請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22230完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 戴子安 | |
| dc.contributor.author | Chieh-Chuan Lin | en |
| dc.contributor.author | 林傑荃 | zh_TW |
| dc.date.accessioned | 2021-06-08T04:14:06Z | - |
| dc.date.copyright | 2010-08-17 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-13 | |
| dc.identifier.citation | 1. Hideki, S.; Edwin, J. L.; Alan, G. M.; Chwan, K. C.; Alan, J. H., Journal of the Chemical Society, Chemical Communications 1977, (16), 578-580.
2. Wu-Song, H.; Brian, D. H.; Alan, G. M., Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 1986, 82 (8), 2385-2400. 3. Chiang, J.-C.; MacDiarmid, A. G., Synthetic Metals 1986, 13 (1-3), 193-205. 4. Macdiarmid, A. G.; Chiang, J. C.; Richter, A. F.; Epstein, A. J., Synthetic Metals 1987, 18 (1-3), 285-290. 5. Epstein, A. J.; Ginder, J. M.; Zuo, F.; Woo, H. S.; Tanner, D. B.; Richter, A. F.; Angelopoulos, M.; Huang, W. S.; MacDiarmid, A. G., Synthetic Metals 1987, 21 (1-3), 63-70. 6. MacDiarmid, A. G.; Epstein, A. J., Synthetic Metals 1994, 65 (2-3), 103-116. 7. Macdiarmid, A. G.; Chiang, J.-C.; Halpern, M.; Huang, W.-S.; Mu, S.-L.; Nanaxakkara, L. D.; Wu, S. W.; Yaniger, S. I., Molecular Crystals and Liquid Crystals 1985, 121, 173 - 180. 8. Macdiarmid, A. G.; Chiang, J.-C.; Huang, W.; Humphrey, B. D.; Somasiri, N. L. D., Molecular Crystals and Liquid Crystals 1985, 125, 309 - 318. 9. Salaneck, W. R.; Lundstrom, I.; Huang, W.-S.; Macdiarmid, A. G., Synthetic Metals 1986, 13 (4), 291-297. 10. Genies, E. M.; Syed, A. A.; Tsintavis, C., Molecular Crystals and Liquid Crystals 1985, 121, 181 - 186. 11. Travers, J. P.; Chroboczek, J.; Devreux, F.; Genoud, F.; Nechtschein, M.; Syed, A.; Genies, E. M.; Tsintavis, C., Molecular Crystals and Liquid Crystals 1985, 121, 195 - 199. 12. Hand, R. L.; Nelson, R. F., Journal of the Electrochemical Society 1978, 125 (7), 1059-1069. 13. Hand, R. L.; Nelson, R. F., Journal of the American Chemical Society 1974, 96 (3), 850-860. 14. Genies, E. M.; Lapkowski, M., Synthetic Metals 1988, 24 (1-2), 61-68. 15. Vachon, D.; Angus Jr, R. O.; Lu, F. L.; Nowak, M.; Liu, Z. X.; Schaffer, H.; Wudl, F.; Heeger, A. J., Synthetic Metals 1987, 18 (1-3), 297-302. 16. Mohilner, D. M.; Adams, R. N.; Argersinger, W. J., Journal of the American Chemical Society 1962, 84 (19), 3618-3622. 17. Bacon, J.; Adams, R. N., Journal of the American Chemical Society 1968, 90 (24), 6596-6599. 18. Genies, E. M.; Tsintavis, C., Journal of Electroanalytical Chemistry 1985, 195 (1), 109-128. 19. Volkov, A.; Tourillon, G.; Lacaze, P.-C.; Dubois, J.-E., Journal of Electroanalytical Chemistry 1980, 115 (2), 279-291. 20. Genies, E. M.; Tsintavis, C., Journal of Electroanalytical Chemistry 1986, 200 (1-2), 127-145. 21. Diaz, A. F.; Logan, J. A., Journal of Electroanalytical Chemistry 1980, 111 (1), 111-114. 22. Genies, E. M.; Lapkowski, M., Journal of Electroanalytical Chemistry 1987, 220 (1), 67-82. 23. Ohsaka, T.; Ohnuki, Y.; Oyama, N.; Katagiri, G.; Kamisako, K., Journal of Electroanalytical Chemistry 1984, 161 (2), 399-405. 24. Wang, B.; Tang, J.; Wang, F., Synthetic Metals 1986, 13 (4), 329-334. 25. Mengoli, G.; Munari, M. T.; Bianco, P.; Musiani, M. M., Journal of Applied Polymer Science 1981, 26 (12), 4247-4257. 26. DeBerry, D. W., Journal of the Electrochemical Society 1985, 132 (5), 1022-1026. 27. Mengoli, G.; Munari, M.-T.; Folonari, C., Journal of Electroanalytical Chemistry 1981, 124 (1-2), 237-246. 28. Aurian-Blajeni, B.; Taniguchi, I.; Bockris, J. O. M., Journal of Electroanalytical Chemistry 1983, 149 (1-2), 291-293. 29. Nayak, B.; Bhakta, R. C., Journal of Applied Electrochemistry 1983, 13 (1), 105-110. 30. MacDiarmid, A. G.; Yang, L. S.; Huang, W. S.; Humphrey, B. D., Synthetic Metals 1987, 18 (1-3), 393-398. 31. Genies, E.; Hany, P.; Santier, C., Synthetic Metals 1989, 28 (1-2), 647-654. 32. Mirmohseni, A.; Solhjo, R., European Polymer Journal 2003, 39 (2), 219-223. 33. Li, N.; Lee, J. Y.; Ong, L. H., Journal of Applied Electrochemistry 1992, 22 (6), 512-516. 34. Gurunathan, K.; Amalnerkar, D. P.; Trivedi, D. C., Materials Letters 2003, 57 (9-10), 1642-1648. 35. Ghanbari, K.; Mousavi, M. F.; Shamsipur, M.; Karami, H., Journal of Power Sources 2007, 170 (2), 513-519. 36. Kobayashi, T.; Yoneyama, H.; Tamura, H., Journal of Electroanalytical Chemistry 1984, 177 (1-2), 281-291. 37. Duek, E. A. R.; Paoli, M.-A. D.; Mastragostino, M., Advanced Materials 1992, 4 (4), 287-291. 38. Duek, E. A. R.; Paoli, M.-A. D.; Mastragostino, M., Advanced Materials 1993, 5 (9), 650-652. 39. Morita, M., Journal of Applied Polymer Science 1994, 52 (5), 711-719. 40. Jelle, B. P.; Hagen, G., Journal of The Electrochemical Society 1993, 140 (12), 3560-3564. 41. Leventis, N.; Chung, Y. C., Journal of The Electrochemical Society 1990, 137 (10), 3321-3322. 42. Jelle, B. P.; Hagen, G., Journal of Applied Electrochemistry 1999, 29 (9), 1103-1110. 43. Jelle, B. P.; Hagen, G., Solar Energy Materials and Solar Cells 1999, 58 (3), 277-286. 44. Jelle, B. P.; Hagen, G.; Nodland, S., Electrochimica Acta 1993, 38 (11), 1497-1500. 45. Boyle, A.; Genies, E. M.; Lapkowski, M., Synthetic Metals 1989, 28 (1-2), 769-774. 46. Chabukswar, V. V.; Pethkar, S.; Athawale, A. A., Sensors and Actuators B: Chemical 2001, 77 (3), 657-663. 47. Bloor, D.; Monkman, A., Synthetic Metals 1987, 21 (1-3), 175-179. 48. Ge, Z.; Brown, C. W.; Sun, L.; Yang, S. C., Analytical Chemistry 1993, 65 (17), 2335-2338. 49. Pringsheim, E.; Terpetschnig, E.; Wolfbeis, O. S., Analytica Chimica Acta 1997, 357 (3), 247-252. 50. Grummt, U.-W.; Pron, A.; Zagorska, M.; Lefrant, S., Analytica Chimica Acta 1997, 357 (3), 253-259. 51. Jonas, F.; Schrader, L., Synthetic Metals 1991, 41 (3), 831-836. 52. Heywang, G.; Jonas, F., Advanced Materials 1992, 4 (2), 116-118. 53. Dietrich, M.; Heinze, J. g.; Heywang, G.; Jonas, F., Journal of Electroanalytical Chemistry 1994, 369 (1-2), 87-92. 54. de Leeuw, D. M.; Kraakman, P. A.; Bongaerts, P. F. G.; Mutsaers, C. M. J.; Klaassen, D. B. M., Synthetic Metals 1994, 66 (3), 263-273. 55. Ha, Y.-H.; Nikolov, N.; Pollack, S.; Mastrangelo, J.; Martin, B.; Shashidhar, R., Advanced Functional Materials 2004, 14 (6), 615-622. 56. Jonas, F.; Heywang, G., Electrochimica Acta 1994, 39 (8-9), 1345-1347. 57. Jonas, F.; Morrison, J. T., Synthetic Metals 1997, 85 (1-3), 1397-1398. 58. Pei, Q.; Zuccarello, G.; Ahlskog, M.; Inganas, O., Polymer 1994, 35 (7), 1347-1351. 59. Randriamahazaka, H.; Noel, V.; Chevrot, C., Journal of Electroanalytical Chemistry 1999, 472 (2), 103-111. 60. Chen, X.; Xing, K.-Z.; Inganas, O., Chemistry of Materials 1996, 8 (10), 2439-2443. 61. Yamato, H.; Kai, K.-i.; Ohwa, M.; Asakura, T.; Koshiba, T.; Wernet, W., Synthetic Metals 1996, 83 (2), 125-130. 62. Sakmeche, N.; Bazzaoui, E. A.; Fall, M.; Aeiyach, S.; Jouini, M.; Lacroix, J. C.; Aaron, J. J.; Lacaze, P. C., Synthetic Metals 1997, 84 (1-3), 191-192. 63. Lima, A.; Schottland, P.; Sadki, S.; Chevrot, C., Synthetic Metals 1998, 93 (1), 33-41. 64. Yamamoto, T.; Abla, M., Synthetic Metals 1999, 100 (2), 237-239. 65. Prymak, J. D. In Improvements with polymer cathodes in aluminum and tantalum capacitors, Applied Power Electronics Conference and Exposition, 2001. APEC 2001. Sixteenth Annual IEEE, 2001; 2001; pp 1210-1218 vol.2. 66. Elschner, A.; Bruder, F.; Heuer, H. W.; Jonas, F.; Karbach, A.; Kirchmeyer, S.; Thurm, S.; Wehrmann, R., Synthetic Metals 2000, 111-112, 139-143. 67. Gyu-Chul, Y.; et al., Semiconductor Science and Technology 2005, 20 (4), S22. 68. Vayssieres, L., Advanced Materials 2003, 15 (5), 464-466. 69. Choy, J.-H.; Jang, E.-S.; Won, J.-H.; Chung, J.-H.; Jang, D.-J.; Kim, Y.-W., Applied Physics Letters 2004, 84 (2), 287-289. 70. Li, Z.; Xiong, Y.; Xie, Y., Inorganic Chemistry 2003, 42 (24), 8105-8109. 71. Seiyama, T.; Kato, A.; Fujiishi, K.; Nagatani, M., Analytical Chemistry 1962, 34 (11), 1502-1503. 72. Chatterjee, A. P.; Mitra, P.; Mukhopadhyay, A. K., Journal of Materials Science 1999, 34 (17), 4225-4231. 73. Wan, Q.; Li, Q. H.; Chen, Y. J.; Wang, T. H.; He, X. L.; Gao, X. G.; Li, J. P., Applied Physics Letters 2004, 84 (16), 3085-3087. 74. Kumar, S. A.; Chen, S.-M., Analytical Letters 2008, 41 (2), 141 - 158. 75. Chen, J. H.; Dai, C.-A.; Chiu, W.-Y., Journal of Polymer Science Part A: Polymer Chemistry 2008, 46 (5), 1662-1673. 76. Phang, S.-W.; Hino, T.; Abdullah, M. H.; Kuramoto, N., Materials Chemistry and Physics 2007, 104 (2-3), 327-335. 77. Choi, J. W.; Han, M. G.; Kim, S. Y.; Oh, S. G.; Im, S. S., Synthetic Metals 2004, 141 (3), 293-299. 78. Seo, K. I.; Chung, I. J., Polymer 2000, 41 (12), 4491-4499. 79. Kulkarni, M. V.; Viswanath, A. K., European Polymer Journal 2004, 40 (2), 379-384. 80. Tang, J.; Jing, X.; Wang, B.; Wang, F., Synthetic Metals 1988, 24 (3), 231-238. 81. Zhang, Y.; Mu, J., Journal of Colloid and Interface Science 2007, 309 (2), 478-484. 82. Guo, M.; Diao, P.; Cai, S., Applied Surface Science 2005, 249 (1-4), 71-75. 83. Ouyang, W.; Zhu, J., Materials Letters 2008, 62 (17-18), 2557-2560. 84. Park, W. I.; Kim, D. H.; Jung, S. W.; Yi, G.-C., Applied Physics Letters 2002, 80 (22), 4232-4234. 85. El-Sherif, M.; Bansal, L.; Yuan, J., Sensors 2007, 7 (12), 3100-3118. 86. Jang, J.; Chang, M.; Yoon, H., Advanced Materials 2005, 17 (13), 1616-1620. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22230 | - |
| dc.description.abstract | 本研究利用化學氧化原位聚合的方式合成EDOT單體與苯胺單體的高導電性共聚物薄膜,使用氧化劑Fe(OTs)3及Imidazole來與Fe(OTs)3作用,整個系統的反應是在甲醇溶液中進行。我們改變各個變數,如EDOT/Aniline(和Aniline/EDOT)、IM/Monomers及Fe(OTs)3/Monomers的莫耳比例,來探討其對導電度、光學性質及表面形態的影響,並找出各個變數在導電性最佳情況下的比例。在最佳情況下,其導電度比利用相同方法所聚合出的PEDOT及聚苯胺高出2~3倍。此導電度的提升是因為添加了EDOT單體或苯胺單體改變了共聚合反應的反應速率,而使共聚物薄膜的表面較均勻平坦。我們可藉由紫外光可見光光譜得知共聚物薄膜的摻雜程度。利用傅立葉轉換紅外線光譜,我們證實了EDOT單體和苯胺單體共聚物的生成。
製備氧化鋅奈米柱/共聚物複合薄膜可分為三個步驟:共聚物薄膜的合成、將氧化鋅晶種附在共聚物薄膜的表面上、以水熱法成長氧化鋅奈米柱。我們可利用X光繞射光譜儀得知氧化鋅的結晶情形,及利用掃描式電子顯微鏡得知氧化鋅奈米柱的排列情況。當氧化鋅奈米柱成功形成在共聚物薄膜的表面上,即可加強酸鹼緩衝能力。 | zh_TW |
| dc.description.abstract | In this study, highly conductive copolymer films of 3,4-ethylenedioxythiophene (EDOT) and aniline were synthesized by chemical oxidative in situ copolymerization using iron(III) p-toluenesulfonate (Fe(OTs)3) as an oxidant and imidazole (IM) coordinating with Fe(OTs)3 in methanol. We investigated the effect of each variable such as the molar ratios of Aniline/EDOT (and EDOT/Aniline), IM/Monomers and Fe(OTs)3/Monomers on the conductivity, optical property, and surface morphology of the copolymer films. These parameters were optimized to maximize conductivities which are 2~3 times higher than PEDOT and polyaniline films synthesized by the same method. The enhancement of conductivities for copolymer films was due to the fact that the addition of aniline or EDOT changed the copolymerization rate, leading to a more uniform surface morphology. The UV-Visible absorption spectra also illustrated the doping level of copolymer films. From the study of FTIR spectra, we confirmed the formation of copolymer of EDOT and aniline.
The ZnO nanorods/copolymer composite films were prepared by a three-step process: synthesis of copolymer films, deposition of ZnO seeds on copolymer films, and hydrothermal growth of ZnO nanorods. The crystallinity and morphology of ZnO nanorods on copolymer films were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. After growing ZnO nanorods on the copolymer films, the pH buffering ability could be improved. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T04:14:06Z (GMT). No. of bitstreams: 1 ntu-99-R97549027-1.pdf: 6996751 bytes, checksum: 272a3c8a6a0e4060941c9ec81547e947 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 誌謝 I
Abstract II 摘要 III Contents IV List of Figures VI List of Tables VIII Chapter 1 Introduction 1 Chapter 2 Literature Review 3 2-1 Introduction of conducting polymer 3 2-2 Introduction of PANI 3 2-2-1 Synthesis of PANI 6 2-2-1-1 Chemical synthesis 6 2-2-1-2 Electrochemical synthesis 7 2-2-1-3 Synthesis by other methods 9 2-2-2 Applications of PANI 9 2-2-2-1 Rechargeable batteries 9 2-2-2-2 Electrochromic display devices 10 2-2-2-3 Chemical sensors 10 2-3 Introduction of PEDOT 11 2-3-1 Synthesis of PEDOT 11 2-3-1-1 Oxidative chemical polymerization of EDOT 11 2-3-1-2 Electrochemical polymerization of EDOT 13 2-3-1-3 Organometallic dehalogenation polycondensation 14 2-3-2 Applications of PEDOT 14 2-3-2-1 Antistatic coatings 15 2-3-2-2 Electrode material in capacitors 15 2-3-2-3 Hole injection layer in OLEDs 16 2-4 Introduction of ZnO one-dimensional nanostructure 16 2-4-1 Synthesis of ZnO 1D nanostructure by hydrothermal methods 17 2-4-2 Application of ZnO 1D nanostructures 18 Chapter 3 Experimental 19 3-1 Materials 19 3-2 Synthesis of copolymer of EDOT and Aniline 20 3-3 Preparation of ZnO nanoparticles suspension 23 3-4 Preparation of ZnO nanorods/copolymer composite film 23 3-5 Characterization 26 3-5-1 Measurement of conductivity of copolymer films 26 3-5-2 UV-Visible absorption of copolymer films 26 3-5-3 Morphology observation 26 3-5-4 Fourier transformed infrared (FTIR) spectra of copolymer powder 27 3-5-5 X-ray diffraction (XRD) analysis 27 3-5-6 pH buffering ability 27 Chapter 4 Results and Discussion 28 4-1 Conductivity of copolymer films 28 4-1-1 Effect of the molar ratios of Aniline/EDOT and EDOT/Aniline 28 4-1-2 Effect of IM 37 4-1-3 Effect of Fe(OTs)3 44 4-1-4 Optimization of properties 45 4-2 FTIR spectra of copolymer powder 50 4-3 ZnO nanorods growth on copolymer films 52 4-4 pH buffering ability of copolymer films and ZnO nanorods/copolymer films 55 Chapter 5 Conclusions 59 Reference 61 | |
| dc.language.iso | en | |
| dc.subject | PEDOT | zh_TW |
| dc.subject | 導電性高分子 | zh_TW |
| dc.subject | 聚苯胺 | zh_TW |
| dc.subject | 摻雜 | zh_TW |
| dc.subject | 氧化鋅 | zh_TW |
| dc.subject | 奈米複合材料 | zh_TW |
| dc.subject | nanocomposite | en |
| dc.subject | ZnO | en |
| dc.subject | doping | en |
| dc.subject | conducting polymer | en |
| dc.subject | polyaniline | en |
| dc.subject | PEDOT | en |
| dc.title | 高導電度EDOT/Aniline混成共聚高分子:
原位氧化聚合、特性及其應用之研究 | zh_TW |
| dc.title | Highly Conductive EDOT/Aniline Copolymer Hybrids: In-situ Oxidative Synthesis, Characterization, and Applications | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 邱文英,芮祥鵬,程耀毅 | |
| dc.subject.keyword | PEDOT,聚苯胺,導電性高分子,摻雜,氧化鋅,奈米複合材料, | zh_TW |
| dc.subject.keyword | PEDOT,polyaniline,conducting polymer,doping,ZnO,nanocomposite, | en |
| dc.relation.page | 64 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2010-08-13 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 6.83 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
