Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22213Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 柯淳涵 | |
| dc.contributor.author | Ming-Hsun Cheng | en |
| dc.contributor.author | 鄭明訓 | zh_TW |
| dc.date.accessioned | 2021-06-08T04:13:53Z | - |
| dc.date.copyright | 2010-08-18 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-14 | |
| dc.identifier.citation | Aksoy, H.A., Kahraman I., Karaosmanoglu F., Civelekoglu H., 1988. Evalution of Turkish sulphur olive oil as an alternative diesel fuel. J. Am. Oil Chem. Soc. 65,936-938.
Atkinson, B., Black,G.M., Lewis, P.J.S., Pinches, A., 1979. Biological particles ofgiven size, shape, and density for use in biological reactors. Biotechnol. Bioeng. 21, 193-200. Ali, Y., Hanna, M.A., 1994. Alternative diesel fuels from vegetable oils. Bioresour. Technol. 50, 153-163. Barnwal, B.K., Sharma, M.P., 2005. Prospects of biodiesel production from vegetable oils in India. Renew Sust Energy. 9(4), 363-378.Ranganathan, S.V., S.L. Narasimhan and K. Muthkumar. 2008. An review of enzymatc production of biodiesel. Bioresour. Technol. 99, 3975-3981. Babu, A.K., Devaradjane, D., 2003. Vegetable oils and their derivates as fuel for CI engines. An overview. SAE 112 (4), 406-419. Bagby, M.O., 1987. Vegetable oils for diesel fuel: opportunities for development. ASAE. 87, 1588. Baldwin, J.D.C., Klimkowaski, H. Keeseg, M.A., 1982. Fuel additives for vegetable oil-fueled compression ignition engines. Plant and vegetable oils as Fuels. ASAE. 224-229. Bruce, K.A., Cameron, G.N., Harcombe, P.A., Jubinsky, J., 1997. Introduction, impact on native habitats and management of a woody invader, the Chinese tallow tree, Sapium sebiferum (L.) Roxb. Nat Areas J. 17(3), 255-260. Chen, J.W., Wu, W.T., 2003. Regeneration of immobilized Candida Antarctica lipase for transesterification. J. Biosci. Bioeng. 95(5), 466-469. Peterson, C.L. 1986. Vegetable oil as a diesel fuel: status and research priorities. ASAE. Trans. 29(5), 1413-1422. CNS 14759. Method of test for edible oils and fats- Determination of methyl esters of fatty acids. CNS 15051. Fat oil derivatives- Fatty acid methyl esters (FAME)- Determination of ester and linolenic acid methyl ester content. Formo, M.W., 1954. Ester reaction of fatty materials. J. Am. Oil Chem. Soc. 31, 548-559. Freedman, B., Pryde, E.H., Mounts, T.L., 1984 Variables affecting the yields of fatty esters from transesterified vegetable oils. J. Am. Oil Chem. Soc. 61, 1638–1643. Freedman, B., Butterfield, R. O., Pryde, E.H., 1986. Transesterification kinetics of soybean oil. J. Am. Oil Chem. Sco. 63, 1375-1380. Fukuda, H., Konda A., Noda, H., 2001. Biodiesel fuel production by transesterification of oils. J. Biosci. Bioeng. 92 (5), 405-416. Fu, W.C., Gu, X.H., Tao, G.J., Tang, J., Jiang, Z.L., 2008. Analysis of fatty acids and structure identification of triacylglycerols in tung oil. Nat. Prod. Res. Dev. 20, 964-968. Goering, C.E., Schawb, A.W., Daupherty, M.J., Pryde, E.H., Heakin, A.J., 1982. Fuel properties of eleven vegetable oils. ASAE. 25,1472-1483. Goering, C.E., 1988. Soybean oil as diesel fuel. Soybean Utilization Conference. University of Minnesota, Bloomington, MN. Gao, Y.Y., Chen, W.W., Lei, H., Liu, Y., Lin, X., Ruan, R., 2009. Optimization of transesterification conditions for the production of fatty acid methyl ester (FAME) from Chinese tallow kernel oil with surfactant-coated lipase. Biomass Bioenerg. 33, 277-282. Holcapek, M., Jandera, P., Fisher, J., Prokes, B., 1999. Analytical monitoring of the production of biodiesel by high-performance liquid chromatography with various detection method. J. Chromatorgr. A, 858,13-31. Hama, S. Yamaji, H., Fukumizu, T., Numata, T., Tamalampudi, S., Kondo,A., Noda, H., Fukuda, H., 2007. Biodiesel-fuel production in a packed-bed reactor using lipase-produing Rhizopus oryzae cells immobilized within biomass support partcles. Biochem. Eng. J. 34, 273-278. Korus, R.A., Mousetis, T.L., Lloyed, L., 1982. Polymerization of vegetable oils. Plant and vegetable oils as Fules. ASAE. 218. Klopfenstein, W.E., Walker, H.S., 1983. Efficiencies of various esters of fatty acids as diesel fuels. J. Am. Oil Chem. Soc. 60, 1596-1598. Knothe, G., 2005. Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process. Technol. 86, 1059–1070. Liljedahl, J.B., Carleton, W.M., Turnquist, P.K., Smith, D.W., 1979. Tractors and their power units, 3rd ed. John Wiley, New York. Liu, S.Q., Pezzuto, J.M., Kinghorn, A.D., Scheld, H.W. 1988. Additional biologically active constituents of the Chinese tallow tree (Sapium sebiferum). J. Nat. Prod. 51 (3), 619-620. Liu, Y., Sheng, W.S., Xin, H.L., Yan, Y.J., 2008. Enzymatic production of biodiesel from Chinese tallow kernel oil. Applied Chemical Industry. 37(9), 977-980. Ma, F., Hanna, M.A., 1999. Biodiesel production: a review. Bioresour. Technol. 70, 1-15. Matsumoto, T., Takahashi,S., Kaieda, M., Ueda, M., Tanaka, A., Fukuda, H., Kondo, A., 2001. Yeast whole-cell biocatalyst contructed by intracellular overproduction of Rhizopus oryzae lipase is applicable to biodiesel fuel production. Appl. Microbio. Biotechnol. 57, 515-520. Miller, J.H., 2003. Nonnative invasive plants of southern forest: a field guide for identification and control. USDA Forest Service, Southern Research Station. 158. Mittelbach, M., Remschmidt, C., 2004. Biodiesel: The Comprehensive Handbook. Boersedruck Ges. M.B.H., Vienna. Meher, L.C., Vidya Sagar, D., Naik, S.N., 2006. Technical aspects of biodiesel production by transesterification–a review. Renew. Sust. Energ. Rev. 10, 248–268. Murugesan, A., Umarani, C., Subramanian, R., Nedunchezhian, N., 2009. Biodiesel as an alternative fuel for diesel engines- A review. Renew. Sust. Energy Rev. 13, 653-662. Neera, S., Arakawa, H., Ishimaru, K., 1992. Tannin production in Sapium sebiferum callus cultures. Phytochemistry. 31(12), 4143-4149. Nelson, L.A., Foglia A., Marmer, W.N., 1996. Lipase-catalyzed production of biodiesel. J. Am. Oil Chem. Soc. 73, 1191-1195. Noureddini, H., Zhu, D., 1997. Kinetics of transesterification of soybean oil. J. Am. Oil Chem. Soc. 74, 1457-1463. Peterson, C.L., 1986. Vegetable oil as a diesel fuel: Status and research priorities. ASAE Trans. 29 (5), 1413-1422. Pearl, G.G. 2002. Animal fat potential for bioenergy use. Bioenergy 2002, The Biennial Bioenergy Conference, Boise, ID, September 22-26. Randunz, A., Schmid, G.H., 2000. Wax esters and triglycerides as storage substances in seed of Buxus sempervirens. Eur. J. Lipid Sci. Technol. 102, 734-738. Ranganathan, S.V., Narasimha, S.L., Muthukumar, K. 2007. An overview of enzymatic production of biodiesel. Bioresour. Technol. 1010-1016. Ramos, M.J., Fernández,C.M., Casas, A., Rodríguez, L., Pérez, Á., 2009. Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour. Technol. 100, 261-268. Radrigues, R.C., Volpato, G., Wada, K., Ayub, M.A.Z., 2008. Enzymatic synthesis of biodiesel from transesterification reactions of vegetable oils and short chain alcohols. J. Am. Oil Chem. Soc. 85, 925-930. Schwab, A.W., Bagby, M.O., Freedman, B., 1987. Preparation and properties of biodiesel fuels from vegetable oils. Fuel 66, 1372-1378. Sonntag, N.O.V., 1979. Structure and composition of fats and oils. In Bailey’s Industrial Oil and Fat Products. Vol. 1st. ed. John Wiley, New York. Samukawa, T. Kaieda, M., Matsumoto, T., Ban, K., Kondo, A., Shimada, Y., Noda, H., Fukuda, H., 2000. Pretreatment of immobilized Candida Antarctica lipase forbiodiesel fuel production from plant oil. J. Biosci. Bioeng. 90, 180-183. Watanabe, Y., Shimada,Y., Sugihara, A., Noda, H., Fukuda, H., Tominaga, Y., 2000. Continuous production of biodiesel fuel from vegetable oil using immobilized Candida Antarctica lipase. J. Am. Oil Chem. Soc. 77, 355-360. Wang, Y.D., AZ-Shemmeri, T., Eames, P., McMullan, J., Hewitt, N., Huang, Y., 2006. An experimental investigation of the performance and gaseous exhaust emission of a diesel engine using blends of a vegetable oil. Appl. Therm. Eng. 26, 1684-1691. Xu, J., Chikashige, T., Meguro, S., Kawachi, S., 1991. Effective utilization of stillingia or Chinese tallow tree (Sapium sebiferum) fruits. Mokuzai Gakkaishi. 37(5), 494-498. Xu, G.Z., Zhang, B.L., Liu, H.L., 2006. A study on immobilized lipase catalyzed transesterification reaction of tung oil. Science Agricultura Sinica. 39(10), 2089-2094. Yang. Z.B., Qi, Y.T., Wang, X.G., Yang, L., Lie, A.Q., Sun, Y.P., Hu, X.H., 2007. Preliminary report on research of Sapium sebiferum Roxb. Seed producing biodiesel. Hubei Forestry Science and Technology 6, 32-34. Zhao, W., Liu, L.P., Yang, J., Ma, Y.M., Zhou, L., 2007. Preparation of biodiesel oil from tong oil. Journal of Northwest A & F University (Nat. Sci. Ed.) 35 (11), 176-180. Zhou, Y.J., Lu, X.H., Yu, Y.L., 2008. Study on preparation of biodiesel with tung oil. Energ. Eng. 5, 32-36. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22213 | - |
| dc.description.abstract | 生質柴油為一綠色替代能源,隨著傳統石化燃料的消耗,利用植物油脂、動物脂肪或廢棄油脂經由轉酯化反應的生質柴油因而受到重視。
為了生產出高品質的生質柴油,油脂中所含的脂肪酸組成非常重要。因其可直接影響反應所得生質柴油的物理及化學性質。由於過去發展生質柴油大多以大豆油等食用油脂做為原料,因此產生了糧食上的爭議。為了解決這方面的問題, 有許多的木本植物果實種子具有高含油率達50%以上,這些原料具有很高的發展潛力。在台灣,有很多的油桐(三年桐及千年桐)和烏桕,其為木本油料樹種,成熟果實種仁含油率可達50%。在脂肪酸組成分析中,桐酸為桐油的主成分;次亞麻油酸為烏桕籽油的主要成分。 利用Novozyme 435做為催化劑之酵素轉酯反應中,溫度為一重要因素。反應溫度為55oC,反應24小時後,脂肪酸甲酯轉化率棕櫚油達89.99%;大豆油達87.04%;烏桕籽油達70.82%;桐油則為57.79%為最好轉化率。在脂肪酸乙酯轉化率方面,反應溫度為50oC,反應24小時後棕櫚油達75.75%;大豆油達25.22%;桐油則為20.36%,烏桕籽油則於55oC有最好的轉化率 51.06%。而利用兩種常做為生質柴油原料的棕櫚油與大豆油去和烏桕籽油及桐油做比較,則可發現在同溫度下棕櫚油有最佳的轉酯效率,而桐油的效率最低。 比較脂肪酸甲酯和脂肪酸乙酯的轉化率,脂肪酸乙酯的轉化率明顯小了許多。由各階段的反應常數k值來做比較,可發現進行脂肪酸甲酯轉化,各階段反應皆以順反應為主;反觀脂肪酸乙酯轉化反應則以逆反應為主。此外也可發現含愈多飽和脂肪酸組成,可有效提升順反應的產生。因此棕櫚油中含80%以上的飽和脂肪酸;反觀桐油則含有75%~85%的不飽和脂肪酸。由這結果可知,油脂中脂肪酸組成可直接影響油脂的轉酯化效率。 除了溫度的變化對轉化效率有直接的影響外,油脂的脂肪酸組成也是一項重要的影響因素。此外各階段反應的反應傾向可由其中的反應常數得知,k值的變化則會進而影響整體的反應效率結果。因此不同的溫度條件,脂肪酸組成及各階段反應常數的表現皆為影響轉化結果的重要因素,然而這些因素也隨著不同的反應條件而彼此相互影響。 | zh_TW |
| dc.description.abstract | Biodiesel, a green alternative energy, is produced from vegetable oil, animal fats and waste oil through transesterification. Because of the diminishing of conventional petroleum fuel, biodiesel is concerned gradually.
For producing high quality biodiesel, the fatty acid composition of oil is very important. It can straightly influence physical and chemical properties of biodiesel. In the past, edible oil is the main resource for producing biodiesel, hence the issue of grain is provoked. For solving this problem, utilization of woody oil plant is the proper material for biodiesel, because of its high oil content over 50% from mature seeds. These materials are potential for producing biodiesel. In Taiwan, there are lots of tung tree (Euphorbiaceae family, Vernicia genus) and Chinese tallow tree (Sapium sebiferum). The oil content of their mature dried kernels seeds can reach over 50%. The analysis of their fatty acid composition, ELA (eleostearic acid) is the main composition of fatty acid of tung oil, and linolenic acid is the main composition of fatty acid of Chinese tallow tree kernel oil (C.T. oil). In the transesterification with Novozyme 435 as catalyst, temperature is a critical factor for the efficiency of conversion. Under 55oC after 24 hour, the conversion of fatty acid methyl esters (FAMEs) palm oil, soybean oil, C.T. oil and tung oil is 89.99%, 87.04%, 70.82% and 57.79% individually. In the part of fatty acid ethyl esters (FAEEs) conversion, palm oil, soybean oil and tung oil reach the best efficiency of conversion 75.75%, 25.22% and 20.36 respectively at 50oC. But, C.T. oil has the best conversion rate 51.06% under 55 oC. Compare the conversion of palm oil and soybean oil, which are common materials for biodiesel, to C.T. oil and tung oil. At the same temperature condition, palm oil has the highest efficiency of conversion, and the tung oil is the lowest. Compare the efficiency of FAMEs conversion to FAEEs conversion, the rate of FAEEs conversion is far lower than FAMEs conversion. From the aspect of the reaction rate constant, k values, indicates that normal reaction is the main mechanism in every step reaction of FAMEs conversion. For FAEEs that is opposite. Otherwise, the more saturated fatty acids content can make the normal reaction happen more easily. Hence, palm oil consists of over 80% saturated fatty acids, by contrast tung oil consists of 75%~85% unsaturated fatty acids. From this result, the fatty acid composition of oil can influence the efficiency of transesterification conversion directly. Besides the various temperature conditions, different fatty acids composition can affect the efficiency of conversion directly. The k values are another key factor for evaluating the efficiency of transesterification. Because that can explain the stepwise mechanism of reaction. Concluded these factors, temperature, fatty acids composition and k values are critical factors for the efficiency of transesterification. Otherwise, these factors are also affected mutually. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T04:13:53Z (GMT). No. of bitstreams: 1 ntu-99-R97625007-1.pdf: 4702733 bytes, checksum: 57bf9d88e499cea030a209e88c0239f2 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 摘要…………………………………………………………. i
Abstract…………………………………………………….... iii Index…………………………………………………………. vi Table index………………………………………………..... ix Figure index……………………………………………..... x Equation index…………………………………………… xii I.Introduction………………………………………………….1 II.Literature reviews…………………………………………4 1.Biodiesel………………………………………………….. 4 2.Chemical catalysis………………………………………...7 2.1 Alkali-catalyzed transesterification……………………..8 2.2 Acid-catalyzed transesterification……………………….10 3.Enzymatic transesterification……………………………...10 3.1 Extracellular lipase……………………………………...12 3.2 Intracellular lipase.................................13 4. Plant oils…………………………………………………..14 4.1 The composition of fatty acids from vegetable oils……15 4.2 The properties of plant oils……………………………....17 4.3 Tung oil…………………………………………………. 19 4.4 Chinese tallow oil (C.T. oil)……………………………...22 5. Transesterification for plant oils………………………….23 5.1 The conversion of different alcohols……………………29 5.2 Analysis of tri, di, monoglycerides……………………...31 6. Kinetics of transesterification……………………………..32 III Objective……………………………………………………..36 IV Materials and methods…………………………………… 37 1. The oil content…………………………………………….37 1.1 Extraction of oil…………………………………………37 2. The analysis of fatty acids composition…………………..38 2.1 Oil methyl esterification………………………………...38 3. Efficiency of transesterification…………………………..39 3.1 Transesterification reaction……………………………....39 3.2 Analysis………………………………………………… 40 3.2.1 Fatty acid methyl esters (FAMEs)…………………......40 3.2.2 Tri. di, monoglycerides……………………………….....41 4.Kinetics modeling………………………………………… 42 V Results and discussion………………………………………44 1.Oil content………………………………………………... 44 2.Fatty acids composition.......………………………………45 2.1 Tung oil…………………………………………………. 45 2.2 Chinese tallow oil……………………………………….47 3.Transesterification conversion…………………………….50 3.1The fatty acids composition of palm, soybean, C.T. and Tung oil………………………………………………..... 50 3.2 FAMEs conversion……………………………………... 51 3.3 FAEEs conversion……………………………………… 54 4.k values…………………………………………………… 58 4.1 FAMEs k values………………………………………… 60 4.1.1 The reaction of TG converted to DG………………...61 4.1.2 The reaction of DG converted to MG………………..63 4.1.3 The reaction of MG converted to G..………………...65 4.2 FAEEs k values.………………………………………… 68 4.2.1 The reaction of TG converted to DG………………...69 4.2.2 The reaction of DG converted to MG………………..71 4.2.3 The reaction of MG converted to G..………………...73 5.Multiple factors for FAMEs and FAEEs conversion……..75 VI Conclusion…………………………………………………...77 1.The oil content and the fatty acids composition of tung oil and C.T. oil……………………………………………......77 2.The efficiency of transesterification conversion…………78 3.The factor of k values……………………………………..79 VII References……………………………………………………80 Appendix I…………………………………………………... 85 Appendix II………………………………………………….. 90 AppendixIII.............................................92 Appendix IV………………………………………………… 100 Appendix V………………………………………………….. 112 Appendix VI………………………………………………… 120 Appendix VII...........................................132 Appendix VIII………………………………………………. 140 | |
| dc.language.iso | en | |
| dc.subject | 桐油 | zh_TW |
| dc.subject | k值 | zh_TW |
| dc.subject | 烏桕 | zh_TW |
| dc.subject | 含油率 | zh_TW |
| dc.subject | 酵素轉酯化 | zh_TW |
| dc.subject | 脂肪酸組成 | zh_TW |
| dc.subject | 籽油 | zh_TW |
| dc.subject | 植物油脂 | zh_TW |
| dc.subject | 生質柴油 | zh_TW |
| dc.subject | Novozyme 435 | zh_TW |
| dc.subject | Biodiesel | en |
| dc.subject | Chinese tallow oil | en |
| dc.subject | Enzymatic transesterification | en |
| dc.subject | Fatty acid composition | en |
| dc.subject | k value | en |
| dc.subject | Novozyme 435 | en |
| dc.subject | Oil content | en |
| dc.subject | Tung oil | en |
| dc.subject | Vegetable oil. | en |
| dc.title | 不同植物種子脂肪酸組成份及其酵素轉酯化效率 | zh_TW |
| dc.title | The fatty acids composition and the efficiency of enzymatic transesterification of different plant oils | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王亞男,黃金城,陳嘉明,吳劍侯 | |
| dc.subject.keyword | 生質柴油,植物油脂,脂肪酸組成,酵素轉酯化,含油率,桐油,烏桕,籽油,Novozyme 435,k值, | zh_TW |
| dc.subject.keyword | Biodiesel,Chinese tallow oil,Enzymatic transesterification,Fatty acid composition,k value,Novozyme 435,Oil content,Tung oil,Vegetable oil., | en |
| dc.relation.page | 147 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2010-08-15 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
| Appears in Collections: | 森林環境暨資源學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-99-1.pdf Restricted Access | 4.59 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
