Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22358
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor柯淳涵(Chun-Han Ko)
dc.contributor.authorCheng-Chiao Wangen
dc.contributor.author王政喬zh_TW
dc.date.accessioned2021-06-08T04:16:09Z-
dc.date.copyright2010-08-05
dc.date.issued2010
dc.date.submitted2010-08-03
dc.identifier.citationAttele, A.S., Wu, J.A., Yuan, S., 1999. Ginseng pharmacology. Multiple constituents and multiple actions. Biochemical Pharmacology 58, 1685–1693.
Aune, J.B., Lal, R., 1997. The tropical soil productivity calculator - a model for assessing effects of soil management on productivity, in: Lal, R., Stewart, B.A. (Eds.), Soil Management: Experimental Basis for Sustainability and Environmental Quality. Advances in Soil Science. Lewis Publishers, London, UK, pp. 499-520.
Bray, R.H., Kurtz, L.T., 1945. Determination of total, organic, and available forms of phosphorus in soil. Soil Science 59, 39-45.
Bremner, J.M., Mulvaney, C.S., 1982. Nitrogen-total, in: Page, A.L., Miller, R.H., Keeney, D.R. (Eds.), Methods of soil analysis. Part II: chemical and microbiological properties, 2nd edn. Soil Science Society of America, Madison, Wisconsin, pp. 595-624.
Doll, E.C., Lucas, R.E., 1973. Testing soil for potassium, calcium and magnesium, in: Walsh, L.M., Beaton, J.D. (Eds.), Soil Testing and Plant Analysis. Soil Science Society of America, Madison, Wisconsin, pp. 133-152.
Doran, J.W., Parkin, T.B., 1994. Defining and assessing soil quality, in: Doran, J.W., Coleman, D.C., Bezdick, D.F., Stewart, B.A. (Eds.), Defining Soil Quality for a Sustainable Environment. Soil Science Society of America, Special Publication, 35, pp. 3-21.
Editorial Committee of the Flora of Taiwan, 2003. Flora of Taiwan, 3: 607. Department of Botany, National Taiwan University.
Fageria, N.K., 2005. Soil Fertility and Plant Nutrition Research Under Controlled Conditions: Basic Principles and Methodology. Journal of Plant Nutrition 28(11), 1975-1999.
Fageria, N.K., 2007. Soil fertility and plant nutrition research under field conditions: basic principles and methodology. Journal of Plant Nutrition 30(2), 203-223.
Hamburger, M., Slacanin, I., Hostettmann, K., Dyatmiko, W., Sutarjadi, 1992. Acetylated saponin with molluscicidal activity from Sapindus rarak: unambiguous structure determination by proton nuclear magnetic resonance and quantitative analysis. Phytochemical Analysis 3, 231-237.
Hiai, S., Oura, H., Nakajima, T., 1976. Color reaction of some saposenins with vanillin and sulfuric acid. Planta medica 29, 116-122.
Hossain, M.B., Ryu, K.S., 2009. Effect of foliar applied phosphatic fertilizer on absorption pathways, yield and quality of sweet persimmon. Scientia Horticulturae 122, 626-632.
Hostettmann, K., Marston, A., 1995. Saponins. Cambridge University Press. Cambridge, New York.
Huang, H.C., Liao, S.C., Chang, F.R., Kuo, Y.H., Wu, Y.C. 2003. Molluscicidal Saponin from Sapindus mukorossi, inhibitory agents of golden apple snails, Pomacea canaliculata. Journal of Agricultural and Food Chemistry 51, 4916-4919.
Lee, P.F., Liao, C.Y., Lee, Y.C., Pang, Y.H., Fu, W.H., Chen, S.W., 1997. An ecological and environmental GIS database for Taiwan. Council of Agriculture, Taipei.
Macías, F.A., Galindo, J.L.G., Galindo, J.C.G., 2007. Evolution and current status of ecological phytochemistry. Phytochemistry 68, 2917-2936.
Matsumoto, S., Ae, N., Yamagata, M., 2000b. Possible direct uptake of organic nitrogen from soil by chingensai (Brassica campestris L.) and carrot (Daucus carota L.). Soil Biology & Biochemistry 32, 1301-1310.
McLean, E.O., 1982. Soil pH and lime requirement, in: Page, A.L. et al. (Eds.), Methods of soil analysis. Part II: 2nd edn. Soil Science Society of America, Madison, Wisconsin, 12: pp. 199-223.
Näsholm, T., Huss-Danell, K., Högberg, P., 2000. Uptake of organic nitrogen in the field by four agriculturally important plant species. Ecology 81, 1155-1161.
Nelson, D.W., Sommer, L.E., 1982. Total carbon, organic carbon and organic matter. in: Page A.L. et al. (Eds.), Methods of Soil Analysis. Part II: 2nd. edn. Soil Science Society of America, Madison, Wisconsin, pp. 383-411.
Oda, K., Matsuda, H., Murakami, T., Katayama, S., Ohgitani, T., Yoshikawa, M., 2000. Adjuvant and haemolytic activities of 47 saponins derived from medical and food plants. The Journal of Biological Chemistry 381, 67-74.
Okamoto, M., Okada, K., Watanabe, T., Ae, N., 2003. Growth responses of cereal crops to organic nitrogen in the field. Soil. Sci. Plant. Nutr. 49, 445-452.
Oleszek, W., Bialy, Z., 2006. Chromatographic determination of plant saponins-An update (2002–2005). Journal of Chromatography A 1112, 78-91.
Peuke, A.D., 2009. Nutrient composition of leaves and fruit juice of grapevine as affected by soil and nitrogen fertilization. Journal of Plant Nutrition and Soil Science 172, 557–564.
Philip, A.I., Stanley, Z.D., 1986. Effect of Hydrolysis on Sapogenin Release in Soya. Journal of Agricultural and Food Chemistry 34, 1037-1041.
Piccolo, A., Nardi, S., Concheri, G., 1992. Structural characteristics of humic substances as related to nitrate uptake and growth regulation in plant systems. Soil Biology & Biochemistry 24, 373-380.
Price, K.R., Johnson, I.T., Fenwick, G.R., Malinow, M.R., 1987. The chemistry and biological significance of saponins in foods and feedingstuffs. CRC Critical Reviews in Food Science and Nutrition. 26: 27-135.
Reganold, J.P., Palmer, A.S., 1995. Significance of gravimetric versus volumetric measurements of soil quality under biodynamic, conventional, and continuous grass management. Journal of Soil and Water Conservation 50 (3), 298-305.
Rhoades, J.D., 1982. Soluble salts, in: Page, A.L. et al. (Eds.), Methods of soil Analysis. Part II: 2nd edn. Soil Science Society of America. Madison., Wiscosin, pp. 167-180.
Romig, D.E., Garlynd, M.J., Harris, R.F., 1996. Farmer-based assessment of soil quality: a soil health scorecard. in: Doran, J.W., ones, A.J. (Eds.), Methods for Assessing Soil Quality. Soil Science society of America, Special Publication, 49, 39-60.
Rothrock, J.W., Hammes, P.A., Mcaleer, W.J., 1957. Isolation of Diosgenin by Acid Hydrolysis of Saponin. Industrial & Engineering Chemistry Research 49(2), 186-188.
Saxena, D., Pal, R., Dwivedi, A.K., Singh, S., 2004. Characterisation of sapindosides in Sapindus mukorosii saponin (reetha saponin) and quantitative determination of sapindoside B. Journal of Scientific & Industrial Research 63(2), 181-186.
Shiau, I.L., Shih, T.L., Wang, Y.N., Chen, H.T., Lan, H.F., Lin, H.C., Yang, B.Y., Ko, C.H., Murase, Y., 2009. Quantification for saponin from a soapberry (Sapindus mukorossi Gaertn) in cleaning products by a chromatographic and two colorimetric assays. Journal of the Faculty of Agriculture Kyushu University 54 (1), 215-221.
Soil Science Society of America. 1997. Glossary of soil science terms. Soil Science Society of America. Madison, Wisconsin.
Sparg, S.G., Light, M.E., Staden, J.V., 2004. Biological activities and distribution of plant saponins. Journal of Ethnopharmacology 94, 219-243.
Taylor, W.G., Elder, J.L., Chang, P.R., Richards, K.W., 2000. Microdetermination of diosgenin from fenugreek (Trigonella foenum-graecum) seeds. Journal of Agricultural and Food Chemistry 753-759.
Uematsu, Y., Hirata, K., Saito, K., 2000. Spectrophotometric determination of saponin in Yucca extract used as food additive. Journal of AOAC International 83, 1451-1454.
Yamagata, M., Ae, N., 1999. Direct acquisition of organic nitrogen by crops. Japan Agricultural Research Quarterly 33(1), 15-21.
Yunnan Institute of Botany, 1997. Flora Yunnanica. Beijing: Science Press, 1, 260.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22358-
dc.description.abstract近幾年來由於環保意識的興起,無患子(Sapindus mukorossi Gaertn.)的功用逐漸受到重視,除了可作為清潔劑之外,同時也具有療效。因此,尋找優良之無患子母樹變成重要的課題。
在本論文中,以外果皮中的皂苷元含量作為無患子優劣之指標。因此,在做各地無患子母樹採用了改良式的酸水解定量方法,此方法較傳統的香草醛硫酸法與粗皂素萃取更具有準確性。
而無患子母樹則採自台北芝山岩、台北八里、南投151縣道1公里與3公里處、台南大內鄉、台南左鎮三處、高雄、花蓮光復與林田山林業園區、台東東河鄉三處與大武鄉大鳥國小,共有16株不同的母樹,分別於2009年七到十月初進行採收,並進行皂苷元定量工作。結果顯示,各地無患子母樹在採收期間,其外果皮中的皂苷元含量均有上升趨勢,皆在七月份具有最低的皂苷元含量,而在十月份達到最大含量,除了在花蓮(東)之無患子外果皮中的皂苷元含量是於九月份達169.34 mg/g為最高,在十月份亦高達168.71 mg/g,其次為台南大內鄉於十月所採收的無患子外果皮皂苷元含量,達128.43 mg/g,與台南左鎮2的125.12 mg/g。無患子外果皮中的皂苷元含量最低的為位於花蓮(台糖)的此株母樹,其含量為52.55 mg/g。
為了解各個母樹之外果皮中最大皂苷元含量的差異與生長速度之不同,其影響的因素,本研究利用S型函數之三個係數、線性函數的各個係數,以及皂苷元最高含量作為自變數而土壤與環境因子作為應變數,其中土壤因子有土壤含水率、 土壤pH值、陽離子交換容量(CEC)、土壤中之電導度、有機質含量、有效性氮、有效性磷及交換性鈣、鎂、鉀; 環境因子有平均坡度、海拔、全年各地平均溫度、七到十月各地平均溫度、全年平均降雨量、七到十月之平均降雨量、七到十月總降雨量、森林面積與密度。藉由這兩個參數作Pearson’s correlation與線性迴歸(linear regression)來觀察其相關性並用R-square來作為相關程度的依據。結果顯示,土壤與環境因子,並未與皂苷元含量與成長速度的表現有直接的關係。根據此結果解釋,無患子母樹之個體差異,可能遠較於土壤與環境因子之影響來的大,而個體可能受到種源或基因等差異所影響。
zh_TW
dc.description.abstractIn recent years, environmental consciousness is rising in Taiwan and people pay much attention to soapnut tree(Sapindus mukorossi Gaertn.) because of its functions. The soapnut trees can be cleaner and remedies in folk medicine. Therefore, screening superior germplasm resources of soapnut trees becomes an important issue.
In this study, the sapogenins content in soapnut tree pericarp was adopted to be the index of soapnut mother trees quality. Hence, we used modified hydrolysis method to quantify fifteen mother trees around Taiwan. This method is more specific and accurate than vanillin sulfuric acid assay and organic extract crude method which are conventional quantity method for saponin.
The pericarp of soapnut trees were collected monthly (from July to October, 2009) from the mother trees located in Zhishan Yen, Taipei city (Tp), Bali,Taipei county (BL) Nantou 151 County road at 1 Km (Nt 1k) and 3 Km (Nt 3k), Danei (DTn) and Zouchen, Tainan (ZTn1~3), Hualien (HL north, east and Tai-Tun), Dong-he (Tt1~3) and Da-Wu (DTt), Taitung and Kaohsiung (Ks) in Taiwan. According to the results, there is a rising trend for every mother trees which were observed. Except for the mother trees in HL (east), the sapogenins content in soapnut tree pericarp decreased slightly from 169.34 to 168.71 mg/g in September to October. In addition, it had the maximum sapogenins content in soapnut tree pericarp in these fifteen mother trees. Then the second and third place in sixteen mother trees is the mother tree in DTn and ZTn2, repectively. The least one is the mother tree in HL (Tai-Tun), its sapogenins content in soapnut tree pericarp is 52.55 mg/g.
To realize which parameters affect the difference in maximum sapogenin content in soapnut tree prericarp and their growth rate, we used the three coefficients form sigmoid, slope (single coefficient) from linear function and the values of maximum sapogenin content in soapnut tree prericarp as independent variables, soil properties and environmental parameters as dependent variables. Soil properties include water content in soil, soil pH value, CEC, EC, organic matter, total nitrogen, available phosphorus and testing soil for K, Ca and Mg will be measured. And environmental parameters include mean slope in each quadrat, DTM, mean annual temperature, average temperature from July to October, average precipitation from July to October, total precipitation from July to October, annual total precipitation, forestry area and forestry densty. All of these parameters were conducted to Pearson’s correlation and linear regression. As the results indicate, there are no directly relation between maximum sapogenin content in soapnut tree prericarp, the three coefficients form sigmoid, slope from linear function and soil properties, environmental parameters. In that case, the individual differences have more influence on soapnut tree than soil and environmental parameters.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:16:09Z (GMT). No. of bitstreams: 1
ntu-99-R97625038-1.pdf: 802958 bytes, checksum: 0db141ecfc7f59d08b0d7a3c48783378 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents摘要………………………………………………………………………………………I
Abstract………………………………………………………………………………..III
Index…………………………………………………………………………………….V
Figure index………………………………………………….……………………….VII
Table index…………………………………………………………………………VIII
1 Introduction…………………………………………….…………………..1
2 Literature review……………...……………………………………………2
2.1 Definition of saponin…………………………………………………………2
2.2 Quantification method………………………………………………………3
2.3 Soil chemical and physical properties………………..………………………6
2.4 Environmental and climatic parameters……………………………………...9
3 Materials and Methods……………………………………………………........…..10
3.1 Plant Material…………………………………………………………………10
3.2 Pretreatment of soapnut pericarps……………………………………..…..13
3.3 Organic extracted crude saponins……………………………………………..13
3.4 Colorimetric assay-vanillin sulfuric acid assay…………………….…………14
3.5 Modified hydrolysis method……………………………………..……………14
3.6 HPLC analysis………………………………………………………………14
3.7 Soil physiochemical properties………………………………………………..15
3.7.1 Soil particle analysis…………………………………………………….15
3.7.2 Water content in soil…………………………………………………….16
3.7.3 Sil pH value………………………………....………………………….16
3.7.4 Cation-exchange capacity of soils………………………………………17
3.7.5 Electrical Conductivity………………………………………………….19
3.7.6 Organic matter…………………………………………………………..19
3.7.7 Inorganic Nitrogen……………………………………………………...20
3.7.8 Available phosphorus in the soil (Bray No.1)…………………………..21
3.7.9 Soil potassium, calcium and magnesium…………………….…………23
3.8 Statistical method…………………………….................................................23
4 Results and discussion…………..………………………………………..…………24
4.1 The establishment of modified hydrolysis method...…………………………24
4.1.1 The comparison between hydrolyzed and unhydrolyzed………………24
4.1.2 The effect of hydrolysis in different acids concentration……………….26
4.1.3 The efficiency of hydrolysis in different time for heating……………...30
4.1.4 The comparison between modified hydrolysis method and vanilin
sulfuric acid assay………………………………..…………..................31
4.2 The content of sapogenins in different months and spots…………………….34
4.3 Statistical analysis…………………………………………………………….36
4.3.1 Soil physiochemical properties as variables…………………….………36
4.3.2 Environmental variables…………………...……………………………39
4.4 Linear regression……………………………………………………………...40
4.5 Pearson’s correlation analysis………………………………………………45
4.5.1 Analyze with soil properties…………………………………………….45
4.5.2 Analyze with environmental parameters………………….……………47
5 Conclusion…………………………………………………………………...………49
6 References……..…………………………………………………..…………………51
Figure Index
Figure 1 The structure of the major fraction from Sapindus mukorossi Gaertn…………4
Figure 2 Basic sapogenin skeletons—steroidal (left column) and triterpene (right column…............................................................................................................5
Figure 3 HPLC analysis of organic extract S. mukorossi Gaertn. saponins……………..6
Figure 4 The distribution of S. mukorossi Gaertn. in Taiwan and sampling spots……12
Figure 5 HPLC chromatograms of hederagenin as standard…………...………………26
Figure 6 HPLC chromatograms of saponin and sapogenin……………………….……26
Figure 7 The efficiency of hydrolysis by Sulfuric acid without hydrochloric acid…….27
Figure 8 The efficiency of hydrolysis by Sulfuric acid and 0.5M hydrochloric acid…..28
Figure 9 The efficiency of hydrolysis by Sulfuric acid and 1M hydrochloric acid.....…29
Figure 10 The comparison of three hydrolysis treatment………………………………30
Figure 11 The efficiency of hydrolysis in different times……………………………31
Figure 12 Vanilin Sulfuric acid Assay for calibrating curve by alpha-hederin…………32
Figure 13 The comparison of hydrolysis method and organic extract method………33
Figure 14 The comparison of hydrolysis method and vanillin-sulfuric acid assay…….33
Figure 15 The comparison of organic extract method and vanillin-sulfuric acid assay..34
Figure 16 The linear regression between sigmoid coefficient (a) and Bray P…….….43
Figure 17 The linear regression between sigmoid coefficient (a) and Ex.Ca…………..43
Figure 18 The linear regression between sigmoid coefficient (x0) and Ino.N………….44
Figure 19 The linear regression between sigmoid coefficient (x0) and Bray P………...44


Table Index
Table 1. The references about soil properties relates to plant physiology and growth…..9
Table 2. Coordinates of sampling location and the diameter breast height (DBH)
of mother trees……………………………………………………………..…….11
Table 3. Variables used in regression analyses and associated hypothesis….…………24
Table 4.The comparison between hydrolyzed extractives and non-hydrolyzed
extractives………………………..……………………………………………..26
Table 5. The comparison of effect in different H2SO4 concentration…………………..27
Table 6. The comparison of effect in different H2SO4 Concentration with 0.5M HCl…28
Table 7. The comparison of effect in different H2SO4 Concentration with 1.0M HCl…29
Table 8. The yield of modified hydrolysis in different times………………………......31
Table 9. The content of sapogenins (mg/g) in different months and different
Sampling places…………………………….…………………………………35
Table 10. The rank of different cropped places in different months……………..…….36
Table 11. The soil physiochemical properties of sampling places in western Taiwan…38
Table 12. The soil physiochemical properties of sampling places in estern Taiwan…..38
Table 13. The environmental parameters in all sampling locations……………………40
Table 14. The coefficients from sigmoid (3 parameter), linear equation and
sapogenins content……………………………………….…………………41
Table 15. The R-square by linear regression between soil properties and sigmoid
(3 parameter), linear equation, sapogenins content (max)……….………......42
Table 16. The R-square by linear regression between environmental parameters
and sigmoid (3 parameter), linear equation, sapogenins content (max)……..42
Table 17. Pearson’s correlation coefficients between soil properties and
sigmoid coefficient (n=15)…………………………..………………………46
Table 18. Pearson’s correlation coefficients between soil properties and
linear slope (n=15)………..………………………………………………….46
Table 19. Pearson’s correlation coefficients between soil properties and
maximum sapogenins content (n=15)………………………..……..………..47
Table 20. Pearson’s correlation coefficients between environmental parameters
and sigmoid coefficient (n=15)…………………………………..…………47
Table 21. Pearson’s correlation coefficients between environmental parameters
and linear slope (n=15)……………………………………………………..48
Table 22. Pearson’s correlation coefficients between environmental parameters
and maximum sapogenins content (n=15)..…………….…………………..48
dc.language.isoen
dc.subject土壤與環境因子zh_TW
dc.subject皂&#33527zh_TW
dc.subject母樹zh_TW
dc.subject無患子zh_TW
dc.subject元含量zh_TW
dc.subjectsoil and environmental parametersen
dc.subjectSapindus mukorossi Gaertn.en
dc.subjectmother treeen
dc.subjectthe sapogenins content in soapnut tree pericarpen
dc.title台灣無患子皂苷元含量之研究zh_TW
dc.titleThe study of sapogenin contents for Sapindus mukorossi Gaertn. in Taiwanen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王亞男(Ya-Nang Wang),王明光(Ming-Kuang Wang),李培芬(Pei-Fen Lee),藍浩繁(Haw-Farn Lan)
dc.subject.keyword無患子,母樹,皂&#33527,元含量,土壤與環境因子,zh_TW
dc.subject.keywordSapindus mukorossi Gaertn.,mother tree,the sapogenins content in soapnut tree pericarp,soil and environmental parameters,en
dc.relation.page55
dc.rights.note未授權
dc.date.accepted2010-08-04
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
784.14 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved