請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22258完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 賈景山(Jean-San Chia) | |
| dc.contributor.author | Hui-Chi Chuang | en |
| dc.contributor.author | 莊惠祺 | zh_TW |
| dc.date.accessioned | 2021-06-08T04:14:30Z | - |
| dc.date.copyright | 2010-09-09 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-11 | |
| dc.identifier.citation | Acosta-Rodriguez, E. V., Napolitani, G., Lanzavecchia, A., and Sallusto, F. (2007a). Interleukins 1 beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat. Immunol. 8, 942-949.
Acosta-Rodriguez, E. V., Rivino, L., Geginat, J., Jarrossay, D., Gattorno, M., Lanzavecchia, A., Sallusto, F., and Napolitani, G. (2007b). Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat. Immunol. 8, 639-646. Baecher-Allan, C., Wolf, E., Ashley, C., and Hafler, D. (2006). HLA-class II defines functionally distinct populations of human CD4+CD25high Treg cells. J. Immunol. 176, 220-221. Beriou, G., Costantino, C. M., Ashley, C. W., Yang, L., Kuchroo, V. K., Baecher-Allan, C., and Hafler, D. A. (2009). IL-17-producing human peripheral regulatory T cells retain suppressive function. Blood 113, 4240-4249. Calida, D. M., Constantinescu, C., Purev, E., Zhang, G. X., Ventura, E. S., Lavi, E., and Rostami, A. (2001). Cutting edge: C3, a key component of complement activation, is not required for the development of myelin oligodendrocyte glycoprotein peptide-induced experimental autoimmune encephalomyelitis in mice. J. Immunol. 166, 723-726. Chen, M. L., Pittet, M. J., Gorelik, L., Flavell, R. A., Weissleder, R., von Boehmer, H., and Khazaie, K. (2005). Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-beta signals in vivo. Proc. Natl. Acad. Sci. U S A 102, 419-424. Curiel, T. J., Coukos, G., Zou, L., Alvarez, X., Cheng, P., Mottram, P., Evdemon-Hogan, M., Conejo-Garcia, J. R., Zhang, L., Burow, M., et al. (2004). Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat. Med. 10, 942-949. Dave, B. J., Trivedi, A. H., and Adhvaryu, S. G. (1992). Role of areca nut consumption in the cause of oral cancers. A cytogenetic assessment. Cancer 70, 1017-1023. Dubin, P. J., and Kolls, J. K. (2008). Th17 cytokines and mucosal immunity. Immunol. Rev. 226, 160-171. Dunn, G. P., Bruce, A. T., Ikeda, H., Old, L. J., and Schreiber, R. D. (2002). Cancer immunoediting: from immunosurveillance to tumor escape. Nat. Immunol. 3, 991-998. Dunn, G. P., Old, L. J., and Schreiber, R. D. (2004). The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21, 137-148. Francisco, L., Salinas, V., Brown, K., Vanguri, V., Freeman, G., Kuchroo, V., and Sharpe, A. (2009). PD-L1 Regulates the Development, Maintenance and Function of Induced-regulatory T Cells. Clin. Immunol. 131, S45-S45. Fu, J. L., Xu, D. P., Liu, Z. W., Shi, M., Zhao, P., Fu, B. Y., Zhang, Z., Yang, H. Y., Zhang, H., Zhou, C. B., et al. (2007). Increased regulatory T cells correlate with CD8 T-cell impairment and poor survival in hepatocellular carcinoma patients. Gastroenterology 132, 2328-2339. Gaffen, S. L. (2009). Structure and signalling in the IL-17 receptor family. Nat. Rev. Immunol. 9, 556-567. Gran, B., Zhang, G. X., Yu, S., Li, J., Chen, X. H., Ventura, E. S., Kamoun, M., and Rostami, A. (2002). IL-12p35-deficient mice are susceptible to experimental autoimmune encephalomyelitis: evidence for redundancy in the IL-12 system in the induction of central nervous system autoimmune demyelination. J. Immunol. 169, 7104-7110. Harrington, L. E., Hatton, R. D., Mangan, P. R., Turner, H., Murphy, T. L., Murphy, K. M., and Weaver, C. T. (2005). Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 6, 1123-1132. Hori, S., Nomura, T., and Sakaguchi, S. (2003). Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057-1061. Ito, T., Hanabuchi, S., Wang, Y. H., Park, W. R., Arima, K., Bover, L., Qin, F. X. F., Gilliet, M., and Liu, Y. J. (2008). Two functional subsets of FOXP3(+) regulatory T cells in human thymus and periphery. Immunity 28, 870-880. Ivanov, I. I., McKenzie, B. S., Zhou, L., Tadokoro, C. E., Lepelley, A., Lafaille, J. J., Cua, D. J., and Littman, D. R. (2006). The orphan nuclear receptor ROR gamma t directs the differentiation program of proinflammatory IL-17(+) T helper cells. Cell 126, 1121-1133. Ko, Y. C., Chiang, T. A., Chang, S. J., and Hsieh, S. F. (1992). Prevalence of betel quid chewing habit in Taiwan and related sociodemographic factors. J. Oral. Pathol. Med. 21, 261-264. Koenen, H. J. P. M., Smeets, R. L., Vink, P. M., van Rijssen, E., Boots, A. M. H., and Joosten, I. (2008). Human CD25(high)Foxp3(pos) regulatory T cells differentiate into IL-17-producing cells. Blood 112, 2340-2352. Kryczek, I., Banerjee, M., Cheng, P., Vatan, L., Szeliga, W., Wei, S., Huang, E., Finlayson, E., Simeone, D., Welling, T. H., et al. (2009). Phenotype, distribution, generation, and functional and clinical relevance of Th17 cells in the human tumor environments. Blood 114, 1141-1149. Kryczek, I., Wei, S., Zou, L., Altuwaijri, S., Szeliga, W., Kolls, J., Chang, A., and Zou, W. (2007). Cutting edge: Th17 and regulatory T cell dynamics and the regulation by IL-2 in the tumor microenvironment. J. Immunol. 178, 6730-6733. La Vecchia, C., Tavani, A., Franceschi, S., Levi, F., Corrao, G., and Negri, E. (1997). Epidemiology and prevention of oral cancer. Oral oncol. 33, 302-312. Lippman, S. M., Sudbo, J., and Hong, W. K. (2005). Oral cancer prevention and the evolution of molecular-targeted drug development. J. Clin. Oncol. 23, 346-356. Liu, W., Putnam, A. L., Xu-Yu, Z., Szot, G. L., Lee, M. R., Zhu, S., Gottlieb, P. A., Kapranov, P., Gingeras, T. R., Fazekas de St Groth, B., et al. (2006). CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J. Exp. Med. 203, 1701-1711. Lo, W. L., Kao, S. Y., Chi, L. Y., Wong, Y. K., and Chang, R. C. S. (2003). Outcomes of oral squamous cell carcinoma in Taiwan after surgical therapy: Factors affecting survival. J. Oral. Maxil. Surg. 61, 751-758. Manel, N., Unutmaz, D., and Littman, D. R. (2008). The differentiation of human T-H-17 cells requires transforming growth factor-beta and induction of the nuclear receptor ROR gamma t. Nat. Immunol. 9, 641-649. Miller, A. M., Lundberg, K., Ozenci, V., Banham, A. H., Hellstrom, M., Egevad, L., and Pisa, P. (2006). CD4+CD25high T cells are enriched in the tumor and peripheral blood of prostate cancer patients. J. Immunol. 177, 7398-7405. Miyara, M., Yoshioka, Y., Kitoh, A., Shima, T., Wing, K., Niwa, A., Parizot, C., Taflin, C., Heike, T., Valeyre, D., et al. (2009). Functional Delineation and Differentiation Dynamics of Human CD4(+) T Cells Expressing the FoxP3 Transcription Factor. Immunity 30, 899-911. Nakayama, H., Ikebe, T., Beppu, M., and Shirasuna, K. (2001). High expression levels of nuclear factor kappaB, IkappaB kinase alpha and Akt kinase in squamous cell carcinoma of the oral cavity. Cancer 92, 3037-3044. Numasaki, M., Fukushi, J., Ono, M., Narula, S. K., Zavodny, P. J., Kudo, T., Robbins, P. D., Tahara, H., and Lotze, M. T. (2003). Interleukin-17 promotes angiogenesis and tumor growth. Blood 101, 2620-2627. Park, H., Li, Z., Yang, X. O., Chang, S. H., Nurieva, R., Wang, Y. H., Wang, Y., Hood, L., Zhu, Z., Tian, Q., and Dong, C. (2005). A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 6, 1133-1141. Petersen, R. P., Campa, M. J., Sperlazza, J., Conlon, D., Joshi, M. B., Harpole, D. H., Jr., and Patz, E. F., Jr. (2006). Tumor infiltrating Foxp3+ regulatory T-cells are associated with recurrence in pathologic stage I NSCLC patients. Cancer 107, 2866-2872. Rhodus, N. L., Cheng, B., Myers, S., Miller, L., Ho, V., and Ondrey, F. (2005). The feasibility of monitoring NF-kappaB associated cytokines: TNF-alpha, IL-1alpha, IL-6, and IL-8 in whole saliva for the malignant transformation of oral lichen planus. Mol. Carcinog. 44, 77-82. Sakaguchi, S., Miyara, M., Costantino, C. M., and Hafler, D. A. (2010). FOXP3(+) regulatory T cells in the human immune system. Nat. Rev. Immunol. 10, 490-500. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M., and Toda, M. (1995). Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151-1164. Shevach, E. M. (2000). Regulatory T cells in autoimmmunity. Annu. Rev. Immunol. 18, 423-449. Shirname, L. P., Menon, M. M., and Bhide, S. V. (1984). Mutagenicity of betel quid and its ingredients using mammalian test systems. Carcinogenesis 5, 501-503. Shirname, L. P., Menon, M. M., Nair, J., and Bhide, S. V. (1983). Correlation of mutagenicity and tumorigenicity of betel quid and its ingredients. Nutr. Cancer 5, 87-91. Strauss, L., Bergmann, C., Szczepanski, M., Gooding, W., Johnson, J. T., and Whiteside, T. L. (2007). A unique subset of CD4+CD25highFoxp3+ T cells secreting interleukin-10 and transforming growth factor-beta1 mediates suppression in the tumor microenvironment. Clin. Cancer. Res. 13, 4345-4354. Strauss, L., Bergmann, C., Szczepanski, M. J., Lang, S., Kirkwood, J. M., and Whiteside, T. L. (2008). Expression of ICOS on human melanoma-infiltrating CD4(+)CD25(high)Foxp3(+) T regulatory cells: Implications and impact on tumor-mediated immune suppression. J. Immunol. 180, 2967-2980. Takezaki, T., Hirose, K., Inoue, M., Hamajima, N., Kuroishi, T., Nakamura, S., Koshikawa, T., Matsuura, H., and Tajima, K. (1996). Tobacco, alcohol and dietary factors associated with the risk of oral cancer among Japanese. Jpn. J. Cancer. Res. 87, 555-562. Voo, K. S., Wang, Y. H., Santori, F. R., Boggiano, C., Wang, Y. H., Arima, K., Bover, L., Hanabuchi, S., Khalili, J., Marinova, E., et al. (2009). Identification of IL-17-producing FOXP3(+) regulatory T cells in humans. Proc. Natl. Acad. Sci. USA 106, 4793-4798. Wang, L., Yi, T., Kortylewski, M., Pardoll, D. M., Zeng, D., and Yu, H. (2009). IL-17 can promote tumor growth through an IL-6-Stat3 signaling pathway. J. Exp. Med. 206, 1457-1464. Wilson, N. J., Boniface, K., Chan, J. R., McKenzie, B. S., Blumenschein, W. M., Mattson, J. D., Basham, B., Smith, K., Chen, T., Morel, F., et al. (2007). Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat. Immunol. 8, 950-957. Woo, E. Y., Chu, C. S., Goletz, T. J., Schlienger, K., Yeh, H., Coukos, G., Rubin, S. C., Kaiser, L. R., and June, C. H. (2001). Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res. 61, 4766-4772. Zhang, B., Rong, G., Wei, H., Zhang, M., Bi, J., Ma, L., Xue, X., Wei, G., Liu, X., and Fang, G. (2008). The prevalence of Th17 cells in patients with gastric cancer. Biochem. Biophys. Res. Commun. 374, 533-537. Zhang, J. P., Yan, J., Xu, J., Pang, X. H., Chen, M. S., Li, L., Wu, C., Li, S. P., and Zheng, L. (2009). Increased intratumoral IL-17-producing cells correlate with poor survival in hepatocellular carcinoma patients. J. Hepatol. 50, 980-989. Zhou, L., Chong, M. M., and Littman, D. R. (2009). Plasticity of CD4+ T cell lineage differentiation. Immunity 30, 646-655. Zhou, L. A., Ivanov, I. I., Spolski, R., Min, R., Shenderov, K., Egawa, T., Levy, D. E., Leonard, W. J., and Littman, D. R. (2007). IL-6 programs TH-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat. Immunol. 8, 967-974. 賴宛伶,2009,《分析人類口腔鱗狀上皮細胞癌浸潤之調節性T細胞與Th17細胞間互相關係》,頁17,出版地:國立台灣大學醫學院微生物學研究所碩士論文。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22258 | - |
| dc.description.abstract | 口腔鱗狀上皮細胞癌 (Oral squamous cell carcinoma)是全世界普遍的癌症,是經手術治療後還是伴隨低存活率的癌症。實驗室先前的研究發現調節性T細胞與Th17細胞在口腔麟狀上皮細胞癌病患的組織切片以及腫瘤浸潤細胞中都有高量比例之分佈,並且也發現一群特殊的細胞群同時表現IL-17+Foxp3+,但調節性T細胞、Th17細胞及IL-17+Foxp3 +細胞在腫瘤環境中所扮演的角色目前尚未明瞭。近期的研究指出,在體外培養下調節性T細胞有能力轉變為具有分泌IL-17能力之細胞,但在腫瘤環境中兩者之間的分化轉變關係尚未釐清。本研究利用CD4 T細胞與口腔麟狀上皮細胞癌細胞株共同培養系統,發現CD4 T細胞在腫瘤細胞株SAS的環境中,表現Foxp3 +、IL-17+、IL-17+Foxp3+的細胞比例有增加的現象,並且表現細胞激素IL-17,此外也表現對於Th17分化所需之細胞激素IL-6及IL-1β。實驗室先前的研究發現在腫瘤浸潤細胞中表現IL-17+Foxp3 +之細胞與之IL-17+細胞的分布具有非常高度的相關性。本研究發現在中和Th17分化所需之細胞激素IL-6及IL-1β後,CD4 T細胞與SAS共同培養系統中表現IL-17+Foxp3 +細胞之比例下降,顯示IL-17+Foxp3 +分化可能由Th17細胞轉變而來。文獻指出CCR6的表現與Th17細胞有關,本實驗進一步利用CD25及CCR6作為標記將調節性T細胞分為CD25highCCR6+、CD25high CCR6-以及CD25- CCR6+ CD25-CCR6-,四個細胞亞群分別與SAS共同培養後,CD25highCCR6+以及CD25- CCR6 +在共同培養後表現IL-17+Foxp3 +之細胞比例增加,顯示IL-17+Foxp3 +除了是由原本存在之IL-17+Foxp3 +增生而來也可由Th17分化而來。此外,由CD25- CCR6 +及CCR6 +CD25-與SAS細胞株共同培養的實驗發現CD25-在與SAS共同培養後能分化為Foxp3 +細胞。本研究由腫瘤細胞共同培養系統發現SAS細胞在Th17細胞及調節性T細胞之分化與增生扮演重要的角色。 | zh_TW |
| dc.description.abstract | Oral squamous-cell carcinoma (OSCC) is common worldwide with low survival rate after therapy. Previously, we found elevated Treg, Th17 and a subset of IL-17+ Foxp3+ tumor infiltrating lymphocytes (TILs) in OSCC by immunohistochemistry and flow cytometry. However, the origin of these subsets was unclear. In this study, a mixed CD4 T cells-tumor cells coculture system was established to delineate the induction and/or expansion of the IL-17+ Foxp3+ T cells. The percentage of either Foxp3+ or IL-17+Foxp3+ T cells was increased after co-cultured in the presence of an OSCC cell line. Neutralizing antibodies specific for IL-1β or IL-6 partially inhibited the induction/expansion of IL-17+Foxp3+, but direct cell-cell contact played a more important role as demonstrated by a transwell analysis. To further delineate the origin of the IL-17+Foxp3+ T cells, four subsets of CD4+CD25highCCR6+, CD4+CD25highCCR6-, CD4+CD25-CCR6+ and CD4+CD25-CCR6- cells were sorted and tested subsequently in the co-cultured system. The percentage of IL-17+ Foxp3+ T cells were increased in both CD4+CD25highCCR6+ and CD4+CD25-CCR6+ subsets, suggesting that the IL-17+ Foxp3+ cells maybe expanded from either IL-17+Foxp3+ or Th17 cells. The percentage of Foxp3+ cells was also increased in CD4+CD25-CCR6- and CD4+CD25-CCR6+ subsets, suggesting that CD4+CD25- cells could be differentiated into Foxp3+ cells. Therefore, our in vitro coculture assay suggested that OSCC may play a critical role in the induction and/or expansion both Th17 and Treg cells. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T04:14:30Z (GMT). No. of bitstreams: 1 ntu-99-R97445119-1.pdf: 1526673 bytes, checksum: 94ad5a51d7ea79a9a4e1d291dabc7413 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii 英文摘要 iii 目錄 iv 圖表目錄 vi 第一章 緒論 1 第一節 研究背景 1 一、 口腔癌 1 二、 調節性T細胞參與之癌症免疫反應 2 三、 調節性T細胞 2 四、 輔助型T細胞亞群─Th17 4 五、 調節性T細胞與Th17細胞的動態平衡及分化之可塑性 5 第二節 研究動機與目的 8 第二章 研究材料與方法 9 第一節 人類周邊血液CD4 T細胞分離與細胞分選 9 第二節 口腔鱗狀上皮細胞癌細胞株SAS、OECM-1細胞與正常人類角化細胞之細胞培養 9 第三節 CD4 T 細胞與口腔癌細胞株體外培養 9 第四節 細胞表面抗原免疫染色 10 第五節 細胞內免疫染色 10 第六節 細胞激素測定 10 第七節 Transwell assay 11 第八節 藉由IL-1RA、IL-6中和性抗體之抑制試驗 11 第九節 統計分析 12 第三章 結果 13 第一節 口腔鱗狀細胞癌細胞株SAS增加CD4+Foxp3+細胞 CD4+IL17+Foxp3+細胞之表現 13 第二節 口腔鱗狀上皮細胞癌細胞株SAS經由細胞間分子直接接觸 增加CD4+Foxp3+細胞及CD4+IL-17+Foxp3+細胞之表現 14 第三節 CD4+Foxp3+細胞及CD4+IL-17+Foxp3+細胞之分化來源 16 第四節 CD4 T細胞與SAS細胞株共同培養系統中之調節性T細胞亞 群CD4+CD25highCCR6+分群具有IL-17分泌之能力 17 第五節 CCR6定義之IL-17分泌型細胞由CD4+CD25-CCR6+分化 18 第四章 討論 20 第五章 參考文獻 24 | |
| dc.language.iso | zh-TW | |
| dc.subject | 口腔鱗狀上皮細胞癌 | zh_TW |
| dc.subject | 調節性T細胞 | zh_TW |
| dc.subject | Th17細胞 | zh_TW |
| dc.subject | Regulatory T cell | en |
| dc.subject | Oral squamous cell carcinoma | en |
| dc.subject | Th17 cell | en |
| dc.title | 口腔鱗狀上皮細胞癌細胞株誘導人類調節性T細胞與Th17細胞分化與增生 | zh_TW |
| dc.title | Differentiation and expansion of human Treg and Th17 cells induced by oral squamous cell carcinoma cell line | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 賴明宗(Ming-Zong Lai),江伯倫,許秉寧 | |
| dc.subject.keyword | 調節性T細胞,Th17細胞,口腔鱗狀上皮細胞癌, | zh_TW |
| dc.subject.keyword | Regulatory T cell,Th17 cell,Oral squamous cell carcinoma, | en |
| dc.relation.page | 40 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2010-08-11 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 微生物學研究所 | zh_TW |
| 顯示於系所單位: | 微生物學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 1.49 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
