Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22222
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳明汝
dc.contributor.authorYueh-Ling Hsiehen
dc.contributor.author謝月玲zh_TW
dc.date.accessioned2021-06-08T04:13:59Z-
dc.date.copyright2010-08-18
dc.date.issued2010
dc.date.submitted2010-08-13
dc.identifier.citation中華民國經濟部國家標準。2007。乳品檢驗法,CNS 0890、3441、3444、5035。經濟部國家檢驗局。臺北。臺灣。
李福臨。2000。乳酸菌分類之研究近況。食品工業發展研究所。臺北。臺灣。
周文玲。1992。紅麴菌發酵東方式乾酪之研究。碩士論文。國立臺灣大學畜產學
研究所。
吳春利。2001。畜牧學實習(飼料分析)。合記圖書出版社。臺北。臺灣。
林瑩禎、李河水和華傑。2002。機能性油脂在加工食品的應用研究。食品工業發展研究所。臺北。臺灣。
林慶文。1993。乳品製造學。華香園出版社。臺北。臺灣。
張勝善。1989。牛乳與乳製品。長河出版社。臺北。臺灣。
廖啟成。1998。乳酸菌之分類及應用。食品工業發展研究所。臺北。臺灣。
ADA, 2005. Position of the american dietetic association: fat replacers. J. Am. Diet. Assoc. 105: 266-275.
Ahmed, N. H., M. E. Soda, A. N. Hassan, and J. Frank. 2005. Improving the textural properties of an acid-coagulated (Karish) cheese using exopolysaccharide producing cultures. LWT- Food Sci. Technol. 38: 843-847.
Awad, S., A. N. Hassan, and F. Halaweish. 2005. Application of exopolysaccharide-producing cultures in reduced-fat Cheddar cheese: composition and proteolysis. J. Dairy Sci. 88: 4195-4203.
Banks, J. M., E. Y. Brechany, and W. W. Christie. 1989. The production of low fat Cheddar cheese types. J. Dairy Sci. 42: 6-9.
Beresford, T. P., N. A. Fitzsimons, N. L. Brennan, and T. M. Cogan. 2001. Recent advances in cheese microbiology. Int. Dairy J. 11:259-274.
Bouzar, F., J. Cerning, and M. Desmazeaud. 1997. Exopolysaccharide production and texture-promoting abilities of mixed-strain starter cultures in yogurt production. J. Dairy Sci. 80: 2310-2317.
Brand-Williams, W., M. E. Cuvelier, and C. Berset. 1995. Use of a free radical method to evaluate antioxidant activity. Food Sci. Technol. Res. 28: 25-30.
Broadbent, J. R., D. J. McMahon, J. O. Craig, and D. L. Welker. 2001. Use of exopolysaccharide-producing cultures to improve the functionality of low fat cheese. Int. Dairy J. 11: 433-439.
Bullens, C., G. Krawczyk, and L. Geithman. 1994. Reduced-fat cheese products using carrageenan and microcrystalline cellulose products. Food Sci. Technol. 48: 79–81.
Burns, A. A., M. B. E. Livingstone, R. W. Welch, A. Dunne and I. R. Rowland. 2002. Dose-response effects of a novel fat emulsion (Olibra TM) on energy and macronutrient intakes up to 36h post-consumption. Eur. J. Clin. Nutr. 56: 368-377.
Cerning, J. 1990. Exocellular exopolysaccharides by lactic acid bacteria. FEMS Microbiol Rev. 87: 113-130.
Cerning, J., C. Bouillanne, M. Landon, and M. J. Desmazeaud. 1992. Isolation and characterization of exopolysaccharides from slime-forming mesophilic lacid bacteria. J. Dairy Sci. 75: 692-699.
Cushman, D. W., and H. S. Cheung. 1971. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem. Pharmacol. 20: 1637-1648.
Dabour, N., E. Kheadr, I. Fliss, and G. LaPointe. 2005. Impact of ropy and capsular exopolysaccharide-producing strains of Lactococcus lactis subsp. cremoris on reduced-fat Cheddar cheese production and whey composition. Int. Dairy J. 15: 459-471.
Dabour, N., E. Kheadr, N. Benhamou, I. Fliss, and G. LaPointe. 2006. Improvement of texture and structure of reduced-fat Cheddar cheese by exopolysaccharide-producing Lactococci. J. Dairy Sci. 89: 95-110.
Dinis, T. C. P., V. M. C. Moadeira, and L. M. Almeida. 1994. Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitord of membrane lipid peroxidation and as peroxyl radical seavengers. Arch. Biochem. Biophys. 315: 161-169.
Dobuc, P., and B. Mollet. 2001. Applications of exopolysaccharides in the dairy industry. Int. Dairy J. 11: 759-768.
Drake, M. A., and B. G. Swanson. 1995. Reduced- and low-fat cheese technology: A review. Food Sci. Technol. 6: 366-369.
Drake, M. A., T. D. Boylston, K. D. Spence, and B. G. Swanson. 1996. Chemical and sensory effects of a Lactobacillus adjunct in Cheddar cheese. Food Research Int. 29: 381-387.
Estrella, F. G., L. Rosina, A. Leocadio, and R. Mercedes. 1994. The use of lipolytic and proteolytic enzymes in the manufacture of Manchego type cheese from ovine milk. J. Dairy Sci. 77: 2139-2149.
Farmer, E. H., G. F. Bloomfield, A. Sundralingam, and D. A. Sutton. 1942. The course and mechanism of autoxidation reactions in olefinic and polyoefinic substances, including rubber. Trans. Faraday Soc. 38: 348-356.
Folch, J., M. Lees, and G.H. S. Stanley. 1957. A simple Method for the Isolation and purification of total lipids from animal issues. J. Biol. Chem. 226: 497-509.
Fox, P. F., P. G. Timothy, M. C. Timothy, and L. H. M. Paul. 2000. Fundamentals of Cheese Science. Aspen Publishers, Inc., Maryland. 282-303pp.
Fox, N. J., and G. W. Stachowiak. 2007. Vegetable oil-based lubricants – A review of oxidation. Tribology International. 40: 1035-1046.
Gomes, A. M. P., and F. X. Malcata. 1999. Bifidobacterium spp. and Lactobacillus acidophilus: Biological, biochemical, technological and therapeutical properties relevant for use as probiotics. Trends Food Sci. 10: 139-157.
Gomez-Ruiz, J. A., M. Ramos, and I. Recio. 2002. Angiotensin-converting enzyme-inhibitory peptides in Manchego cheese manufactured with different starter cultures. Int. Dairy J. 12: 697-706.
Goudedranche, H., J. Fauquant, and J. L. Maubois. 2000. Fractionation of globular milk fat by microfiltration. Le. Lait. 80: 93-98.
Gripon, J. C. 1987. Mold-ripened cheese. In cheese: chemistry, physics and microbiology. Elsevier Appl. Sci. Publ. Ltd., London, Engl. pp.121-149.
Grobben, G. J., M. R. Smith, J. Sikkema, and J. A. M. Bont. 1996. Influence of fructose and glucose on the production of exopolysaccharide and the activities of enzymes involved in the sugar metabolism and the synthesis of sugar nucleotides in Lactobacillus delbruckii ssp. bulgaricus NCFB 2772. Appl Microbiol Biotechnol. 46: 279-284.
Gupta, A., B. Mann, R. Kumar, and R. B. Sangwan. 2009. Antioxidant activity of Cheddar cheeses at different stages of ripening. Sci. Dairy Technol. 62: 339-347.
Gutteridge, J. M. C., and B. Halliwell. 1993. Invited review free radicals in disease processes: a compilation of cause and consequence. Free Radic. Res. 19: 141-158.
Hassan, A. N. 2008. ADSA Foundation Scholar Award: Possibilities and Challenges of Exopolysaccharide-Producing Lactic Cultures in Dairy Foods. J. Dairy Sci. 91: 1282-1298.
Heo, S. J., E. J. Park, K. W. Lee, and Y. J. Jeon. 2005. Antioxidant activities of enzymatic extracts from browm seaweeds. Bioresour. Technol. 96: 1613-1623.
Hirayama, K., and J. Rafter. 2000. The role of probiotic bacteria in cancer prevention. Microbes Infect. 2: 681-686.
Hughes, D. B., and D. G. Hoover. 1994. Viability and enzymatic activity of Bifidobacteria in milk. J. Dairy Sci. 78: 268-276.
Johnson, M. E., J. L. Steele, J. Broadbent, and B. Weimer. 1998. Manufacture of Gouda and flavor development in reduced-fat Cheddar cheese. Australian J. Dairy Technol. 53: 67-69.
Kahala, M., M. Ma¨ki, A. Lehtovaara, J.-M. Tapanainen, R. Katiska, M. Juuruskorpi, J. Juhola and V. Joutsjoki. 2008. Characterization of starter lactic acid bacteria from the Finnish fermented milk product viili. Journal of Applied Microbiology 105 : 1929–1938.
Kehrer, J. P. 1993. Free radicals as mediators of tissue injury and disease. Crit. Rev. Toxicol. 23: 21-48.
Kindstedt, P. S. 1991. Functional properties of Mozzarella cheese on pizza: A review. Cultured Dairy Products J. 26: 27-31.
Kindstedt, P. S., and Guo, M.R. 1997. Recent developments in the science and technology of pizza cheese. Australian J. Dairy Technol. 52: 41-43.
Koca, N., and M. Metin. 2004. Textural, melting and sensory properties of low-fat fresh kashar cheeses produced by using fat replacers. Int. Dairy J. 14: 365-373.
Kojic, M., M. Vujcic, A. Banina, P. Cocconcalli, J. Cerning, and L. Topisorovic. 1992. Analysis of polysaccharide production by Lactobacillus casei CG11, isolated from cheese. Appl. Environ Microbiol. 58: 4086-4088.
Kong, B., and Y. L. Xiong. 2006. Antioxidant activity of zein hydrolysates in a liposome system and the possible mode of action. J. Agric. Food Chem. 16: 6059-6068.
Krinsky, N. I. 1992. Mechanism of action of biological antioxidants. Exp. Biol. Med. 200: 248-254.
Kuo, M. I., Y. C. Wang, S. Gunasekaran, and N. F. Olson. 2000. Effect of heat treatments on the meltability of cheese. J. Dairy Sci. 84: 1937-1943.
Laloy, E., J. C. Vuillemard, M. El-Soda, and R. E. Simard. 1996. Influence of fat content of Cheddar cheese on retention and localization of starters. Int. Dairy J. 6: 729-740.
Law, A., Y. Gu, and V. Marshall. 2001. Biosynthesis, characterization, and design of bacterial exopolysaccharide from lactic acid bacteria. Bio. Adv. 19: 597-625.
Law, B. A., 1984. Flavor development in cheeses. In: Advances in the microbiology and biochemistry of cheese and fermented milk. F. L. Davies and B. A. Law eds. Elsevier Appl. Sci. Publ. Ltd., London, Engl. pp.187-208.
Law, B. A., 1987. Proteolysis in relation to and accelerated cheese proteins ripening. In cheese: chemistry, physics and microbiology. Elsevier Appl. Sci. Publ. Ltd., London, Engl. pp.365-392.
Law, J., G. F. Fitzgerald, and C. Daly. 1992. Proteolysis and flavor development in Cheddar Cheese made with the single starter strains Lactococcus lactis ssp. lactis UC317 or Lactococcus lactis ssp. cremoris HP. J. Dairy Sci. 75: 1173-1185.
Lawrence, R. C., L. K. Creamer, and J. Gilles. 1987. Texture development during cheese ripening. J. Dairy Sci. 70: 1748–1760.
Looijesteijn, P. J., L. Trapet, E. D. Vries, T. Abee, and J. Hugenholtz. 2001. Physiological function of exopolysaccharides produced by Lactococcus lactis. Int. J. Food Microbiol. 64: 71-80.
Macura, D., and P. M. Townsley. 1983. Scandinavian ropy milk-identification and characterization of endogenous ropy lactic streptococci and their extracellular excretion. J. Dairy Sci. 67: 735-744.
Martin, N., C. Berger, C. Le Du and H. E. Spinnler. 2001. Aroma Compound Production in Cheese Curd by Coculturing with Selected Yeast and Bacteria. J. Dairy Sci. 84:2125-2135.
Martinkova, L., P. Juzlova, and D.Vesely. 1995. Biological activity of polykedite pigments produced by the funngs Monascus. J. Appl. Bacteriol. 79: 609-616.
Maruyama, S. and H. Suzuki. 1982. A peptide inhibitor of angiotensin I converting enzyme in the tryptic hydrolysate of casein. Agric. Biol. Chem. 5: 1393-1394.
Mattila-Sandholm, T. and M. Saarela. 2003. Functional dairy products. Woodhead publishing limited com. Chp. 1-7.
Mistry, V. V. 2001. Low fat cheese technology. Int. Dairy J. 11: 413-422.
Mistry, V. V., and D. L. Anderson. 1993. Composition and microstructure of commercial full-fat and low-fat cheeses. Food Structure 12: 259-266.
Mistry, V. V. , and K. M. Kasperson. 1998. Influence of salt on quality of reduced fat Cheddar cheese. J. Dairy Sci. 81: 1214-1221.
Oberman, H. and Z. Libudzisz. 1998. Fermented milks. Microbiology of fermented foods ed. Wood, B.J.B. 308–350.
Olson, N. F., and M. E. Johnson. 1990. Light cheese products: Characteristics and economics. Food Technol. 44: 93–96.
Peng, X., Y. L. Xiong, and B. Kong. 2009. Antioxidant activity of peptide fractions from whey protein hydrolysates as measured by electron spin resonance. Food Chem. 113: 196-201.
Rodriguez, J., T. Requena, J. Fontecha, H. Goudedranche, and M. Juarez. 1999. Effect of different membrane separation technologies (ultrafiltration and microfiltration) on the texture and microstructure of semihard low-fat cheeses. J. Agri. Food Chem. 47: 558-565.
Romeih, E. A., Michaelidou, A., Biliaderis, C. G., and Zerfiridis, G. K. 2002. Role of
exopolysaccharides produced by Lactococcus lactis subsp. cremoris on the viscosity of fermented milks. Int. Dairy J. 12: 689–695.
Ruas-Madiedo, P., J. Hugenholtz, and P. Zoon. 2002. An overview of the functionality of exopolysaccharides produced by lactic acid bacteria. Int. Dairy J. 12: 163-171.
Rudan, M. A., D. M. Barbano, J. J. Yun, and P. S. Kindstedt. 1999. Effect of fat reduction on chemical composition, proteolysis, functionality, and yield of Mozzarella cheese. J. Dairy Sci. 82: 661-672.
Ryhanen, E. L., A. Pihlanto-Leppala, and E. Pahkala. 2001. A new type of ripening, low-fat cheese with bioactive properties. Int. Dairy J. 11: 441-447.
Schroeder, C. L., F. W. Bodyfelt, C. J. Wyatt, and M. R. McDaniel. 2001. Reduction of sodium chloride in Cheddar cheese: effect on sensory, microbiological, chemical properties. J. Dairy Sci. 71: 2010-2020.
Shimada, K., K. Fujikawa, K. Yahara, and T. Nakamura. 1992. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem. 40: 945-948.
Visser, S. 1993. Proteolytic enzyme and their relation to cheese ripening and flavor. An overview. J. Dairy Sci. 76: 329-350.
Vuyst, L. D., F. D. Vin, F. Vaningelgem, and B. Degeest. 2001. Recent developments in the biosynthesis and applications ofheteropolysaccharides from lactic acid bacteria. Int. Dairy J. 11: 687-707.
Wang, S. Y., and M. J. Chen. 2009. Distribution frequency of lactic acid bacteria and yeasts in Taiwanese kefir and viili during fermentation. Institute of Food Technologists Annual Meeting. Chicago, IL, USA. Session 201-05 (poster).
Welman, A. D. and L. S. Maddox. 2003. Exopolysaccharides from lactic acid bacteria: Perspectives and challenges. Trends Biotechnol. 21: 269-274.
Yvon, M., and L. Rijnen. 2001. Cheese flavour formation by amino acid catabolism. Int. Dairy J. 11: 185-201.
Zalazar, C. A., C. S. Zalazar, S. Bernal, N. Bertola, A. Bevilacqua, and N. Zaritzky. 2002. Effect of moisture level and fat replacer on physicochemical, rheological and sensory properties of low fat soft cheeses. Int. Dairy J. 12: 45-50.
Zisu, B., and N. P. Shah. 2005. Textural and functional changes in low-fat Mozzarella cheeses in relation to proteolysis and microstructure as influenced by the use of fat replacers, pre-acidification and EPS starter. Int. Dairy J. 15: 957-972.
Zisu, B., and N. P. Shah. 2007. Texture characteristics and pizza bake properties of low-fat Mozzarella cheese as influenced by pre-acidification with citric acid and use of encapsulated and ropy exopolysaccharide producing cultures. Int. Dairy J. 17: 985-997.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22222-
dc.description.abstract本實驗室自臺灣黏質發酵乳(Taiwan ropy fermented milk, TRFM)中分離出之Lactococcus lactis subsp. cremoris T1菌株(T1)及Lactococcus lactis subsp. cremoris T4菌株(T4),前者可產生胞外多醣體後者則無,而胞外多醣體具有良好保水能力,可增加乳製品之保水性並干擾蛋白質分子聚合,因此本研究將以TRFM及其分離菌株T1與T4添加於低脂乾酪中,探討儲存期間其對低脂乾酪乳酸菌數、理化特性、質地及抗氧化、抗高血壓、免疫等機能性之影響。實驗以全脂生乳及低脂生乳為對照組,以添加TRFM、T1及T4菌元,各發酵4小時及8小時之低脂生乳為實驗組,最終乾酪產品在4℃、相對溼度80%之條件下熟成14天,再以真空包裝後保存於4℃冰箱中14天。於儲存期結束後進行試驗,結果顯示,各實驗組乾酪的乳酸菌數皆達108 cfu/g以上;實驗組乾酪其水分含量顯著高於對照組(P < 0.05),於儲存期間之變化,對照組乾酪之水分含量下降14-17%,實驗組之乾酪僅下降9-12%;在質地分析之硬度(hardness)部分,添加T1及TRFM為菌元的實驗組乾酪,皆顯著低於添加T4為菌元的實驗組乾酪及對照組之低脂乾酪,且各組乾酪之硬度會隨儲存時間延長而上升。本研究顯示,TRFM及其分離菌株T1所產生之胞外多醣體可改善低脂乾酪之保水性及質地等特性,期能發展新風味且質地良好之低脂乾酪以增加乳製品多樣性。在機能性試驗部分,以添加TRFM、T1及T4菌元各發酵4小時的實驗組,其螯合金屬離子之能力顯著高於對照組乾酪(P < 0.05);添加TRFM、T1及T4菌元之各實驗組乾酪,其抵抗自由基(DPPH)及血管緊縮素轉換酶之抑制能力亦顯著優於對照組乾酪;最後品評試驗部分則以T1發酵8小時之乾酪較受品評員青睞。由於直接添加由TRFM中分離之T1做為發酵菌元,其保水性、乾酪質地、品評結果、抗氧化力及抑制血管緊縮素轉換酶之能力皆優於對照組及以TRFM與T4做為發酵菌元之實驗組乾酪,因此本研究結果顯示,添加T1做為低脂乾酪的菌元,有改善低脂乾酪質地且提高低脂乾酪機能性的可行性。zh_TW
dc.description.abstractFat reduction in cheese is associated with many textural and functional defects. Low-fat cheeses have low intensity of typical flavor and may develop a bitter off-flavor and hard, rubbery, dry and grainy texture. Exopolysaccharide (EPS) could increase the water-holding capacity and interfere with protein–protein interactions in food products, which are important properties required in fat replacement. In our previous study, EPS producing strain, Lactococcus lactis subsp. cremoris T1 (T1), was isolated from TRFM. This strain may act as a fat replacer in low fat cheese. Thus, the purpose of this study was to manufacture a new functional low fat cheese with TRFM、T1 and T4 strain and investigate the effects of TRFM、T1 and T4 (EPS-negative genetic variant, Lactococcus lactis subsp. cremoris T4, was isolated from TRFM) strain on the chemical, microbial, functional, physical and sensory characteristics of this low fat cheese.
Skim milk was pasteurized at 65℃ for 30 min, inoculated with T1 strain/ T4 strain/ TRFM as starter cultures, and added rennet to form milk curd. The cheeses were then produced by cooked, cut and released whey from the milk curd. The full fat cheese and low fat cheese were positive and negative controls, respectively. The microbial analysis indicated that the cell counts of lactic acid bacteria in the low fat cheese samples inoculated with T1, T4 and TRFM were above 108 cfu/g. The low fat cheese inoculated with T1 and TRFM also showed a significantly higher moisture contents than the low fat cheese control. The moisture/protein ratios of the low fat cheese inoculated with T1 and fermented for 4 hrs (4-T1 sample) showed no significant differences with the ratio of the full fat cheese control. The further texture analysis verified that the 4-T1 and 8-T1 samples demonstrated a very similar texture profile to the full fat cheese control. In addition, the 8-T1 sample had the highest customer preferential scores in appearance, texture and flavor than other cheese samples.
Additionally, the functional characteristics including antioxidation, antihypertension and immunoregulation were evaluated. The cheese samples made with TRFM、T1 and T4 have significantly higher ability of scavenging free radical than the control full-fat and low-fat cheeses during ripening period. The reactive oxygen species play an important role related to the degenerative or pathological processes of various serious diseases. This finding indicated that the cheese samples made with TRFM、T1 and T4 might possess natural antioxidants and compounds with radical scavenging activity. The cheeses made with T1、T4 and TRFM also showed a significantly higher inhibition in angiotensin-converting enzyme (ACE). ACE is known to associate with hypertension and congestive heart failure. ACE inhibitors in the TRFM、T1 and T4 samples may reduce the activity of the renin-angiotensin-aldosterone system.
In conclusion, this study demonstrated that the low fat cheese made with TRFM and T1 not only gives a positive impact on the low fat cheese quality, but also provide the functions of a radical scavenging activity and ACE inhibition.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:13:59Z (GMT). No. of bitstreams: 1
ntu-99-R96626021-1.pdf: 4499542 bytes, checksum: cdabfb8c90fb5401c35c3618582b423a (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents口試委員會審定書
誌謝 i
中文摘要 ii
英文摘要 iv
緒言 1
壹、文獻檢討 2
一、乾酪 2
二、改善低脂乾酪缺陷方式 12
三、發酵乳 15
四、乳酸菌之胞外多醣體 17
貳、材料方法 25
一、實驗材料 26
二、實驗方法 29
參、結果與討論 41
一、基礎成分分析 41
二、微生物分析 46
三、質地分析及官能特性 50
四、機能性試驗 55
肆、結論 69
伍、參考文獻 71
陸、作者小傳 80
dc.language.isozh-TW
dc.subject胞外多醣體zh_TW
dc.subject低脂乾酪zh_TW
dc.subject臺灣黏質發酵乳zh_TW
dc.subject機能性zh_TW
dc.subject保水性zh_TW
dc.subjectwater-holding capacityen
dc.subjectTRFMen
dc.subjectlow-fat cheeseen
dc.subjectfunctionalen
dc.subjectexopolysaccharideen
dc.title藉由臺灣黏質發酵乳及其分離菌株 Lactococcus lactis subsp. cremoris T1製作機能性低脂乾酪之研究zh_TW
dc.titleManufacturing a functional low fat cheese using Taiwan ropy fermented milk (TRFM) and Lactococcus lactis subsp. cremoris T1 isolated from TRFMen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林慶文,陳小玲,黃英豪,劉?睿
dc.subject.keyword臺灣黏質發酵乳,低脂乾酪,胞外多醣體,保水性,機能性,zh_TW
dc.subject.keywordTRFM,low-fat cheese,exopolysaccharide,water-holding capacity,functional,en
dc.relation.page80
dc.rights.note未授權
dc.date.accepted2010-08-15
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept動物科學技術學研究所zh_TW
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
4.39 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved