請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22250完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳怡然 | |
| dc.contributor.author | Tsung-Min Fang | en |
| dc.contributor.author | 方琮珉 | zh_TW |
| dc.date.accessioned | 2021-06-08T04:14:23Z | - |
| dc.date.copyright | 2010-08-13 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-11 | |
| dc.identifier.citation | [1] W. M. Leach, Jr., “Introduction to Electroacousitcs and Audio Amplifier Design,” Second Edition, Kendall/Hunt, 2001.
[2] Adel S. Sedra and Kenneth C. Smith, “Microelectronic Circuits,” Fifth Edition, Oxford University Press, 2004. [3] Maxim, “Class D Amplifiers: Fundamentals of Operation and Recent Developments,” Dec. 15, 2006. http://pdfserv.maxim-ic.com/en/an/AN3977.pdf [4] Chen, Wayne T. and R. Clif Jones, “Concepts and Design of Filterless Class-D Audio Amplifiers,” Texas Instruments Technical Journal, Vol. 18, No. 2, April 2001. [5] W. T. Chen, M. Corsi, R.C. Jones, III, M. D. Score, “Modulation Scheme For Filterless Switching Amplifiers ,” Texas Instruments Incorporated, Dallas, TX(US), United States Patent No. 6,211,728, B1, Apr. 3 2001. [6] Maxim, “Spread-Spectrum Modulation Mode Minimizes Electromagnetic Interference in Class D Amplifiers,” Jul. 06, 2006. http://pdfserv.maxim-ic.com/en/an/AN3881.pdf [7] C. F. Edwards, C. A. Easson, M. V. Kolluri, A. S. Doy, “Efficient Minimum Pulse Spread Spectrum Modulation For Filterless Class D Amplifiers,” Maxim Integrated Products Incorporated, Sunnyvale, CA(US), United States Patent No. 6,847,257, B2, Jan. 25 2005. [8] P. Muggler, W. Chen, C. Jones, P. Dagli and N. Yazdi, “A filter free class D audio amplifier with 86% power efficiency,” Proceedings of the 2004 International Symposium on Circuits and Systems, Vol. 1, pp. I-1036-1039, May 2004. [9] A. Yasuda, T. Kimura, K. Ochiai and T. Hamasaki, “A Class D Amplifier Using a Spectrum Shaping Technique,” Proceedings of the IEEE 2004 Custom Integrated Circuits Conference, pp. 173-176, October 2004. [10] Z. Lai, K. M. Smedley, “A New Extension of One-Cycle Control and Its Application to Switching Power Amplifiers,” IEEE Transactions on Power Electronics, Vol. 11, No. 1, Jan. 1996. [11] S. C. Li, V. C. Lin, K. Nandhasri and J. Ngarmnil, “New high-efficiency 2.5V/0.45W RWDM class D audio amplifier for portable consumer electronics”, IEEE Trans. on Circuits and Systems I, Vol. 52, No. 9, pp. 1767-1774, September 2005. [12] Jun Honda and Jonathan Adams, “Class D Audio Amplifier Basics”, International Rectifier, Feb 2005. http://www.irf.com/technical-info/appnotes/an-1071.pdf [13] Jun Honda and Jorge Cerezo, “Class D Audio Amplifier Design”, International Rectifier, Oct.8 2003. http://www.irf.com/product-info/audio/classdtutorial.pdf [14] M. T. Tan, H. C. Chua, B. H. Gwee and J. S. Chang, ”An Investigation on the Parameter Affecting Total Harmonic Distortion in Class D Amplifier,” IEEE International Circuits and Systems Conference, Vol. 4, pp. 193-196, May 2000. [15] H. C. Foong and M. T. Tan, “An Analysis of THD in Class D Amplifiers,” IEEE International Circuits and Systems Conference, pp. 724-727, Dec 2006. [16] T. Sudo, H. Sasaki, N. Masuda and J. L. Drewniak, “Electromagnetic Interference (EMI) of System-on-Package (SOP),” IEEE Transctions on Advanced Packing, Vol. 27, No. 2, May 2004. [17] 張玲誼, “A Spread Spectrum Clock Generator Based on a Sigma-Delta Modulated Phase Locked Loop,” M.S. thesis, Nation Taiwan University, 2003. [18] 花怡慧, “The Design and Implementation of 66/133/266MHz Spread Spectrum Clock Generators,” M.S. thesis, Nation Taiwan University, 2002. [19] K. B. Hardin, J. T. Fessler and D. R. Bush, “Spread Spectrum Clock Generation for the Reduction of Radiated Emissions,” IEEE International Symposium on Electro-magnetic Compatibility, pp. 227-231, Aug. 1994. [20] 陳緯達, “A Spread Spectrum Clock Generator for Serial-ATA,” M.S. thesis, Nation Chiao Tung University, 2005. [21] F. Lin and D. Y. Chen, “Reduction of Power Supply EMI Emission by Switching Frequency Modulation,” IEEE Transation on Power Electronic, Vol. 9, No. 1, Jan. 1994. [22] K. B. Hardin, J. T. Fessler and D. R. Bush, “A Study of Interference Potential of Spread Spectrum Clock Generator Techniques,” IEEE International Symposium on Electro-magnetic Compatibility, pp. 624-629, 1995. [23] M. Undeland, “Power Electronics: Converters, Applications and Design,” Second Edition, John Wiley & Sons, Inc., 1997. [24] I. D. Mosely, P. H. Mellor and C. M. Bingham, “Effect of Dead Time on Harmonic Distortion in Class-D Power Amplifiers,” Electronics Letters, Vol. 35, No. 12, pp. 950-952, June 1999. [25] J. S. Chang, B. H. Gwee, Y. S. Lon and M. T. Tan, “A Novel Low-Power Low-Voltage Class D Amplifier with Feedback For Improving THD Power Efficiency and Gain Linearity,” IEEE International Circuits and Systems Conference, Vol. 1, pp. 635-638, May 2001. [26] K. Nielsen, “High-Fidelity PWM-Based Amplifier Concept for Active Loudspeaker Systems with Very Low Energy Consumption,” Journal of the Audio Engineering Society, Vol. 45, No. 7/8, pp.554-570, July 1997. [27] Texas Instruments, “Reducing and Eliminating the Class-D Output Filter,” Aug. 1999. http://focus.ti.com/lit/an/sloa023/sloa023.pdf [28] M. Score and D. Dapkus, “Optimized Modulation Scheme Eliminates Output Filter,” Proceedings of the 109th AES Convention, pp. 22-25, September 2000. [29] TPA2010D1, “2.5W Mono Filter-Free Class-D Audio Power Amplifier,” Texas Instruments Data Sheet, July 2006.http://focus.ti.com/lit/ds/symlink/tpa2010d1.pdf [30] Phillip E. Allen, Douglas R. Holberg , “CMOS Analog Circuit Design,” New York : Oxford University Press, 2002. [31] J. Balcells, A. Santolaria, A. Orlandi, D. Gonzalez and J. Gago, ”EMI Reduction in Switched Power Converters Using Frequency Modulation Techniques,” IEEE Transactions on Electromagnetic Compatibility, Vol. 47, No. 3, pp. 569-576, Aug. 2005. [32] J. Balcells, D. Gonzalez, J. Gago, A. Santolaria, J.C. Le Bunetel, D. Magnon, S. Brehaut, “Frequency modulation techniques for EMI reduction in SMPS” Conference on Power Electronics and Applications, Vol. 8, pp. 11-14 , Sept. 2005. [33] H. Sadamura, T. Daimon, T. Shindo, H. Kobayashi, T. Myono, T. Suzuki, S. Kawai, T. Iijima, “Spread-Spectrum Clocking in Switching Regulators to Reduce EMI,” IEEE Asia-Pacific Conference on ASIC , Vol. 6, pp. 141-144, Aug. 2002. [34] W. S. Chu, K. W. Current, “A Rail-to-Rail Input-Range CMOS Voltage Comparator,” Proceedings of the 40th Midwest Symposium on Circuits and Systems, Vol. 1, pp. 3-6, Aug. 1997. [35] C. F. Lee and P. K. T. Mok, “A Monolithic Current-mode CMOS DC-DC Converter with On-chip Current-sensing Technique,” IEEE Journal of Solid-State Circuits, Vol. 39, No. 1, pp. 3-14, Jan. 2004. [36] TPA2005D1, “1.4 W Mono Filter-Free Class-D Audio Power Amplifier,” Texas Instruments Data Sheet, November 2004. http://focus.ti.com/lit/ds/symlink/tpa2005d1.pdf [37] B. Forejt, V. Rentala, J. D. Arteaga and G. Burra, “A 700+-mW class D design with direct battery hookup in a 90nm process,” IEEE Journal of Solid-State Circuits, Vol. 40, No. 9, pp. 1880-1887, September 2005. [38] K. Philips, J. Van Der Homber and C. Dijkmas, “Power DAC: a single-chip audio DAC with 70% efficient power stage in 0.5um CMOS,” IEEE International Solid-State Circuits Conference, pp. 154-155, February 1999. [39] E. Gaalaas, B.Y. Liu, and N. Nishimura, “Integrated Stereo Delta-Sigma Class D Audio Amplifier,” IEEE International Solid-State Circuits Conference, pp. 120-121, February 2005. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22250 | - |
| dc.description.abstract | 現今電子產品的發展逐漸朝向輕薄短小可攜式且能夠延長電池使用時間之高效率設計方式,如:助聽器、USB喇叭、筆記型電腦、無線喇叭及汽車音響放大器。而高輸出功率的設計可減少電源供應及散熱片的使用,進而縮小產品的面積。由於D類放大器擁有高效能之特性,因此逐漸的備受重視。
傳統脈波寬度調變技術運用在D類放大器時,在輸出級必須要有一組濾波器,這會造成整體面積和成本上的增加。因此,我們利用展頻調變技術去實現無濾波器之D類放大器,並藉此降低輸出端之EMI。還利用了負回授的機制來降低諧波失真,以提高其整體的線性度。此外亦利用非重疊的控制訊號去驅動功率電晶體,避免因為功率電晶體同時導通而產生貫穿電流,造成功率消耗及電路損毀。 放大器電路的設計是由TSMC 0.35μm 2P4M CMOS製程進行模擬,其操作電壓為3.3V。整個內部電路的細節在本論文中都會有詳細的敘述與討論。當我們給予一個振幅為0.8V且頻率在1KHz之正弦波為輸入信號時,我們可以得到總諧波失真為0.09%以及功率效能為86%。 | zh_TW |
| dc.description.abstract | Current portable electronic product requires small in size and high power efficiency for the long-term usage of batteries. The application products include hearing aids, USB speakers, notebooks, wireless speakers, and automotive audio amplifiers. The high power efficiency design can reduce power supply requirements and elimination of heat sinks, and also reduce the size of products. The Class-D amplifier, for its high efficiency, has drawn much attentions recently.
A Class-D amplifier with conventional PWM modulation requires an output filter which needs large area and increasing cost. Therefore, we use spread-spectrum modulation scheme to realize a filterless Class-D power amplifier, and reduce output EMI. The negative feedback is applied in this thesis to reduce the harmonic distortion for better linearity. In addition, to avoid the shoot-through current when both power transistors are switched on at the same time, the dead time control is adopted. The circuit is designed using TSMC 0.35μm 2P4M 3.3V CMOS process. The details of the entire circuit will be described thoroughly in this thesis. When a 0.8V, 1KHz input sine wave is applied, the THD is 0.09% and the efficiency is 86%. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T04:14:23Z (GMT). No. of bitstreams: 1 ntu-99-J96921011-1.pdf: 1993997 bytes, checksum: 2fec9fc1a8067e6f7a0c05dc727cbc3b (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 摘要 I
ABSTRACTS II 目錄 III 圖目錄 VI 表目錄 X 第一章 導論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 論文架構 9 第二章 D類音訊功率放大器基礎理論 10 2.1 音訊功率放大器 10 2.1.1 A類功率放大器 11 2.1.2 B類功率放大器 12 2.1.3 AB類功率放大器 13 2.1.4 D類功率放大器 14 2.1.5 比較 15 2.2 D類放大器的調變 16 2.2.1 Pulse-Width調變(PWM) 16 2.2.2 Sigma-Delta調變(SDM) 18 2.2.3 One-Cycle控制 19 2.2.4 Rectangular Wave Delta調變(RWDM) 21 2.2.5 比較 23 2.3 輸出級的分類 23 2.4 特性 25 2.4.1 效率(Efficiency) 25 2.4.2 總諧波失真(THD) 27 2.4.3 雜訊來源 27 第三章 展頻基礎理論 29 3.1 電磁干擾來源 29 3.2 電磁干擾抑制技術 31 3.3 展頻調變技術 33 第四章 D類音訊功率放大器系統設計 41 4.1 開迴路D類放大器 41 4.1.1 調變放大過程 41 4.1.2 Dead-Time控制 43 4.2 回授設計 45 4.2.1 回授對THD之影響 45 4.2.2 回授的架構 47 4.2.3 系統設計考量 50 4.3 輸出濾波器 52 4.4 無濾波輸出級調變技術 55 第五章 D類功率放大器電路設計與模擬 59 5.1 D類放大器電路架構 59 5.2 運算放大器(Operational Amplifier) 61 5.3 三角波產生器(Triangular Wave Generator) 64 5.3.1 展頻設計 65 5.4 脈衝寬度調變器(PWM Generator) 68 5.5 非重疊電路(Non-Overlapping Gate Driver) 72 5.6 系統模擬結果與討論 76 5.6.1 系統模擬 76 5.6.2 針對THD之分析 85 5.6.3 針對EMI之分析 88 第六章 結論與未來展望 90 6.1 結論 90 6.2 未來展望 92 參考文獻 93 | |
| dc.language.iso | zh-TW | |
| dc.subject | 電磁干擾 | zh_TW |
| dc.subject | D類放大器 | zh_TW |
| dc.subject | 音訊放大器 | zh_TW |
| dc.subject | 展頻調變 | zh_TW |
| dc.subject | Class-D Amplifier | en |
| dc.subject | SSM | en |
| dc.subject | EMI | en |
| dc.subject | Audio Amplifier | en |
| dc.title | 使用展頻調變降低電磁干擾之無濾波器D類音頻放大器 | zh_TW |
| dc.title | A Filterless Class D Audio Amplifier with Spread-Spectrum Modulation for EMI Reduction | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳昭宏,林致廷,黃育賢 | |
| dc.subject.keyword | D類放大器,音訊放大器,展頻調變,電磁干擾, | zh_TW |
| dc.subject.keyword | Class-D Amplifier,Audio Amplifier,SSM,EMI, | en |
| dc.relation.page | 97 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2010-08-12 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 1.95 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
