raschke, W. C., B. R. Neiditch, M. Hendricks, and J. M. Cregg. 1996. Inducible expression of a heterologous protein in Hansenula polymorpha using the alcohol oxidase 1 promoter of Pichia pastoris. Gene 177:163-167. 57. Raymond, C. K., T. Bukowski, S. D. Holderman, A. F. Ching, E. Vanaja, and M. R. Stamm. 1998. Development of the methylotrophic yeast Pichia methanolica for the expression of the 65 kilodalton isoform of human glutamate decarboxylase. Yeast 14:11-23. 58. Rodriguez, L., R. E. Narciandi, H. Roca, J. Cremata, R. Montesinos, E. Rodriguez, J. M. Grillo, V. Muzio, L. S. Herrera, and J. M. Delgado. 1996. Invertase secretion in Hansenula polymorpha under the AOX1 promoter from Pichia pastoris. Yeast 12:815-822. 59. Sakai, Y., A. P. Murdanoto, T. Konishi, A. Iwamatsu, and N. Kato. 1997. Regulation of the formate dehydrogenase gene, FDH1, in the methylotrophic yeast Candida boidinii and growth characteristics of an FDH1-disrupted strain on methanol, methylamine, and choline. J Bacteriol 179:4480-4485. 60. Sakai, Y., T. Nakagawa, M. Shimase, and N. Kato. 1998. Regulation and physiological role of the DAS1 gene, encoding dihydroxyacetone synthase, in the methylotrophic yeast Candida boidinii. J Bacteriol 180:5885-5890. 61. Sakai, Y., and Y. Tani. 1992. Cloning and sequencing of the alcohol oxidase-encoding gene (AOD1) from the formaldehyde-producing asporogeneous methylotrophic yeast, Candida boidinii S2. Gene 114:67-73. 62. Sasaki, T., Y. Arai, T. Ikekawa, G. Chihara, and F. Fukuoka. 1971. Antitumor polysaccharides from some polyporaceae, Ganoderma applanatum (Pers.) Pat and Phellinus linteus (Berk. et Curt) Aoshima. Chem. Pharm. Bull. 19:821-&. 63. Satyanarayana, T., and G. Kunze. 2009. Hansenula polymorpha ( Pichia angusta ): Biology and Applications Springer Netherlands, Dordrecht. 64. Sears, I. B., J. O'Connor, O. W. Rossanese, and B. S. Glick. 1998. A versatile set of vectors for constitutive and regulated gene expression in Pichia pastoris. Yeast 14:783-790. 65. Shen, S., G. Sulter, T. W. Jeffries, and J. M. Cregg. 1998. A strong nitrogen source-regulated promoter for controlled expression of foreign genes in the yeast Pichia pastoris. Gene 216:93-102. 66. Shen, S. H., L. Bastien, T. Nguyen, M. Fung, and S. N. Slilaty. 1989. Synthesis and secretion of hepatitis-B middle surface-antigen by the methylotrophic yeast Hansenula polymorpha. Gene 84:303-309. 67. Sibirny, A. A., V. M. Bubiyvovk, M. V. Gonchar, V. I. Titorenko, A. Y. Voronovsky, Y. G. Kapultsevich, and K. M. Bliznik. 1990. Reactions of direct formaldehyde oxidation to CO2 are non-essential for energy supply of yeast methylotrophic growth. Arch Microbiol 154:566-575. 68. Sreekrishna, K., L. Nelles, R. Potenz, J. Cruze, P. Mazzaferro, W. Fish, M. Fuke, K. Holden, D. Phelps, P. Wood, and K. Parker. 1989. High-level expression, purification, and characterization of recombinant human tumor necrosis factor synthesized in the methylotrophic yeast Pichia pastoris. Biochemistry-Us 28:4117-4125. 69. Sudbery, P. E. 1996. The expression of recombinant proteins in yeasts. Curr Opin Biotechnol 7:517-524. 70. Tani, Y., and K. Yamada. 1987. Diversity in glycerol metabolism of methylotrophic yeasts. FEMS Microbiol. Lett. 40:151-153. 71. Tsai, C. T., and C. T. Huang. 2008. Overexpression of the Neocallimastix frontalis xylanase gene in the methylotrophic yeasts Pichia pastoris and Pichia methanolica. Enzyme Microb. Technol. 42:459-465. 72. Valenzuela, P., A. Medina, W. J. Rutter, G. Ammerer, and B. D. Hall. 1982. Synthesis and assembly of hepatitis B virus surface antigen particles in yeast. Nature 298:347-350. 73. van Dijk, R., K. N. Faber, J. A. Kiel, M. Veenhuis, and I. van der Klei. 2000. The methylotrophic yeast Hansenula polymorpha: a versatile cell factory. Enzyme Microb Technol 26:793-800. 74. Vanderklei, I. J., K. N. Faber, I. Keizergunnink, C. Gietl, W. Harder, and M. Veenhuis. 1993. Watermelon glyoxysomal malate-dehydrogenase is sorted to peroxisomes of the methylotrophic yeast, Hansenula polymorpha. FEBS Lett. 334:128-132. 75. Wang, H., F. Lu, Y. Sun, and L. Du. 2004. Heterologous expression of lignin peroxidase of Phanerochaete chrysosporium in Pichia methanolica. Biotechnol Lett 26:1569-1573. 76. Wedlock, N., J. Furmaniak, S. Fowler, Y. Kiso, J. Bednarek, A. Baumann-Antczak, C. Morteo, P. Sudbery, A. Hinchcliff, and B. Rees Smith. 1993. Expression of human thyroid peroxidase in the yeasts Saccharomyces cerevisiae and Hansenula polymorpha. J Mol Endocrinol 10:325-336. 77. Weydemann, U., P. Keup, M. Piontek, A. W. Strasser, J. Schweden, G. Gellissen, and Z. A. Janowicz. 1995. High-level secretion of hirudin by Hansenula polymorpha--authentic processing of three different preprohirudins. Appl Microbiol Biotechnol 44:377-385. 78. Zhang, W., M. A. Bevins, B. A. Plantz, L. A. Smith, and M. M. Meagher. 2000. Modeling Pichia pastoris growth on methanol and optimizing the production of a recombinant protein, the heavy-chain fragment C of botulinum neurotoxin, serotype A. Biotechnol Bioeng 70:1-8. 79. Zhang, Z., M. Moo-Young, and Y. Chisti. 1996. Plasmid stability in recombinant Saccharomyces cerevisiae. Biotechnol Adv 14:401-435. 80. Zhou, W. B., X. S. Zhou, and Y. X. Zhang. 2001. Decolorization and isolation of recombinant hirudin expressed in the methylotrophic yeast Pichia pastoris. Sheng Wu Gong Cheng Xue Bao 17:683-687. 81. 李啟睿. 2006. 利用漢遜酵母MOX及FMD啟動子異源表現瘤胃真菌Neocallimastix frontalis之木聚醣酶. 國立台灣大學微生物與生化學研究所碩士論文. 82. 蔡孟男. 2008. 利用甘油受限誘導漢遜氏酵母菌表現重組蛋白質. 國立台灣大學微生物與生化學研究所碩士論文. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22376 | - |
dc.description.abstract | 嗜甲醇酵母菌Hansenula polymorpha是常用的異源蛋白質表現系統,可藉由強力且可調控的甲醇氧化酶啟動子 (methanol oxidase promoter, MOXp) 來啟動異源蛋白質表現。MOXp除了能使用甲醇進行誘導外,還能藉由甘油、葡萄糖、木糖為單一碳源之碳源受限 (carbon source starvation) 方式,使MOXp發生去抑制 (derepression) 作用進而表現下游基因。目前工業上嗜甲醇酵母菌大規模的醱酵應用,大多使用甲醇做為誘導物,但使用甲醇的缺點包括甲醇具有毒性及易燃性,對於工業化大量生產會增加風險及管控成本、濃度過高的甲醇對菌體造成毒性或造成蛋白質產物降解、生產醫藥性蛋白質可能有甲醇殘留的疑慮。因此,發展一個非甲醇誘導之誘導策略實屬必要。本研究以不同的溶氧模式調控甘油添加,使MOXp發生去抑制作用表現木聚醣酶。研究發現,以固定溶氧值之調控模式,溶氧值設定越低可得到較高的酵素活性,將溶氧值固定於80%、60%及40%,所生產的木聚醣酶最高活性分別為4368.30±85.65、6903.73±152.21和7512.47±147.13 U/ml (n=3)。並且在不同誘導模式中發現甘油的添加量、鹼的添加量及木聚醣酶活性增加量都呈現正相關,因此在醱酵過程中可做為重組蛋白質產量的良好指標。 | zh_TW |
dc.description.abstract | The methylotrophic yeast Hansenula polymorpha is one of the most commonly used heterologous protein expression systems. Its methanol oxidase promoter (MOXp) is a strong and tightly regulated promoter, and can be used in heterologous protein expression. Except methanol, the MOXp can also be derepressed by single carbon source starvation such as glycerol, glucose or xylose for expressing downstream genes. Methanol is a commonly used inducer at large-scale fermentation of methylotrophic yeasts in industrial application. The disadvantages of using methanol include that methanol is toxic and flammable, the large-scale production of menthanol would increase the risk, and the cost for managing is high. In addition, high methanol concentration may hurt cells or cause target protein to be degrade. Since therapeutic proteins may face the risk of methanol remanet, it is necessary to develop a methanol-free induction strategy. In this study, using MOXp derepression to express xylanase through different pO2 control modes for regulating glycerol starvation. We found that lower pO2 control can get higher enzyme activity at fixed pO2 control.When pO2 control at 80%, 60% and 40%, the highest xylanase activity are 4368.30±85.65, 6903.73±152.21 and 7512.47±147.13 U/ml (n=3). And the addition of glycerol, base and xylanase activity correlated well with different pO2 control modes, suggesting that the glycerol and base addition can be a good indicator of recombinant protein production in fermentation course. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T04:16:29Z (GMT). No. of bitstreams: 1 ntu-100-R98b47414-1.pdf: 2268495 bytes, checksum: cef0696a95f5d8c4f2a5d7ec22a3a7d4 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 中文摘要 I
Abstract II 圖目錄 V 表目錄 VII 第一章 前言 1 1. 異源蛋白質表現系統 1 2. 嗜甲醇酵母菌表現系統 3 2-1. Pichia pastoris 4 2-2. Pichia methanolica 6 2-3. Hansenula polymorpha 7 3. 來自瘤胃真菌Neocallimastix frontalis的木聚醣酶 11 4. 研究動機與目的 13 第二章 材料與方法 16 1. 菌株與培養條件 16 1-1. H. polymorpha MOXZa-xyn11B’ 1B2-17 16 1-2. 培養條件 16 2. 醱酵槽大量生產目標蛋白質 17 2-1. 前置培養 17 2-2. 批式饋料培養 17 2-3. 甘油受限誘導培養 17 2-4. 甲醇誘導培養 17 3. 木聚醣酶活性測定 18 3-1. 木聚醣酶活性測定原理 18 3-2. 木聚醣酶活性測定方式 19 4. 生長曲線 20 4-1. 生菌數測定 20 4-2. A600吸光值測定 20 5. 蛋白質定量 20 第三章 結果 21 1. 細胞高密度培養 21 2. 甲醇誘導 21 3. 溶氧調控甘油添加之碳源受限誘導 22 第四章 討論 50 1. 細胞高密度培養 50 2. 甲醇誘導 50 3. 溶氧調控甘油添加之碳源受限誘導 51 4. 去抑制作用之基因調控 54 第五章 結論 55 第六章 未來展望 56 第七章 參考資料 57 附錄 64 | |
dc.language.iso | zh-TW | |
dc.title | 以非甲醇策略誘導漢遜氏酵母菌表現重組木聚醣酶 | zh_TW |
dc.title | A non-methanol induction strategy for recombinant xylanase expression in Hansenula polymorpha | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 許瑞祥,楊啟伸,李昆達,陳浩仁 | |
dc.subject.keyword | 漢遜氏酵母菌,異源蛋白質,甲醇氧化酶,啟動子,去抑制作用,木聚醣酶, | zh_TW |
dc.subject.keyword | Hansenula polymorpha,heterologous proteins,MOX promoter,derepression,xylanase, | en |
dc.relation.page | 70 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2011-08-18 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生化科技學系 | zh_TW |
顯示於系所單位: | 生化科技學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 2.22 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。