Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22365
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor林守德(Shou-De Lin)
dc.contributor.authorYi-Chen Loen
dc.contributor.author羅亦辰zh_TW
dc.date.accessioned2021-06-08T04:16:17Z-
dc.date.copyright2011-08-23
dc.date.issued2011
dc.date.submitted2011-08-18
dc.identifier.citation[1] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on large clusters,” OSDI, 2004.
[2] “Hadoop information,” http://hadoop.apache.org/
[3] P. Erdo˝s and A. Re´nyi, Bull. Inst. Int. Stat. 38, 343 (1961).
[4] D. Watts and S. Strogatz (1998): Collective dynamics of small-world networks. Nature, 363:202–204.
[5] R. Albert; A.-L. Barabási (2002). “Statistical mechanics of complex networks”. Reviews of Modern Physics 74: 47–97.
[6] Bron, Coen; Kerbosch, Joep (1973), “Algorithm 457: finding all cliques of an undirected graph”, Commun. ACM (ACM) 16 (9): 575–577
[7] U. Kang, C. E. Tsourakakis, and C. Faloutsos. Pegasus: A peta-scale graph mining system. Data Mining, IEEE International Conference on, 0:229–238, 2009.
[8] Hung-Che Lai, Exploiting and Evaluating MapReduce for Large-scale Graph Mining
[9] Hadoop2010: XXL Graph Algorithms, Sergei Vassilvitskii, Yahoo! Labs.
[10] Jonathan Cohen, Graph Twiddling in a MapReduce World. Comp. in Science & Engineering, July/August 2009, 29-41.
[11] Bin Wu, Shengqi Yang, Haizhou Zhao, Bai Wang, “A Distributed Algorithm to Enumerate All Maximal Cliques in MapReduce,” fcst, pp.45-51, 2009 Fourth International Conference on Frontier of Computer Science and Technology, 2009
[12] The Parallel Boost Graph Library, http://osl.iu.edu/research/pbgl/
[13] Lin Peng, Wang Zebing, Guo Ming, “A maximum clique algorithm based on MapReduce”, 2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE)
[14] Matthew C. Schmidt, Nagiza F. Samatova, Kevin Thomas, and Byung-Hoon Park. “A scalable, parallel algorithm for maximal clique enumeration”. Journal of Parallel and Distributed Computing, 69(4):417–428, 2009.
[15] Andy Yoo, Keith W. Henderson. Parallel Generation of Massive Scale-Free Graphs. CoRR, 2010.
[16] Cloud9: A MapReduce Library for Hadoop,
http://www.umiacs.umd.edu/~jimmylin/cloud9/docs/content/patterns.html
[17] Jimmy Lin and Chris Dyer, “Data-Intensive Text Processing with MapReduce”
[18] Snir, Marc; Otto, Steve; Huss-Lederman, Steven; Walker, David; Dongarra, Jack (1995) MPI: The Complete Reference
[19] Compute Unified Device Architecture Programming Guide, C Nvidia - NVIDIA: Santa Clara, CA, 2007
[20] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-mat: Arecursive model for graph
mining. In SDM, 2004.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22365-
dc.description.abstract社群網路生成在社群網路分析領域是一個重要的問題。人工產生的隨機圖被用來模擬真實世界社群網路已經行之有年。隨著真實世界社群網路如Twitter, Facebook等快速膨脹,我們需要可以產生大規模隨機圖的方法。Google提出的MapReduce[1]運算架構提供了我們將社群網路生成演算法平行化的需要及儲存大型網路檔案的分散式檔案系統。這篇論文提出將BA model[5]當中preferential attachment機制用到的degree由實際值代換成期望值,藉此讓BA model的生成過程可以被獨立地分割利於平行化。我們以MapReduce做實驗的結果顯示我們設計的平行演算法有良好的可擴放性並且產生出來的圖保有BA model原本的特性如power-law degree分布。這篇論文也將由Sergei Vassilvitskii在XXL Graph Algorithms[9]提出數三角形問題中把高degree的點分開處理的想法應用到最大團問題的MapReduce演算法。實驗的結果顯示這個方法讓計算效率有明顯的改進。zh_TW
dc.description.abstractSocial network generation is an important problem in social network analysis. Artificially generated random graphs are used to model real world social networks for a long time. With the expanding size of real world social networks such as Twitter, Facebook, we need some methods to generate large scale random graphs. MapReduce[1] proposed by Google is the right framework to provide parallelism on social network generation algorithm and distributed file system to store large output graph data. In our paper we propose a method to replace the exact degree, which is used as the attachment preference in original BA model[5], with the expected value of degree. By this substitution BA model generation algorithm can be divided into several independent tasks to fit in parallel computing. And our experiment results on MapReduce shows that after this substitution, graphs generated by BA model keep their original properties such as power-law degree distribution with good scalability. In this paper we also apply the idea of differentiate high degree vertices in triangle counting algorithm proposed in XXL Graph Algorithms by Sergei Vassilvitskii[9], to finding maximal clique algorithm in MapReduce. As a result of our experiment, the computation efficiency is obviously improved.en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:16:17Z (GMT). No. of bitstreams: 1
ntu-100-R98922012-1.pdf: 514025 bytes, checksum: 2ba6e07b4f41b86dd25471a703b33aa9 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents誌謝 ...................................................................................................................................i
中文摘要 .......................................................................................................................... ii
ABSTRACT .................................................................................................................... iii
CONTENTS .....................................................................................................................iv
LIST OF FIGURES ..........................................................................................................vi
Chapter 1 Introduction ................................................................................................ 1
1.1 Introduction to social network generation ............................................ 1
1.2 Introduction to finding maximal clique ................................................. 2
1.3 Thesis organization .................................................................................. 3
Chapter 2 Related Work .............................................................................................. 4
Chapter 3 Backgrounds .............................................................................................. 6
3.1 MapReduce and Hadoop ......................................................................... 6
3.2 Social Network Generation Models ........................................................ 7
3.2.1 Erdős–Rényi model (ER model) ..................................................................... 7
3.2.2 Watts and Strogatz model (WS model) ........................................................... 7
3.2.3 Barabási–Albert model(BA model) ................................................................ 8
Chapter 4 Methodology ............................................................................................ 10
4.1 Social network generation ..................................................................... 10
4.1.1 ER and WS model Generation in MapReduce ............................................. 10
4.1.2 Generating BA model in MapReduce ........................................................... 11
4.2 Finding Maximal Clique ....................................................................... 20
4.2.1 Counting Triangle ......................................................................................... 20
4.2.2 Finding maximal clique ................................................................................ 21
Chapter 5 Experiment ............................................................................................... 23
5.1 BA model generation.............................................................................. 23
5.1.1 Testing the property of power-law degree distribution of BA model
generation ..................................................................................................... 23
5.1.2 Testing scalability of BA model generation .................................................. 24
5.2 Experiment on finding maximal clique algorithm .............................. 27
Chapter 6 Conclusion ............................................................................................... 29
REFERENCE .................................................................................................................. 30
dc.language.isoen
dc.subject最大團問題zh_TW
dc.subjectMapReducezh_TW
dc.subject平行運算zh_TW
dc.subject圖探勘zh_TW
dc.subjectBA模型zh_TW
dc.subjectmaximal clique problemen
dc.subjectparallel computingen
dc.subjectMapReduceen
dc.subjectgraph miningen
dc.subjectBA modelen
dc.title社群網路生成及最大團問題於MapReduce有效率的演算法zh_TW
dc.titleEfficient MapReduce-based Algorithm for Social Network Generation and Finding Maximal Cliqueen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉邦鋒(Pang-Feng Liu),洪士灝(Shih-Hao Hung),蘇雅韻(Ya-Yunn Su)
dc.subject.keywordMapReduce,平行運算,圖探勘,BA模型,最大團問題,zh_TW
dc.subject.keywordMapReduce,parallel computing,graph mining,BA model,maximal clique problem,en
dc.relation.page28
dc.rights.note未授權
dc.date.accepted2011-08-18
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
Appears in Collections:資訊工程學系

Files in This Item:
File SizeFormat 
ntu-100-1.pdf
  Restricted Access
501.98 kBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved