Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22275
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李芳仁(Feng-Jen Lee)
dc.contributor.authorYing-Chieh Chuen
dc.contributor.author朱穎潔zh_TW
dc.date.accessioned2021-06-08T04:14:46Z-
dc.date.copyright2010-09-09
dc.date.issued2010
dc.date.submitted2010-08-10
dc.identifier.citationAkada, R., Yamamoto, J., and Yamashita, I. (1997). Screening and identification of yeast sequences that cause growth inhibition when overexpressed. Mol Gen Genet 254, 267-274.
Anderson, P., and Kedersha, N. (2008). Stress granules: the Tao of RNA triage. Trends Biochem Sci 33, 141-150.
Bergkessel, M., and Reese, J.C. (2004). An essential role for the Saccharomyces cerevisiae DEAD-box helicase DHH1 in G1/S DNA-damage checkpoint recovery. Genetics 167, 21-33.
Buu, L.M., Jang, L.T., and Lee, F.J. (2004). The yeast RNA-binding protein Rbp1p modifies the stability of mitochondrial porin mRNA. J Biol Chem 279, 453-462.
Champney, W.S. (1977). Kinetics of ribosome synthesis during a nutritional shift-up in Escherischia coli K-12. Mol Gen Genet 152, 259-266.
Coller, J., and Parker, R. (2004). Eukaryotic mRNA decapping. Annu Rev Biochem 73, 861-890.
Coller, J., and Parker, R. (2005). General translational repression by activators of mRNA decapping. Cell 122, 875-886.
Edlin, G., and Maaloe, O. (1966). Synthesis and breakdown of messenger RNA without protein synthesis. J Mol Biol 15, 428-434.
Ferrezuelo, F., Aldea, M., and Futcher, B. (2009). Bck2 is a phase-independent activator of cell cycle-regulated genes in yeast. Cell Cycle 8, 239-252.
Formosa, T., and Nittis, T. (1998). Suppressors of the temperature sensitivity of DNA polymerase alpha mutations in Saccharomyces cerevisiae. Mol Gen Genet
257, 461-468.
Grousl, T., Ivanov, P., Frydlova, I., Vasicova, P., Janda, F., Vojtova, J., Malinska, K., Malcova, I., Novakova, L., Janoskova, D., et al. (2009). Robust heat shock induces eIF2alpha-phosphorylation-independent assembly of stress granules containing eIF3 and 40S ribosomal subunits in budding yeast, Saccharomyces cerevisiae. J Cell Sci 122, 2078-2088.
Horecka, J., and Jigami, Y. (1999). The trp1- delta FA designer deletion for PCR-based gene functional analysis in Saccharomyces cerevisiae. Yeast 15, 1769-1774.
Jang, L.T., Buu, L.M., and Lee, F.J. (2006). Determinants of Rbp1p localization in specific cytoplasmic mRNA-processing foci, P-bodies. J Biol Chem 281, 29379-29390.
Kedersha, N., and Anderson, P. (2002). Stress granules: sites of mRNA triage that regulate mRNA stability and translatability. Biochem Soc Trans 30, 963-969.
Kedersha, N., Cho, M.R., Li, W., Yacono, P.W., Chen, S., Gilks, N., Golan, D.E., and Anderson, P. (2000). Dynamic shuttling of TIA-1 accompanies the recruitment of mRNA to mammalian stress granules. J Cell Biol 151, 1257-1268.
Kedersha, N., Stoecklin, G., Ayodele, M., Yacono, P., Lykke-Andersen, J., Fritzler,
M.J., Scheuner, D., Kaufman, R.J., Golan, D.E., and Anderson, P. (2005). Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J Cell Biol 169, 871-884.
Kedersha, N.L., Gupta, M., Li, W., Miller, I., and Anderson, P. (1999). RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules. J Cell Biol 147, 1431-1442.
Kimura, A., Ohashi, K., Yamamoto, R., and Naganuma, A. (2006). Cisplatin-induced expression of iron-retaining genes FIT2 and FIT3 in Saccharomyces cerevisiae. J Toxicol Sci 31, 287-290.
Lee, F.J., and Moss, J. (1993). An RNA-binding protein gene (RBP1) of Saccharomyces cerevisiae encodes a putative glucose-repressible protein containing two RNA recognition motifs. J Biol Chem 268, 15080-15087.
Lo, W.S., and Dranginis, A.M. (1996). FLO11, a yeast gene related to the STA genes, encodes a novel cell surface flocculin. J Bacteriol 178, 7144-7151.
Lo, W.S., and Dranginis, A.M. (1998). The cell surface flocculin Flo11 is required for pseudohyphae formation and invasion by Saccharomyces cerevisiae. Mol Biol Cell 9, 161-171.
Ma, H., and Botstein, D. (1986). Effects of null mutations in the hexokinase genes of Saccharomyces cerevisiae on catabolite repression. Mol Cell Biol 6, 4046-4052.
Marx, J. (2005). Molecular biology. P-bodies mark the spot for controlling protein production. Science 310, 764-765.
Miki, B.L., Poon, N.H., James, A.P., and Seligy, V.L. (1982). Possible mechanism for flocculation interactions governed by gene FLO1 in Saccharomyces cerevisiae. J Bacteriol 150, 878-889.
Mollet, S., Cougot, N., Wilczynska, A., Dautry, F., Kress, M., Bertrand, E., and Weil, D. (2008). Translationally repressed mRNA transiently cycles through stress granules during stress. Mol Biol Cell 19, 4469-4479.
Nourani, A., Wesolowski-Louvel, M., Delaveau, T., Jacq, C., and Delahodde, A. (1997). Multiple-drug-resistance phenomenon in the yeast Saccharomyces cerevisiae: involvement of two hexose transporters. Mol Cell Biol 17, 5453-5460.
Philpott, C.C., Protchenko, O., Kim, Y.W., Boretsky, Y., and Shakoury-Elizeh, M. (2002). The response to iron deprivation in Saccharomyces cerevisiae: expression of siderophore-based systems of iron uptake. Biochem Soc Trans 30, 698-702.
Protchenko, O., Ferea, T., Rashford, J., Tiedeman, J., Brown, P.O., Botstein, D., and Philpott, C.C. (2001). Three cell wall mannoproteins facilitate the uptake of iron in Saccharomyces cerevisiae. J Biol Chem 276, 49244-49250.
Ram, A.F., and Klis, F.M. (2006). Identification of fungal cell wall mutants using susceptibility assays based on Calcofluor white and Congo red. Nat Protoc 1, 2253-2256.
Reijns, M.A., Alexander, R.D., Spiller, M.P., and Beggs, J.D. (2008). A role for Q/N-rich aggregation-prone regions in P-body localization. J Cell Sci 121, 2463-2472.
Roemer, T., Paravicini, G., Payton, M.A., and Bussey, H. (1994). Characterization of the yeast (1-->6)-beta-glucan biosynthetic components, Kre6p and Skn1p, and genetic interactions between the PKC1 pathway and extracellular matrix assembly. J Cell Biol 127, 567-579.
Schreuder, M.P., Mooren, A.T., Toschka, H.Y., Verrips, C.T., and Klis, F.M. (1996). Immobilizing proteins on the surface of yeast cells. Trends Biotechnol 14, 115-120.
Sentandreu, R., Herrero, E., Elorza, M.V., Rico, H., and Pastor, J. (1983). Synthesis and assembly of wall polymers on regenerating yeast protoplasts. Experientia Suppl 46, 187-195.
Sheth, U., and Parker, R. (2003). Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science 300, 805-808.
Smits, G.J., Schenkman, L.R., Brul, S., Pringle, J.R., and Klis, F.M. (2006). Role of cell cycle-regulated expression in the localized incorporation of cell wall proteins in yeast. Mol Biol Cell 17, 3267-3280.
Spingola, M., and Ares, M., Jr. (2000). A yeast intronic splicing enhancer and Nam8p are required for Mer1p-activated splicing. Mol Cell 6, 329-338.
Teixeira, D., Sheth, U., Valencia-Sanchez, M.A., Brengues, M., and Parker, R. (2005). Processing bodies require RNA for assembly and contain nontranslating mRNAs. RNA 11, 371-382.
Vasudevan, S., and Peltz, S.W. (2001). Regulated ARE-mediated mRNA decay in Saccharomyces cerevisiae. Mol Cell 7, 1191-1200.
Warner, J.R. (1989). Synthesis of ribosomes in Saccharomyces cerevisiae. Microbiol Rev 53, 256-271.
Watari, J., Takata, Y., Ogawa, M., Sahara, H., Koshino, S., Onnela, M.L., Airaksinen, U., Jaatinen, R., Penttila, M., and Keranen, S. (1994). Molecular cloning and analysis of the yeast flocculation gene FLO1. Yeast 10, 211-225.
Wilczynska, A., Aigueperse, C., Kress, M., Dautry, F., and Weil, D. (2005). The translational regulator CPEB1 provides a link between dcp1 bodies and stress granules. J Cell Sci 118, 981-992.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22275-
dc.description.abstract真核細胞中,訊息核糖核酸的表現過程必須經過一連串的轉錄後調控,包括在五端加上覆蓋、疊接、以及在三端加上多個腺嘌伶。在這個過程中,核糖核酸結合蛋白扮演著重要的角色。過去實驗室發現酵母菌中一個核糖核酸結合蛋白Rbp1p可以促進粒腺體外膜孔蛋白porin訊息核糖核酸降解,同時,Rbp1p在環境壓力之下,譬如說葡萄糖剝奪、滲透壓力改變、或是熱刺激的時候,會坐落到細胞質中聚集的顆粒P-bodies。在這裡我們研究另一個與Rbp1p有相互作用的蛋白質:Psp1p。Psp1p轉譯出一個有著八百四十一個胺基酸的蛋白質,上面有三個富含天冬醯胺(N)區域,一個富含麩胺醯胺(Q)區域,以及一個Psp1p保留區域。我們發現Psp1p大量表現的時候抑制細胞生長,也會抑制轉譯作用的進行。酵母菌雙雜合實驗發現Psp1p能與P-bodies的成員之一,Dhh1p有交互作用,並且Psp1p大量表現時抑制細胞生長的現象在dhh1突變菌株會消失,而抑制轉錄功能能力不受影響。另外,酵母菌雙雜合實驗指出Rbp1p利用碳端NMP區域與Psp1p的55-216個胺基酸區域相互作用。雖然大量表現Rbp1p與Psp1p都會抑制生長,但這個現象並不需要依賴對方達成。我們也發現Psp1p在葡萄糖剝奪和熱休克下會形成細胞質聚集顆粒,與Rbp1p聚集的顆粒有相同的分佈,且可能扮演著幫助Rbp1p在葡萄糖剝奪的時候聚集到P-bodies的角色。除此之外,我們也發現RBP1和PSP1在維持酵母菌細胞壁的功能上有交互作用,且RBP1在細胞壁維持的功能上可能在PSP1的上游。zh_TW
dc.description.abstractIn eukaryote cells, messenger RNA (mRNA) processing involves post-transcriptional modification process, 5’-capping, splicing, and 3’ polyadenylation. mRNA binding proteins play important roles in these processes. Previously, we found that a yeast RNA-binding protein, Rbp1p, enhances degradation of mitochondria outer membrane porin mRNA. Under environmental stress conditions, such as glucose deprivation, osmotic stress and heat shock, Rbp1p localizes into cytoplasmic granules, referred to P-bodies. In this thesis, we focus on an interacting protein of Rbp1p, Psp1p. Our current knowledge of Psp1p in Saccharomyces cerevisiae is limit. Structurally, Psp1p comprises three asparagines-rich regions, a glutamine-rich region, and a Psp1-conserved region in its C-terminal. In this work, we found that overexpression of Psp1p not only caused growth inhibition, but also repressed translation. Two-hybrid analysis indicated that Psp1p interacts with a P-body component, the decapping activator Dhh1p. In dhh1△, Psp1p lost its growth inhibition ability, but translation repression property still remained. Moreover, by two-hybrid analysis showed that the C-terminal NMP region of Rbp1p interacted to amino acid 55-216 of Psp1p. Psp1p translocated into cytoplasmic compartments upon glucose deprivation and heat shock, and co-localized with Rbp1p. Psp1p may plays a role in recruitment of Rbp1p recruited to P-bodies under glucose deficient conditions. Finally, Psp1p and Rbp1p may play a role in cell wall maintenance, and Rbp1p probably acted upstream of Psp1p in regulating cell wall integrity.en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:14:46Z (GMT). No. of bitstreams: 1
ntu-99-R97448003-1.pdf: 2563273 bytes, checksum: be8cf00be3cef8a6ca9f3dd419c94683 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents中文摘要 ............................................................................................................ iii
Abstract .............................................................................................................. v
Introduction ....................................................................................................... 1
Results ................................................................................................................ 7
Part I : Functional characterization of Psp1p
Part II: Interaction of Rbp1p and Psp1p, and their functional relationship
Discussion ......................................................................................................... 18
Materials and Methods ................................................................................... 23
Figures .............................................................................................................. 31
Figure 1. Over-expression of Psp1p mediated growth inhibition ................................ 31
Figure 2. Constructs of Psp1p and its mutants used in this study ................................ 32
Figure 3. The first 220 amino acid of Psp1p are important for its growth inhibitory property ........................................................................................................................ 33
Figure 4. Over-expression of Psp1p affects translation at one-doubling time ............. 34
Figure 5. Psp1p localizes to P-bodies under glucose deprivation ................................ 36
Figure 6. Psp1p interacts with Dhh1p .......................................................................... 38
Figure 7. Psp1p loses its growth inhibitory property on dhh1△ strain......................... 39
Figure 8. Overexpression of Psp1p causes translation repression on dhh1△ strain ..... 40
Figure 9. Rbp1p and Psp1p constructs used in yeast two-hybrid assay....................... 41
Figure 10. Rbp1p interacts to Psp1p by its NMP region ............................................. 42
Figure 11. Psp1p interacts to Rbp1p by its 55-216 amino acid region ........................ 43
Figure 12. Over-expression of Psp1p and Rbp1p cause growth inhibition through distinct ways................................................................................................................. 44
Figure 13. RBP1 and PSP1 have a genetic interaction on cell wall maintenance ...........
..................................................................................................................................... 45
Figure 14. RBP1 probably acts upstream of PSP1 in regulating cell wall integrity .... 48
Figure 15. Psp1p forms cytoplasmic foci, and co-localize to Rbp1p at stationary phase
..................................................................................................................................... 49
Figure 16. Psp1p co-localize to Rbp1p under stress .................................................... 50
Figure 17.GFP-Rbp1p foci formation require Psp1p under glucose deprivation ........ 51
Figure 18. Psp1p do not affect the localization of Dhh1p ........................................... 53
Figure 19. Psp1p helps Rbp1p being recruited to P-bodies under glucose deprivation ..
..................................................................................................................................... 54
Appendix 1. Interaction between Rbp1p and Psp1p .................................................... 56
Appendix 2. Candidate genes affected by over-expression of Psp1p ..............................
..................................................................................................................................... 57
Table 1. Summarize candidates of Psp1p associated protein (psp1△ /WT) ................. 58
Table 2. Yeast strains used in this thesis ...................................................................... 60
Table 3. Primers used in this study .............................................................................. 61
Table 4. Plasmids used in this study ............................................................................ 66
Table 5. Antibodies used in this study ......................................................................... 67
References ........................................................................................................ 68
dc.language.isoen
dc.title酵母菌核糖核酸結合蛋白之作用蛋白-Psp1p之功能特性探討zh_TW
dc.titleFunctional characterization of Rbp1p interacting protein, Psp1p, in Saccharomyces cerevisiaeen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee譚婉玉(Woan-Yuh Tarn),鄧述諄(Shu-Chun Teng),鄭明媛(Ming-Yuan Cheng)
dc.subject.keyword核糖核酸結合蛋白,葡萄糖剝奪,細胞質聚集顆粒,zh_TW
dc.subject.keywordPSP1,RBP1,P-bodies,glucose deprivation,en
dc.relation.page72
dc.rights.note未授權
dc.date.accepted2010-08-10
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
2.5 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved