Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22273
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor賴喜美(Hsi-Mei Lai)
dc.contributor.authorWen-Yang Huangen
dc.contributor.author黃文仰zh_TW
dc.date.accessioned2021-06-08T04:14:45Z-
dc.date.copyright2010-08-17
dc.date.issued2010
dc.date.submitted2010-08-10
dc.identifier.citation林麗娟。1994。X光繞射原理及其應用。工業材料,86:100-109。
鄭有舜。2004。X光小角度散射在軟物質研究上的應用。物理雙月刊,26:416-424。
AACC. 2000. Approved method of the AACC, 10th ed. Method 76-21. St. Paul, Minnesota: American Association of Cereal Chemists, Inc.
Biliaderis, C. G. (1998). Structure and phase transitions of starch polymers. In R. H. Walter (Ed.). Polysaccharide Association Structures in Foods (pp. 57-168). New York: Marcel Dekker Inc.
Blazek, J. and Copeland, L. (2008). Pasting and swelling properties of wheat flour and starch in relation to amylose content. Carbohydrate Polymers, 71, 380–387.
Blazek, J.; Salman, H.; Rubio, A. L.; Gilbert, E.; Hanley, T.; Copeland, L. (2009). Structural characterization of wheat starch granules differing in amylose content and functional characteristics. Carbohydrate Polymers, 75, 705-711.
Blennow, A., Hansen, M., Schulz, A., Jorgensen, K., Donald, A.M., Sanderson, J. (2003). The molecular deposition of transgenically modified starch in the starch granule as imaged by functional microscopy. Journal of Structural Biology, 143, 229–241.
Buleon, A., Colonna, P., Planchot, V., and Ball, S. (1998). Starch granules: structure and biosynthesis. International Journal of Biological Macromolecules, 23, 85–112.
Cameron, R. E., and Donald, A. M. (1993). A small-angle X-ray scattering study of the absorption of water into the starch granule. Carbohydrate Research, 244, 225-236.
Cameron, R.E. and Donald, A.M. (1992) A small-angle X-ray scattering study of the annealing and gelatinization of starch. Polymer, 33, 2628–2635.
Chen, P., Yu, L., Chen, L., and Li, X. (2006). Morphology and microstructure of maize starches with different amylose/amylopectin content. Starch/Starke, 58, 611-615.
Choi, H., Lee, W., Lee, J., Chung, H., and Choi, W. (2007). Ultra-Fine Grinding of Inorganic Powders by Stirred Ball Mill: Effect of Process Parameters on the Particle Size Distribution of Ground Products and Grinding Energy Efficiency. Metals and Materials International, 13, 353.
Choi, W. S. (1998). Grinding rate improvement using a composite grinding ball size for an ultra-fine grinding mill, Powder Technology, 100, 78.
Choi, W. S., Chung, H. Y., Yoon, B. R., and Kim, S. S. (2001). Applications of grinding kinetics analysis to fine grinding characteristics of some inorganic materials using a composite grinding media by planetary ball mill. Powder Technology, 115, 209-214.
Cooke, D., & Gidley, M. J. (1992). Loss of crystalline and molecular order during starch gelatinisation: Origin of the enthalpic transition. Carbohydrate Research, 227, 103–112.
Debet, M. R. and Gidley. M. J. (2006). Three classes of starch granule swelling: Influence of surface proteins and lipids. Carbohydrate Polymers, 64, 452–465.
Donald, A. M. and Jenkins, P. J. (1995). The influence of amylose on starch granule structure. International Journal of Biological Macromolecules,17, 315-321.
Donald, A. M., Koto, K. L., Perry, P. A., and Waigh, T. A. (2001). Scattering studies of the internal structure of starch granules. Starch/Stärke, 53, 504–512.
Feng, Y. T., Han, K., and Owen, D. R. J. (2004) Discrete element simulation of the dynamics of high energy planetary ball milling processes. Materials Science and Engineering A, 375-377, 815-819.
French, D. 1984. Organization of starch granules. In R. L. Whistler, J. N. BeMiller, E. F. Paschall (Eds.), Starch: Chemistry and technology. 2nd ed. (pp.184-242). New York: Academic Press.
Frost, K., Kaminski, D., Kirwan, G., Lascaris, E., and Shanks, R. (2009). Crystallinity and structure of starch using wide angle X-ray scattering. Carbohydrate Polymers, 78, 543-548.
Gallant, D. J. (1974). Contribution à l’étude de la structure et de l’ultrastructure du grain d’amidon. PhD. Thesis, University of Paris VI. France. No CNRS AO 10823.
Gallant, D. J., Bouchet, B. and Baldwin, P.M. (1997). Microscopy of starch: evidence of a new level of granule organisation. Carbohydrate Polymers, 32, 177–191.
Gallant, D. J., Bouchet, B., Buléon, A., and Pérez, S. (1992). Physical characteristics of starch granules and susceptibility to enzymatic degradation. European Journal of Clinical Nutrition, 46, S3-S16.
Greenwood, C. T., & Thompson, J. (1962). Physicochemical studies on starches. XXIV. The fraction and characterization of starches of various plant origins. Journal of the Chemical Society, January–March, 222–229.
Hanashiro, I., Abe, J., and Hizukuri, S. (1996). A periodic distribution of the chain length of amylopectin as revealed by high performance anion-exchange chromatography. Carbohydrate Research, 283, 151-159.
Hennart, S. L. A., Wildeboer, W. J., vanHee, P., and Meesters G.. M. H. (2009). Identification of the grinding mechanisms and their origin in a stirred ball mill using population balances Chemical Engineering Science, 64, 4123–4130.
Hizukuri, S., Takeda, Y., Maruta, N., and Juliano, B. O. (1989). Molecular structures of rice starch. Carbohydrate Research, 189, 227-235.
Hizukuri, S., Takeda, Y., Yasuda, M., and Suzuki, A. (1981). Multi branched nature of amylose and the action of debranching enzymes. Carbohydrate Research, 94, 205-213.
Huang, Z. Q., Lu, J. P., Li, X. H., and Tong, Z. F. (2007). Effect of mechanical activation on physico-chemical properties and structure of cassava starch. Carbohydrate Polymers, 68, 128–135.
Huang, Z. Q., Xie, X. L., Chen, Y., Lu, J. P., and Tong, Z. F. (2008). Ball-milling treatment effect on physicochemical properties and features for cassava and maize starches. C. R. Chimie, 11, 73-79.
Imberty, A., Buleon, A., Tran, V., & Perez, S. (1991). Recent advances in knowledge of starch structure. Starch/Staerke, 10, 375–384.
Kano, J. and Saito, F. (1998). Correlation of powder characteristics of talc during planetary ball milling with the impact energy of the balls simulated by the particle element methods. Powder Technology, 98, 166–70.
Kano, J., Saeki, S., Saito, F., Tanjo, M., and S. Yamazaki (2000). Application of dry grinding to reduction in transformation temperature of aluminum hydroxides. Journal of Mineral Processing, 60, 91-100.
Karkalas, J., Tester, R.F., and Morrison, W. R. (1992). Properties of damaged starch granules. I. Comparison of a micromethod for the enzymatic determination of damaged starch with the standard AACC and Farrand methods. Journal of Cereal Science, 16, 237–251.
Kavesh, S. and Schultz, J. M. (1969). Meaning and measurement of crystallinity in Polymers: A review. Polymer Engineering and Science, 5, 331–338.
Kheifets, A. S., and Lin, I. J. (1998) Energetic approach to kinetics of batch ball milling. International Journal of Mineral Processing, 54, 81-97.
Kim, H.-S., Huber, K.C. (2008). Channels within soft wheat starch A- and B-type granules. Journal of Cereal Science, 48, 159–172.
Koroteeva, D. A., Kiseleva, V. I., Krivandin, A. V., Shatalova, O. V., Blaszczak, W., Bertoft, E., Piyachomkwan, K., and Yuryev, V. P. (2007a). Structure and thermodynamic properties of rice starches with different genetic background. Part 2. Defectiveness of different supramolecular structures in stharch granules. International Journal of Biological Macromolecules, 41, 534-537.
Koroteeva, D. A., Kiseleva, V. I., Sriroth, K., Piyachomkwan, K., Bertoft, E., and Yuryev, V. P. (2007b). Structure and thermodynamic properties of rice starches with different genetic background. Part 1. Differentiation of amylopectin and amylose defects. International Journal of Biological Macromolecules, 41, 391-403.
Kuo, W. Y. and Lai, H. M. (2007). Changes of property and morphology of cationic corn starches. Carbohydrate Polymers, 69, 544-553.
Lopez-Rubio, A., Flanagan, B. M., Gilbert, E. P., and Gidley, M. J. (2008). A novel approach for calculating starch crystallinity and its correlation with double helix content: A combined XRD and NMR study. Biopolymers, 89, 761-768.
Lopez-Rubio, A., Flanagan, B. M., Gilbert, E. P., and Gidley, M. J. (2008). A novel approach for calculating starch crystallinity and its correlation with double helix content: a combined XRD and NMR study. Biopolymers, 89, 721-768.
Manners, D. J. (1989). Recent developments in our understanding of amylopectin structure. Carbohydrate Polymers, 11, 87–112.
Martı’nez-Bustos F, Lo’pez-Soto M, San Martı’n-Martı’nez E, Zazueta-Morales J J, Velez-Medina J J. (2007).Effects of high energy milling on some functional properties of jicama starch (Pachyrrhizus erosus L. Urban) and cassava starch (Manihot esculenta Crantz). Journal of Food Engineering, 78, 1212–1220.
Meuser, F., Klingler, R. W., and Niediek, E. A. (1978). Charakterisierung mechanisch modifizierter Starke. Starch/Starke, 30, 376-384.
Miles, M. J., Morris, V. J., & Ring, S. G. (1985a). Gelation of amylose. Carbohydrate Research, 135, 257–269.
Miles, M. J., Morris, V. J., Orford, P. D., & Ring, S. G. (1985b). The roles of amylose and amylopectin in the gelation and retrogradation of starch. Carbohydrate Research, 135, 271–281.
Mio, H., Kano, J., and Saito, F. (2004). Scale-up method of planetary ball mill. Chemical Engineering Science, 59, 5909–5916.
Morrison, W. R. and Karkalas, J. (1990). Starch. methods in plant biochemistry. In P. M. Dey (Ed.), Carbohydrates (pp.323-352). New York: Chapman and Hall.
Morrison, W. R., Law, R. V., and Snape, C. E. (1993a). Evidence for inclusion complexes of lipid with V-amylose in maize, rice and oat starches. Journal of Cereal Science, 18, 107-109.
Morrison, W. R., Tester, R. F., Snape, C. N., Law, R., and Gidley, M. J. (1993b). Swelling and gelatinization of cereal starches. IV. Some effects of lipid-complexed amylose and free amylose in waxy and normal barley starches. Cereal Chemistry, 70, 385-391.
Mua, J. P., Jackson, D. S. (1997). Fine structure of corn amylose and amylopectin fractions with various molecular weights. Journal of Agricultural and Food Chemistry, 45, 3840-3847.
O’Shea, M. G., Samuel, M. S., Konik, C. M., & Morell, M. K. (1998). Fluorophore-assisted carbohydrate electrophoresis (FACE) of oligosaccharides: Efficiency of labeling and high-resolution separation. Carbohydrate Research, 307, 1–12.
Peat, S., Whelan, W. J., and Thomas, G. J. (1956). The enzymic synthesis and degradation of starch. Part XXII. Evidence of multiple branching in waxy-maize starch. A correlation. Journal of Chemical Society, 3025-3030.
Reed, J. S. (1995). Principles of ceramics processing. New York: John wiley & Sons. 313-337.
Ren, G. Y., Li, D., Wangb, L. J., Ozkan, N., and Mao, Z. H. (2010). Morphological properties and thermoanalysis of micronized cassava starch. Carbohydrate Polymers, 79, 101-105.
Ridout, M. J., Gunning, A. P., Parker, M. L., Wilson, R. H., and Morris, V. J. (2002). Using AFM to image the internal structure of starch granules. Carbohydrate polymers, 50, 123-132.
Ridout, M. J., Parker, M. L., Hedley, C. L., Bogracheva, T. Y., and Morris, V. J. (2003). Atomic force microscopy of pea starch granules: Granule architecture of wild-type parent, r and rb single mutants, and the rrb double mutant. Carbohydrate Research, 338, 2135-2147.
Safford, R., Jobling, S. A., Sidebottom, C. M., Westcott, R. J., Cooke, D., and Tober, K. J. (1998). Consequence of antisense RNA inhibition of starch branching enzyme activity on properties of potato starch. Carbohydrate Polymers, 35, 155–168.
Sanguanpong V, Chotineeranat S, Piyachomkwan K, Oates C G, Chinachoti P and Sriroth K. (2003a). Preparation and structural properties of small-particle cassava starch. Journal of the Science of Food and Agriculture, 83, 760–768.
Sanguanpong V, Chotineeranat S, Piyachomkwan K, Oates C G, Chinachoti P and Sriroth K. (2003b). Hydration and physicochemical properties of small-particle cassava starch. Journal of the Science of Food and Agriculture, 83, 123–132.
Sarko, A. and Wu, H. C. H. (1978). The Crystal Structures of A-, B- and C-Polymorphs of Amylose and Starch. Starch/Starke, 30, 73-78.
Singh N., Singh J., Kaur L., Sodhi N. S., and Gill B. S. (2003). Morphological, thermal and rheological properties of starches from different botanical sources. Food chemistry, 81, 219-231.
Sponsler, O. L. (1923). Structural units of starch determined by X-ray crystal structure method. Journal of General Physiology, 5, 757–774.
Stein, J. (2005). Ultrafine dry grinding with media mills, PostScript Bild, 17(6), 1-6. http://www.hosokawamicron.de/downloads/micron/product/Ultrafine_Dry_Grinding_JStein2005.pdf
Sterling C. (1964). The structure of the starch grain. In J. A. Radley (Ed). Starch and its Derivatives (4th ed) (pp.139-167). London: Chapman and Hall.
Strazisar, J. and Runovc, F. (1996). Kinetics of comminution in micro- and sub-micrometer ranges. International Journal of Mineral Processing, 44-5, 674-682.
Takeda, Y. (1994) Fine structure of starch. Nippon Nogeikagaku Kaishi, 68, 1573-1576.
Tamaki, S., Hisamatsu, M., Teranishi, K., Adachi, T., and Yamada T. (1998). Structural change of maize starch granules by ball-mill treatment. Starch/Starke, 50, 342–348.
Tang, H., Ando, H., Watanabe, K., Takeda, Y., and Mitsunaga, T. (2001). Physicochemical properties and structures of large, medium, and small granules in fractions of normal barley endosperm. Carbohydrate Research, 330, 241-248.
Tang, H., Mitsunaga T., and Kawamura Y. (2006). Molecular arrangement in blocklets and starch granule architecture. Carbohydrate Polymers, 63, 555-560.
Tang, H., Watanabe, K., and Mitsunaga, T. (2002). Characterization of storage starches from quinoa, barley and adzuki seeds. Carbohydrate polymers, 49, 13-22.
Tester, R. F., and Morrison, W. R. (1990). Swelling and gelatinization of cereal starches. I. Effects of amylopectin, amylose, and lipids. Cereal Chemisty, 67, 551-557.
Tester, R.F., Karkalas, J. and Qi, Xin. (2004). Starch-composition, fine structure and architecture. Journal of Cereal Science, 39, 151-165.
Tester, R.F., Morrison, W. R., Gidley, M. J., Kirland, M., and Karkalas, J. (1994). Properties of damaged starch granules. III. Microscopy and particle size analysis of undamaged granules and remnants. Journal of Cereal Science, 20, 59–67.
Tester., R. F., and Karkalas, J. (2002). Starch. In A Steinbűchel. (Series Ed.), E. J. Vandamme, S. De Baets, A. Steinbűchel. (vol. Eds.), Biopolamers, vol. 6. Polysaccharides. II. Polysaccharides form Eukaryotes (pp. 381-438). Weinheim: Wiley-VCH.
Varinot, C., Hiltgun, S., Pons, M.-N., and Dodds, J. (1997). Identification of the fragmentation mechanisms in wet-phase fine grinding in a stirred bead mill. Chemical Engineering Science, 52, 3605–3612.
Vermeylen, R., Goderis, B., and Delcour, J. A. (2006). An X-ray study of hydrothermally treated potato starch. Carbohydrate Polymers, 64, 364–375.
Wang, L., and Seib, P. A. (1996). Australian salt-noodle flours and their starches compared to U.S. wheat flours and their starches. Cereal Chemistry, 73, 167-175.
Wu, H.C.H., and Sarko, A. (1978) The double-helical molecular structure of crystalline A-amylose. Carbohydrate Research, 61, 27–40.
Yoo, S. H. and Jane, J. L. (2002). Molecular weights and gyration radii of amylopectins determined by high-performance size-exclusion chromatography equipped with multi-angle laser-light scattering and refractive index detectors. Carbohydrate Polymers, 49, 307-314.
Yuryev, V. P.; Krivandin, A. V., Kiseleva, V. I.; Wasserman, L. A.; Genkina, N. K.; Fornal, J.; Blaszczak, W.; Schiraldi, A. (2004). Structural parameters of amylopectin clusters and semi-crystalline growth rings in wheat starches with different amylose content. Carbohydrate Research, 339, 2683-2691.
Zhang, Z., Zhao, S., and Xiong, S. (2010). Morphology and physicochemical properties of mechanically activated rice starch. Carbohydrate Polymers, 79, 341-348.
Zobel, H. F. (1988). Starch crystal transformations and their industrial importance. Stacrh/Starke, 40, 1-7.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22273-
dc.description.abstract本試驗旨在探討不同直鏈澱粉含量之玉米澱粉經球磨處理後對澱粉顆粒形態、分子結構、熱糊性質及熱性質之變化的相關性。以行星式球磨機與瑪瑙球磨珠對糯性、一般及高直鏈玉米澱粉進行研磨,使用掃描式電子顯微鏡(scanning electron microscopy, SEM)、廣角度X-ray繞射分析儀(wide angle X-ray diffractometer, WXRD)及小角度X-ray散射分析儀(small angle X-ray scattering, SAXS)探討球磨玉米澱粉之顆粒形態及結晶結構之特性。並使用高效能分子篩層析儀(high-performance size-exclusion chromatography, HPSEC)估算其直鏈及支鏈澱粉之重量平均分子量及分布,並以去分支酵素(isoamylase)水解澱粉,測量其支鏈澱粉之分支鏈長分布。以調幅視差熱掃描熱分析儀(modulated differential scanning calorimetry, MDSC)分析澱粉樣品之熱性質,及以快速糊液黏度測定儀(rapid visco analyser, RVA)測定澱粉樣品之糊液黏度性質。由SEM觀察發現,球磨對於高直鏈玉米澱粉的破壞有限,對於糯性及一般玉米澱粉的破壞則較為顯著。隨著球磨時間的延長,糯性及一般玉米澱粉的分子量有顯著下降,而高直鏈玉米澱粉則無顯著變化。推測球磨對於低直鏈澱粉含量之樣品有較高的研磨效率。然而在去分支球磨糯性及一般玉米澱粉樣品中,前者之支鏈澱粉分支鏈長分布於球磨前後無顯著差異,球磨1及2 hr之一般玉米澱粉之支鏈澱粉分支鏈長分布則有顯著差異,其直鏈澱粉含量下降且DP~18之鏈段含量上升,推測球磨能造成直鏈澱粉以及支鏈澱粉於非結晶區中的鏈結斷裂。糯性及一般玉米澱粉在經過2 hr研磨後,其MDSC圖譜中的吸熱峰消失,RVA測試則發現,球磨澱粉糊液的尖峰黏度、最終黏度及回凝黏度皆下降。此外,球磨澱粉(於54% RH平衡之樣品)的WAXD及SAXS之繞射鋒皆隨著研磨時間的延長而下降。以上結果顯示,球磨能有效降低澱粉的結晶度及澱粉分子之雙股螺旋結構的整齊排列程度,其中球磨對於糯性玉米澱粉有最高的破壞程度。zh_TW
dc.description.abstractThe purpose of this study was to investigate the effect of different amylose contents on the granular morphologies, molecular structures, pasting and thermal properties of ball-milled corn starches. Waxy, normal and Hylon VII corn starches were ball milled with a planetary ball mill. The surface appearance, granular morphologies, and crystallinities of the ball-milled starches were characterized with scanning electron microscopy (SEM), wide angle X-ray diffractometer (WXRD) and small angle X-ray scattering (SAXS). The weight-averaged molecular weight of amylose and amylopectin as well as the chain length distribution of isoamylase debranched amylopectin of the ball-milled starches were determined with high-performance size-exclusion chromatography (HPSEC). The thermal and pasting properties of the ball-milled starches were obtained respectively with modulated differential scanning calorimetry (MDSC) and rapid visco analyser (RVA). The SEM investigation revealed that after ball milling, the damage of Hylon VII corn starch was limited, while that of waxy and normal corn starch was significant. As ball milling time prolong the molecular weight of normal and waxy corn starch decreased gradually, while Hylon VII corn starch was remained the same. It suggests that ball milling was more effective in reducing the starch with lower amylose content than higher amylose content. However, in the sample of debranch ball-milled waxy and normal corn starches, the chain length for waxy corn starch didn’t have significant difference whether ball-milled or not, but normal corn starch did. The content of amylose of ball-milled normal corn starch was decreased, while the content of chain length with DP~18 was increased for 1 or 2 hr ball milling. It might be because of the ball milling will cleavage the amylose and the chains in amorphous region of amylopectin. For normal and waxy corn starch, the gelatinization enthalpies disappeared after ball milling for 2 hr, and the peak viscosity, final viscosity, breakdown viscosity, and set back decreased after ball milling. In addition, the WAXD and SAXS peaks of all these starches (conditioned at 54% RH) decreased while the ball milling time increased. These revealed that the ball milling was effective in reducing the crystallinity and the double helical order arrangements of all the starches, among which the waxy corn starch had the highest degree of disintegration.en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:14:45Z (GMT). No. of bitstreams: 1
ntu-99-R97623009-1.pdf: 3343158 bytes, checksum: 4300eee7dfc3f0c903d945d797a9d6bc (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents目錄
誌謝 I
中文摘要 II
Abstract III
目錄 IV
圖目錄 VII
表目錄 IX
第一章、前言 1
第二章、文獻整理 2
一、 澱粉 2
(一) 澱粉組成分子 2
(二) 澱粉外觀形態 3
(三) 澱粉內部結構 3
(四) 澱粉結晶結構 7
1. 廣角度X光繞射 7
2. 小角度X光散射 9
(五) 澱粉之APTS染色機制 11
二、 球磨(Ball mill) 12
(一) 原理及常見機種 12
(二) 行星式球磨機 14
三、 球磨澱粉 15
第三章、材料與方法 20
一、 試驗架構 20
二、 試驗材料與化學試劑 20
三、 球磨澱粉製備 21
四、 檢測及分析方法 22
(一) 球磨澱粉外觀形態檢測 22
1. 一般光學及偏光顯微鏡影像觀察 22
2. 掃描式電子顯微鏡觀察 22
3. 雷射共軛焦掃描顯微分析 22
4. 粒徑分析 23
(二) 球磨澱粉理化性質測定 23
1. 膨潤力測試 23
2. 糊液黏度測定 23
3. 示差掃描式熱分析儀測定 25
4. 廣角度X光繞射分析 25
5. 小角度X光散射分析 25
(三) 球磨澱粉分子結構分析 27
1. 澱粉分子之平均分子量測定 27
2. 支鏈澱粉之分支鏈長分布 27
(四) 統計分析 28
第四章、結果與討論 29
一、 球磨澱粉之顯微結構 29
(一) 球磨澱粉之外觀形態 29
(二) 球磨澱粉之一般光學及偏光特性 31
(三) 不同直鏈澱粉含量玉米澱粉之螢光染色觀察 33
(四) 球磨玉米澱粉之顆粒結構 35
(五) 結語 37
二、 球磨澱粉之粒徑分布 38
三、 膨潤力及可溶性固形物含量 39
四、 糊化性質 42
(一) 澱粉糊液黏度性質 42
(二) 澱粉熱性質 46
五、 小角度散射及廣角度X光繞射圖譜分析 47
(一) 廣角度X光繞射圖譜分析 47
(二) 小角度X光散射圖譜分析 49
六、 澱粉分子結構分析 55
(一) 球磨玉米澱粉平均分子量分布 55
(二) 去支鏈球磨玉米澱粉之直鏈與支鏈澱粉之鏈長分布 58
第五章、結論 61
第六章、參考文獻 63
圖目錄
圖一、直鏈澱粉與支鏈澱粉之結構(Tester and Karkalas, 2002) 2
圖二、馬鈴薯澱粉之偏光顯微影像(a)及一般光學顯微影像(b) (Vermeylen et al., 2006; Ridout et al., 2002) 3
圖三、澱粉顆粒結構簡圖(修改自Gallant, 1997) 4
圖四、支鏈澱粉結構簡圖(修改自Donald and Jenkins, 1995) 6
圖五、澱粉中normal blocklet結構示意圖(Tang et al, 2006) 6
圖六、布拉格定律之幾何關係圖(林,1994) 7
圖七、A-type與B-type結晶之澱粉分子單元晶格(Wu and Sarko, 1978) 8
圖八、直鏈澱粉-脂肪酸錯合物之分子模型。脂肪酸(C12)鑲嵌入直鏈澱粉單股螺旋中的疏水性空腔中(Buleon et al., 1998) 9
圖九、粒子對入射光(波向量k )的散射。P,O二散射點因距離d而造成散射光(波向量k')之間的相差q•d (修改自鄭,2004) 10
圖十、玉米澱粉懸浮液(45 wt%)之小角度X光散射圖譜(Donald et al., 2001) 11
圖十一、葡萄糖與8-amino-1,3,6-pyrenetrisulfonic acid (APTS)的還原胺化作用(O’Shea et al., 1998) 11
圖十二、破碎機制(Varinot et al., 1997) 12
圖十三、介質研磨的基本種類(Stein, 2005) 13
圖十四、行星式球磨機示意圖(Mio et al., 2004) 14
圖十五、行星式球磨機運轉中球磨珠移動方式(Mio et al., 2004) 15
圖十六、典型快速糊液黏度測定圖 24
圖十七、糯性玉米澱粉之小角度X光散射擬合圖譜。空心圓為糯性玉米澱粉之原始數據,實線為根據公式(3)擬合之繞射峰(虛線(1))與power-law diffusive scattering (虛線(2))之疊加 26
圖十八、糯性(a-d)、一般(e-h)及高直鏈(i-l)玉米澱粉球磨0 hr (a、e 及 i)、0.5 hr (b、f及j)、1 hr (c、g 及k)及2 hr (d、h 及l)之SEM照片 30
圖十九、球磨0 hr (a、b、e、f、i及j)與2 hr (c、d、g、h、k及l)之糯性(a-d)、一般(e-h)與高直鏈(i-l)玉米澱粉之一般光源(a、c、e、g、i及k)與偏光(b、d、f、h、j及l)顯微照片 32
圖二十、以APTS染色10 hr (a及c)、15 hr (b、d及e)及20 hr (f)之糯性(a及b)、一般(c及d)及高直鏈(e及f)玉米澱粉雷射掃描共軛焦螢光光學切片顯微影像 34
圖二十一、以APTS染色15 hr之球磨0 hr (a及b)及2 hr (c及d)之糯性玉米澱粉於一般光源顯微影像(a及c)及雷射掃描共軛焦螢光光學切片顯微影像(b及d)…. 36
圖二十二、以APTS染色15 hr之球磨0 hr (a及b)及2 hr (c及d)之一般玉米澱粉於一般光源顯微影像(a及c)及雷射掃描共軛焦螢光光學切片顯微影像(b及d) 36
圖二十三、以APTS染色15 hr之球磨0 hr (a及b)及2 hr (c及d)之高直鏈玉米澱粉於一般光源顯微影像(a及c)及雷射掃描共軛焦螢光光學切片顯微影像(b及d) 37
圖二十四、球磨糯性(a)、一般(b)及高直鏈(c)玉米澱粉於不同溫度下之膨潤性質 40
圖二十五、糯性玉米澱粉球磨0、0.5、1及2 hr之糊液黏度變化圖 43
圖二十六、一般玉米澱粉球磨0、0.5、1及2 hr之糊液黏度變化圖 44
圖二十七、球磨糯性(a)、一般(b)及高直鏈(c)玉米澱粉於25℃/54% RH或100% RH下平衡及水合之WAXD圖譜 48
圖二十八、球磨糯性玉米澱粉於54% RH (a)及100% RH (b)平衡及水合(c)後之SAXS圖譜。球磨時間為0 (□)、0.5 (○)、1 (△)及2 (▽) hr 51
圖二十九、球磨一般玉米澱粉於54% RH (a)及100% RH (b)平衡及水合(c)後之SAXS圖譜。球磨時間為0 (□)、0.5 (○)、1 (△)及2 (▽) hr 52
圖三十、球磨高直鏈玉米澱粉於54%RH (a)、100%RH(b)平衡及水合(c)後之SAXS譜。球磨時間為0 (□)、0.5 (○)、1 (△)及2 (▽) hr 54
圖三十一、以HPSEC分析球磨糯性(a)、一般(b)及高直鏈玉米澱粉(c)之圖譜 57
圖三十二、以HPSEC分析去支鏈球磨糯性(a)、一般(b)玉米澱粉之圖譜 59
表目錄
表一、球磨澱粉相關文獻 17
表二、樣品代號 21
表三、RVA操作條件設定 24
表四、球磨玉米澱粉之體積粒徑分布 38
表五、球磨玉米澱粉之可溶性固形物含量 41
表六、球磨玉米澱粉之糊液黏度性質 45
表七、球磨玉米澱粉之熱性質分析 46
表八、以“Power Law plus Cauchy”model擬合球磨糯性及一般玉米澱粉之SAXS數據之各項參數 53
表九、球磨玉米澱粉之分子大小比例及其重量平均分子量 56
表十、去支鏈球磨玉米澱粉重量百分比及鏈長 60
dc.language.isozh-TW
dc.title球磨修飾不同直鏈澱粉含量之玉米澱粉的外觀形態、內部結構及理化性質zh_TW
dc.titleMorphologies, Internal Structures and Physicochemical Properties of Ball-Milled Corn Starches with Different Amylose Contentsen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee呂廷璋(Ting-Jang Lu),鄭有舜(U-Ser Jeng),李文?,張永和
dc.subject.keyword球磨,玉米澱粉,直鏈澱粉含量,廣角度X-ray繞射分析儀,小角度X-ray散射分析儀,zh_TW
dc.subject.keywordball mill,corn starch,amylose content,wide angle X-ray diffractometer (WXRD),small angle X-ray scattering (SAXS),en
dc.relation.page71
dc.rights.note未授權
dc.date.accepted2010-08-10
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
3.26 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved