請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22208完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林俊宏(Chun-Hung Lin) | |
| dc.contributor.author | Meng-Jung Ho | en |
| dc.contributor.author | 何孟容 | zh_TW |
| dc.date.accessioned | 2021-06-08T04:13:47Z | - |
| dc.date.copyright | 2010-08-18 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-13 | |
| dc.identifier.citation | 1. Watanabe, K. (1936) Biochemical Studies on Carbohydrates: XXII. On Animal beta-N-Monoacetylglucosaminidase. Preliminary Report, J. Biochem. 24, 297-303.
2. Winchester, B. G. (1996) Lysosomal metabolism of glycoconjugates, Subcell Biochem 27, 191-238. 3. Henrissat, B., and Davies, G. (1997) Structural and sequence-based classification of glycoside hydrolases, Curr Opin Struct Biol 7, 637-644. 4. Hou, Y., Tse, R., and Mahuran, D. J. (1996) Direct determination of the substrate specificity of the alpha-active site in heterodimeric beta-hexosaminidase A, Biochemistry 35, 3963-3969. 5. Mahuran, D., and Lowden, J. A. (1980) The subunit and polypeptide structure of hexosaminidases from human placenta, Can J Biochem 58, 287-294. 6. Kresse, H., Fuchs, W., Glossl, J., Holtfrerich, D., and Gilberg, W. (1981) Liberation of N-acetylglucosamine-6-sulfate by human beta-N-acetylhexosaminidase A, J Biol Chem 256, 12926-12932. 7. Hepbildikler, S. T., Sandhoff, R., Kolzer, M., Proia, R. L., and Sandhoff, K. (2002) Physiological substrates for human lysosomal beta -hexosaminidase S, J Biol Chem 277, 2562-2572. 8. Meier, E. M., Schwarzmann, G., Furst, W., and Sandhoff, K. (1991) The human GM2 activator protein. A substrate specific cofactor of beta-hexosaminidase A, J Biol Chem 266, 1879-1887. 9. Cats-Baril, W. L., and Frymoyer, J. W. (1991) Demographic factors associated with the prevalence of disability in the general population. Analysis of the NHANES I database, Spine 16, 671-674. 10. Lawrence, R. C., Helmick, C. G., Arnett, F. C., Deyo, R. A., Felson, D. T., Giannini, E. H., Heyse, S. P., Hirsch, R., Hochberg, M. C., Hunder, G. G., Liang, M. H., Pillemer, S. R., Steen, V. D., and Wolfe, F. (1998) Estimates of the prevalence of arthritis and selected musculoskeletal disorders in the United States, Arthritis Rheum 41, 778-799. 11. Billinghurst, R. C., Dahlberg, L., Ionescu, M., Reiner, A., Bourne, R., Rorabeck, C., Mitchell, P., Hambor, J., Diekmann, O., Tschesche, H., Chen, J., Van Wart, H., and Poole, A. R. (1997) Enhanced cleavage of type II collagen by collagenases in osteoarthritic articular cartilage, J Clin Invest 99, 1534-1545. 12. Inerot, S., Heinegard, D., Audell, L., and Olsson, S. E. (1978) Articular-cartilage proteoglycans in aging and osteoarthritis, Biochem J 169, 143-156. 13. Mankin, H. J., and Lippiello, L. (1970) Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips, J Bone Joint Surg Am 52, 424-434. 14. Dahl, L. B., Dahl, I. M., Engstrom-Laurent, A., and Granath, K. (1985) Concentration and molecular weight of sodium hyaluronate in synovial fluid from patients with rheumatoid arthritis and other arthropathies, Ann Rheum Dis 44, 817-822. 15. Hardingham, T., and Bayliss, M. (1990) Proteoglycans of articular cartilage: changes in aging and in joint disease, Semin Arthritis Rheum 20, 12-33. 16. Cs-Szabo, G., Roughley, P. J., Plaas, A. H., and Glant, T. T. (1995) Large and small proteoglycans of osteoarthritic and rheumatoid articular cartilage, Arthritis Rheum 38, 660-668. 17. Kiani, C., Chen, L., Wu, Y. J., Yee, A. J., and Yang, B. B. (2002) Structure and function of aggrecan, Cell Res 12, 19-32. 18. Grover, J., and Roughley, P. J. (1993) Versican gene expression in human articular cartilage and comparison of mRNA splicing variation with aggrecan, Biochem J 291, 361-367. 19. Rosenberg, L. C., Choi, H. U., Tang, L. H., Johnson, T. L., Pal, S., Webber, C., Reiner, A., and Poole, A. R. (1985) Isolation of dermatan sulfate proteoglycans from mature bovine articular cartilages, J Biol Chem 260, 6304-6313. 20. Heinegard, D., Larsson, T., Sommarin, Y., Franzen, A., Paulsson, M., and Hedbom, E. (1986) Two novel matrix proteins isolated from articular cartilage show wide distributions among connective tissues, J Biol Chem 261, 13866-13872. 21. Grover, J., Chen, X. N., Korenberg, J. R., and Roughley, P. J. (1995) The human lumican gene. Organization, chromosomal location, and expression in articular cartilage, J Biol Chem 270, 21942-21949. 22. Gu, K., Linhardt, R. J., Laliberte, M., and Zimmermann, J. (1995) Purification, characterization and specificity of chondroitin lyases and glycuronidase from Flavobacterium heparinum, Biochem J 312 ( Pt 2), 569-577. 23. Ludowieg, J., Vennesland, B., and Dorfman, A. (1961) The mechanism of action of hyaluronidase, J Biol Chem 236, 333-339. 24. De Ceuninck, F., and Caliez, A. (2004) A simple and reliable assay of proteoglycan synthesis by cultured chondrocytes, Methods Mol Med 100, 209-218. 25. Liu, J., Shikhman, A. R., Lotz, M. K., and Wong, C. H. (2001) Hexosaminidase inhibitors as new drug candidates for the therapy of osteoarthritis, Chem Biol 8, 701-711. 26. Clouet, J., Vinatier, C., Merceron, C., Pot-vaucel, M., Maugars, Y., Weiss, P., Grimandi, G., and Guicheux, J. (2009) From osteoarthritis treatments to future regenerative therapies for cartilage, Drug Discov Today 14, 913-925. 27. Loeser, R. F., Jr. (2004) Aging cartilage and osteoarthritis--what's the link?, Sci Aging Knowledge Environ 2004, pe31. 28. Goldring, M. B., and Goldring, S. R. (2007) Osteoarthritis, J Cell Physiol 213, 626-634. 29. Smith, R. L. (1999) Degradative enzymes in osteoarthritis, Front Biosci 4, D704-712. 30. Yoshihara, Y., Nakamura, H., Obata, K., Yamada, H., Hayakawa, T., Fujikawa, K., and Okada, Y. (2000) Matrix metalloproteinases and tissue inhibitors of metalloproteinases in synovial fluids from patients with rheumatoid arthritis or osteoarthritis, Ann Rheum Dis 59, 455-461. 31. Welgus, H. G., Jeffrey, J. J., and Eisen, A. Z. (1981) Human skin fibroblast collagenase. Assessment of activation energy and deuterium isotope effect with collagenous substrates, J Biol Chem 256, 9516-9521. 32. Galloway, W. A., Murphy, G., Sandy, J. D., Gavrilovic, J., Cawston, T. E., and Reynolds, J. J. (1983) Purification and characterization of a rabbit bone metalloproteinase that degrades proteoglycan and other connective-tissue components, Biochem J 209, 741-752. 33. Shikhman, A. R., Brinson, D. C., and Lotz, M. (2000) Profile of glycosaminoglycan-degrading glycosidases and glycoside sulfatases secreted by human articular chondrocytes in homeostasis and inflammation, Arthritis Rheum 43, 1307-1314. 34. Pelletier, J. P., Martel-Pelletier, J., and Abramson, S. B. (2001) Osteoarthritis, an inflammatory disease: potential implication for the selection of new therapeutic targets, Arthritis Rheum 44, 1237-1247. 35. Sharif, M., Saxne, T., Shepstone, L., Kirwan, J. R., Elson, C. J., Heinegard, D., and Dieppe, P. A. (1995) Relationship between serum cartilage oligomeric matrix protein levels and disease progression in osteoarthritis of the knee joint, Br J Rheumatol 34, 306-310. 36. Clark, A. G., Jordan, J. M., Vilim, V., Renner, J. B., Dragomir, A. D., Luta, G., and Kraus, V. B. (1999) Serum cartilage oligomeric matrix protein reflects osteoarthritis presence and severity: the Johnston County Osteoarthritis Project, Arthritis Rheum 42, 2356-2364. 37. Petersson, I. F., Boegard, T., Svensson, B., Heinegard, D., and Saxne, T. (1998) Changes in cartilage and bone metabolism identified by serum markers in early osteoarthritis of the knee joint, Br J Rheumatol 37, 46-50. 38. Krenn, V., Hensel, F., Kim, H. J., Souto Carneiro, M. M., Starostik, P., Ristow, G., Konig, A., Vollmers, H. P., and Muller-Hermelink, H. K. (1999) Molecular IgV(H) analysis demonstrates highly somatic mutated B cells in synovialitis of osteoarthritis: a degenerative disease is associated with a specific, not locally generated immune response, Lab Invest 79, 1377-1384. 39. Nakamura, H., Yoshino, S., Kato, T., Tsuruha, J., and Nishioka, K. (1999) T-cell mediated inflammatory pathway in osteoarthritis, Osteoarthritis Cartilage 7, 401-402. 40. Caron, J. P., Fernandes, J. C., Martel-Pelletier, J., Tardif, G., Mineau, F., Geng, C., and Pelletier, J. P. (1996) Chondroprotective effect of intraarticular injections of interleukin-1 receptor antagonist in experimental osteoarthritis. Suppression of collagenase-1 expression, Arthritis Rheum 39, 1535-1544. 41. van de Loo, F. A., Joosten, L. A., van Lent, P. L., Arntz, O. J., and van den Berg, W. B. (1995) Role of interleukin-1, tumor necrosis factor alpha, and interleukin-6 in cartilage proteoglycan metabolism and destruction. Effect of in situ blocking in murine antigen- and zymosan-induced arthritis, Arthritis Rheum 38, 164-172. 42. Moos, V., Fickert, S., Muller, B., Weber, U., and Sieper, J. (1999) Immunohistological analysis of cytokine expression in human osteoarthritic and healthy cartilage, J Rheumatol 26, 870-879. 43. Bondeson, J., Wainwright, S. D., Lauder, S., Amos, N., and Hughes, C. E. (2006) The role of synovial macrophages and macrophage-produced cytokines in driving aggrecanases, matrix metalloproteinases, and other destructive and inflammatory responses in osteoarthritis, Arthritis Res Ther 8, R187. 44. Benito, M. J., Veale, D. J., FitzGerald, O., van den Berg, W. B., and Bresnihan, B. (2005) Synovial tissue inflammation in early and late osteoarthritis, Ann Rheum Dis 64, 1263-1267. 45. Watanabe, K., Ito, A., Sato, T., Saito, T., Hayashi, H., and Niitani, Y. (1999) Esculetin suppresses proteoglycan metabolism by inhibiting the production of matrix metalloproteinases in rabbit chondrocytes, Eur J Pharmacol 370, 297-305. 46. ACR. (2000) Recommendations for the medical management of osteoarthritis of the hip and knee: 2000 update. American College of Rheumatology Subcommittee on Osteoarthritis Guidelines, Arthritis Rheum 43, 1905-1915. 47. Zhang, W., Doherty, M., Leeb, B. F., Alekseeva, L., Arden, N. K., Bijlsma, J. W., Dincer, F., Dziedzic, K., Hauselmann, H. J., Herrero-Beaumont, G., Kaklamanis, P., Lohmander, S., Maheu, E., Martin-Mola, E., Pavelka, K., Punzi, L., Reiter, S., Sautner, J., Smolen, J., Verbruggen, G., and Zimmermann-Gorska, I. (2007) EULAR evidence based recommendations for the management of hand osteoarthritis: report of a Task Force of the EULAR Standing Committee for International Clinical Studies Including Therapeutics (ESCISIT), Ann Rheum Dis 66, 377-388. 48. Zhang, W., Moskowitz, R. W., Nuki, G., Abramson, S., Altman, R. D., Arden, N., Bierma-Zeinstra, S., Brandt, K. D., Croft, P., Doherty, M., Dougados, M., Hochberg, M., Hunter, D. J., Kwoh, K., Lohmander, L. S., and Tugwell, P. (2008) OARSI recommendations for the management of hip and knee osteoarthritis, Part II: OARSI evidence-based, expert consensus guidelines, Osteoarthritis Cartilage 16, 137-162. 49. Zhang, W., Jones, A., and Doherty, M. (2004) Does paracetamol (acetaminophen) reduce the pain of osteoarthritis? A meta-analysis of randomised controlled trials, Ann Rheum Dis 63, 901-907. 50. Towheed, T., Shea, B., Wells, G., and Hochberg, M. (2000) Analgesia and non-aspirin, non-steroidal anti-inflammatory drugs for osteoarthritis of the hip, Cochrane Database Syst Rev, CD000517. 51. Derfoul, A., Miyoshi, A. D., Freeman, D. E., and Tuan, R. S. (2007) Glucosamine promotes chondrogenic phenotype in both chondrocytes and mesenchymal stem cells and inhibits MMP-13 expression and matrix degradation, Osteoarthritis Cartilage 15, 646-655. 52. Pavelka, K., Gatterova, J., Olejarova, M., Machacek, S., Giacovelli, G., and Rovati, L. C. (2002) Glucosamine sulfate use and delay of progression of knee osteoarthritis: a 3-year, randomized, placebo-controlled, double-blind study, Arch Intern Med 162, 2113-2123. 53. McAlindon, T. E., LaValley, M. P., Gulin, J. P., and Felson, D. T. (2000) Glucosamine and chondroitin for treatment of osteoarthritis: a systematic quality assessment and meta-analysis, JAMA 283, 1469-1475. 54. Marshall, K. W. (1998) Viscosupplementation for osteoarthritis: current status, unresolved issues, and future directions, J Rheumatol 25, 2056-2058. 55. Wang, C. T., Lin, J., Chang, C. J., Lin, Y. T., and Hou, S. M. (2004) Therapeutic effects of hyaluronic acid on osteoarthritis of the knee. A meta-analysis of randomized controlled trials, J Bone Joint Surg Am 86-A, 538-545. 56. Steinmeyer, J., and Konttinen, Y. T. (2006) Oral treatment options for degenerative joint disease--presence and future, Adv Drug Deliv Rev 58, 168-211. 57. Qvist, P., Bay-Jensen, A. C., Christiansen, C., Dam, E. B., Pastoureau, P., and Karsdal, M. A. (2008) The disease modifying osteoarthritis drug (DMOAD): Is it in the horizon?, Pharmacol Res 58, 1-7. 58. Pelletier, J. P., and Martel-Pelletier, J. (2007) DMOAD developments: present and future, Bull NYU Hosp Jt Dis 65, 242-248. 59. Bissett, D., O'Byrne, K. J., von Pawel, J., Gatzemeier, U., Price, A., Nicolson, M., Mercier, R., Mazabel, E., Penning, C., Zhang, M. H., Collier, M. A., and Shepherd, F. A. (2005) Phase III study of matrix metalloproteinase inhibitor prinomastat in non-small-cell lung cancer, J Clin Oncol 23, 842-849. 60. Chevalier, X., Giraudeau, B., Conrozier, T., Marliere, J., Kiefer, P., and Goupille, P. (2005) Safety study of intraarticular injection of interleukin 1 receptor antagonist in patients with painful knee osteoarthritis: a multicenter study, J Rheumatol 32, 1317-1323. 61. Carrell, R. W., and Lomas, D. A. (1997) Conformational disease, Lancet 350, 134-138. 62. Bellotti, V., Mangione, P., and Stoppini, M. (1999) Biological activity and pathological implications of misfolded proteins, Cell Mol Life Sci 55, 977-991. 63. Shastry, B. S. (2003) Neurodegenerative disorders of protein aggregation, Neurochem Int 43, 1-7. 64. Kopito, R. R., and Ron, D. (2000) Conformational disease, Nat Cell Biol 2, E207-209. 65. Horwich, A. (2002) Protein aggregation in disease: a role for folding intermediates forming specific multimeric interactions, J Clin Invest 110, 1221-1232. 66. Danos, O., and Heard, J. M. (1995) Mucopolysaccharidosis, Mol Cell Biol Hum Dis Ser 5, 350-367. 67. Gieselmann, V. (1995) Lysosomal storage diseases, Biochim Biophys Acta 1270, 103-136. 68. Conzelmann, E., and Sandhoff, K. (1991) Biochemical basis of late-onset neurolipidoses, Dev Neurosci 13, 197-204. 69. Leinekugel, P., Michel, S., Conzelmann, E., and Sandhoff, K. (1992) Quantitative correlation between the residual activity of beta-hexosaminidase A and arylsulfatase A and the severity of the resulting lysosomal storage disease, Hum Genet 88, 513-523. 70. Conzelmann, E., and Sandhoff, K. (1983) Partial enzyme deficiencies: residual activities and the development of neurological disorders, Dev Neurosci 6, 58-71. 71. Mahuran, D. J. (1998) The GM2 activator protein, its roles as a co-factor in GM2 hydrolysis and as a general glycolipid transport protein, Biochim Biophys Acta 1393, 1-18. 72. Mahuran, D. J. (1999) Biochemical consequences of mutations causing the GM2 gangliosidoses, Biochim Biophys Acta 1455, 105-138. 73. Hirabayashi, Y., Li, Y. T., and Li, S. C. (1983) The protein activator specific for the enzymic hydrolysis of GM2 ganglioside in normal human brain and brains of three types of GM2 gangliosidosis, J Neurochem 40, 168-175. 74. Tropak, M. B., Reid, S. P., Guiral, M., Withers, S. G., and Mahuran, D. (2004) Pharmacological enhancement of beta-hexosaminidase activity in fibroblasts from adult Tay-Sachs and Sandhoff Patients, J Biol Chem 279, 13478-13487. 75. Mark, B. L., Mahuran, D. J., Cherney, M. M., Zhao, D., Knapp, S., and James, M. N. (2003) Crystal structure of human beta-hexosaminidase B: understanding the molecular basis of Sandhoff and Tay-Sachs disease, J Mol Biol 327, 1093-1109. 76. Lemieux, M. J., Mark, B. L., Cherney, M. M., Withers, S. G., Mahuran, D. J., and James, M. N. (2006) Crystallographic structure of human beta-hexosaminidase A: interpretation of Tay-Sachs mutations and loss of GM2 ganglioside hydrolysis, J Mol Biol 359, 913-929. 77. Hampton, R. Y. (2002) ER-associated degradation in protein quality control and cellular regulation, Curr Opin Cell Biol 14, 476-482. 78. Mahuran, D. J. (1991) The biochemistry of HEXA and HEXB gene mutations causing GM2 gangliosidosis, Biochim Biophys Acta 1096, 87-94. 79. Desnick, R. J., Banikazemi, M., and Wasserstein, M. (2002) Enzyme replacement therapy for Fabry disease, an inherited nephropathy, Clin Nephrol 57, 1-8. 80. Platt, F. M., and Butters, T. D. (1998) New therapeutic prospects for the glycosphingolipid lysosomal storage diseases, Biochem Pharmacol 56, 421-430. 81. Cox, T., Lachmann, R., Hollak, C., Aerts, J., van Weely, S., Hrebicek, M., Platt, F., Butters, T., Dwek, R., Moyses, C., Gow, I., Elstein, D., and Zimran, A. (2000) Novel oral treatment of Gaucher's disease with N-butyldeoxynojirimycin (OGT 918) to decrease substrate biosynthesis, Lancet 355, 1481-1485. 82. Fan, J. Q., Ishii, S., Asano, N., and Suzuki, Y. (1999) Accelerated transport and maturation of lysosomal alpha-galactosidase A in Fabry lymphoblasts by an enzyme inhibitor, Nat Med 5, 112-115. 83. Sawkar, A. R., Cheng, W. C., Beutler, E., Wong, C. H., Balch, W. E., and Kelly, J. W. (2002) Chemical chaperones increase the cellular activity of N370S beta -glucosidase: a therapeutic strategy for Gaucher disease, Proc Natl Acad Sci U S A 99, 15428-15433. 84. Asano, N., Ishii, S., Kizu, H., Ikeda, K., Yasuda, K., Kato, A., Martin, O. R., and Fan, J. Q. (2000) In vitro inhibition and intracellular enhancement of lysosomal alpha-galactosidase A activity in Fabry lymphoblasts by 1-deoxygalactonojirimycin and its derivatives, Eur J Biochem 267, 4179-4186. 85. Fan, J. Q. (2003) A contradictory treatment for lysosomal storage disorders: inhibitors enhance mutant enzyme activity, Trends Pharmacol Sci 24, 355-360. 86. Ellgaard, L., Molinari, M., and Helenius, A. (1999) Setting the standards: quality control in the secretory pathway, Science 286, 1882-1888. 87. Mark, B. L., Wasney, G. A., Salo, T. J., Khan, A. R., Cao, Z., Robbins, P. W., James, M. N., and Triggs-Raine, B. L. (1998) Structural and functional characterization of Streptomyces plicatus beta-N-acetylhexosaminidase by comparative molecular modeling and site-directed mutagenesis, J Biol Chem 273, 19618-19624. 88. Tews, I., Perrakis, A., Oppenheim, A., Dauter, Z., Wilson, K. S., and Vorgias, C. E. (1996) Bacterial chitobiase structure provides insight into catalytic mechanism and the basis of Tay-Sachs disease, Nat Struct Biol 3, 638-648. 89. Williams, S. J., Mark, B. L., Vocadlo, D. J., James, M. N., and Withers, S. G. (2002) Aspartate 313 in the Streptomyces plicatus hexosaminidase plays a critical role in substrate-assisted catalysis by orienting the 2-acetamido group and stabilizing the transition state, J Biol Chem 277, 40055-40065. 90. Henrissat, B., Callebaut, I., Fabrega, S., Lehn, P., Mornon, J. P., and Davies, G. (1996) Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases, Proc Natl Acad Sci U S A 92, 7090-7094. 91. Torres, C. R., and Hart, G. W. (1984) Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc, J Biol Chem 259, 3308-3317. 92. Wells, L., Vosseller, K., and Hart, G. W. (2001) Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc, Science 291, 2376-2378. 93. Hanover, J. A. (2001) Glycan-dependent signaling: O-linked N-acetylglucosamine, FASEB J 15, 1865-1876. 94. Bullen, C., Rubenstein, L., Saravia, M. E., and Mourino, A. P. (1988) Improving children's oral hygiene through parental involvement, ASDC J Dent Child 55, 125-128. 95. Kelly, W. G., Dahmus, M. E., and Hart, G. W. (1993) RNA polymerase II is a glycoprotein. Modification of the COOH-terminal domain by O-GlcNAc, J Biol Chem 268, 10416-10424. 96. Roos, M. D., Su, K., Baker, J. R., and Kudlow, J. E. (1997) O glycosylation of an Sp1-derived peptide blocks known Sp1 protein interactions, Mol Cell Biol 17, 6472-6480. 97. Lamarre-Vincent, N., and Hsieh-Wilson, L. C. (2003) Dynamic glycosylation of the transcription factor CREB: a potential role in gene regulation, J Am Chem Soc 125, 6612-6613. 98. Vosseller, K., Wells, L., Lane, M. D., and Hart, G. W. (2002) Elevated nucleocytoplasmic glycosylation by O-GlcNAc results in insulin resistance associated with defects in Akt activation in 3T3-L1 adipocytes, Proc Natl Acad Sci U S A 99, 5313-5318. 99. McClain, D. A., Lubas, W. A., Cooksey, R. C., Hazel, M., Parker, G. J., Love, D. C., and Hanover, J. A. (2002) Altered glycan-dependent signaling induces insulin resistance and hyperleptinemia, Proc Natl Acad Sci U S A 99, 10695-10699. 100. Griffith, L. S., and Schmitz, B. (1995) O-linked N-acetylglucosamine is upregulated in Alzheimer brains, Biochem Biophys Res Commun 213, 424-431. 101. Yao, P. J., and Coleman, P. D. (1998) Reduction of O-linked N-acetylglucosamine-modified assembly protein-3 in Alzheimer's disease, J Neurosci 18, 2399-2411. 102. Chou, T. Y., and Hart, G. W. (2001) O-linked N-acetylglucosamine and cancer: messages from the glycosylation of c-Myc, Adv Exp Med Biol 491, 413-418. 103. Liu, F., Iqbal, K., Grundke-Iqbal, I., Hart, G. W., and Gong, C. X. (2004) O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer's disease, Proc Natl Acad Sci U S A 101, 10804-10809. 104. Yuzwa, S. A., Macauley, M. S., Heinonen, J. E., Shan, X., Dennis, R. J., He, Y., Whitworth, G. E., Stubbs, K. A., McEachern, E. J., Davies, G. J., and Vocadlo, D. J. (2008) A potent mechanism-inspired O-GlcNAcase inhibitor that blocks phosphorylation of tau in vivo, Nat Chem Biol 4, 483-490. 105. Macauley, M. S., Whitworth, G. E., Debowski, A. W., Chin, D., and Vocadlo, D. J. (2005) O-GlcNAcase uses substrate-assisted catalysis: kinetic analysis and development of highly selective mechanism-inspired inhibitors, J Biol Chem 280, 25313-25322. 106. Stubbs, K. A., Macauley, M. S., and Vocadlo, D. J. (2009) A selective inhibitor Gal-PUGNAc of human lysosomal beta-hexosaminidases modulates levels of the ganglioside GM2 in neuroblastoma cells, Angew Chem Int Ed Engl 48, 1300-1303. 107. Ho, C. W., Popat, S. D., Liu, T. W., Tsai, K. C., Ho, M. J., Chen, W. H., Yang, A. S., and Lin, C. H. (2010) Development of GlcNAc-inspired iminocyclitiols as potent and selective N-acetyl-beta-hexosaminidase inhibitors, ACS Chem Biol 5, 489-497. 108. Liang, P. H., Cheng, W. C., Lee, Y. L., Yu, H. P., Wu, Y. T., Lin, Y. L., and Wong, C. H. (2006) Novel five-membered iminocyclitol derivatives as selective and potent glycosidase inhibitors: new structures for antivirals and osteoarthritis, Chembiochem 7, 165-173. 109. Steiner, A. J., Schitter, G., Stuetz, A. E., Wrodnigg, T. M., Tarling, C. A., Withers, S. G., Mahuran, D. J., and Tropak, M. B. (2009) 2-Acetamino-1,2-dideoxynojirimycin-lysine hybrids as hexosaminidase inhibitors, Tetrahedron-Asymmetry 20, 832-835. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22208 | - |
| dc.description.abstract | 退化性關節炎是一種常見的關節病變,其主要病症為關節軟骨組織中的胞外間質被不正常代謝降解,有報導指出在退化性關節炎病人的軟骨組織中,大量的乙醯胺基葡萄糖水解酶會被釋放到細胞外,進而可能降解胞外間質的主成分-醣胺多醣。本實驗室近年來開發出具有高度選擇性的乙醯胺基葡萄糖水解酶抑制劑(三號及四號化合物,Ki值分別為1.2 nM及0.69 nM),在此研究中,將檢測其在退化性關節炎中減緩醣胺多糖降解的能力。研究結果顯示,在軟骨肉瘤細胞及事先給予發炎刺激的軟骨細胞中投以三號或四號化合物,都能夠有效增加細胞表面醣胺多醣的含量,對於從退化性關節炎病人身上分離得到之病變軟骨細胞給予200 nM三號化合物平均能夠提升三成之細胞表面醣胺多醣含量;除此之外,此二化合物經過證實也在細胞實驗中,對於乙醯胺基葡萄糖水解酶的相似酵素-葡萄胺醣水解酶,具有大於一千八百倍以上之選擇性,可減少用於治療時副作用發生的可能性。本研究成果提供了開發減緩退化性關節炎症狀之藥物的新方向。 | zh_TW |
| dc.description.abstract | Osteoarthritis (OA) is characterized by the degeneration of extracellular matrix glycosaminoglycans (GAGs) in articular cartilage. N-Acetyl-β-D-hexosaminidase (Hex) is reported to be the dominant GAG-degrading glycosidase released by chondrocytes in the synovial fluid of OA patients. On the basis of our previous study, discovery of potent and selective Hex inhibitors (compound 3, Ki = 1.2 nM ; compound 4, Ki = 0.69 nM), herein we demonstrated the levels of cell-associated GAGs to be significantly enhanced by addition of compound 3 or 4 in either human chondrosarcoma cells or IL-1β-treated human chondrocytes. Treatment of 200 nM compound 3 to chondrocytes from patients with OA increased 30% cell-associated GAGs in average. Moreover, the same compounds exhibited more than 1,800-fold higher in vivo selectivity for Hex than for O-GlcNAcase. The efficacy and selectivity of compound 3 and 4 support further investigations in the therapeutic development of OA. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T04:13:47Z (GMT). No. of bitstreams: 1 ntu-99-R97b46007-1.pdf: 3145609 bytes, checksum: 3ecd22df180a04a9386e8fc671edffd6 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | Table of contents
Abbreviations i 中文摘要 iii Abstract iv 1. Introduction 1 1.1 Hexosaminidase 1 1.2 Diseases related to hexosaminidase 2 1.2.1 Osteoarthritis 2 1.2.2 Lysosomal storage disorders 8 1.3 Development of potent and selective hexosaminidase inhibitors 13 1.3.1 Catalytic mechanism and active site 13 1.3.2 Review of developed hexosaminidase inhibitors 15 1.4 Specific aims 18 2. Material and methods 19 2.1 Materials 19 2.2 Assay for glycosidase activity 19 2.3 Cell culture 21 2.4 Analysis of O-GlcNAc-modified proteins 22 2.5 Detection of [35S]glycosaminoglycans 23 2.6 Detection of cell viability 24 2.7 Confocal flrorescence microscopy and imaging 25 2.8 Statisitcal analysis 25 3. Results and discussion 26 3.1 Model study - chondrosarcoma cells (SW1353) 26 3.1.1 Identification of hexosaminidase as the dominant extracellular glycosaminoglycan-degrading glycosidase 26 3.1.2 Effect of hexosaminidase inhibitors on glycosaminoglycan content 27 3.2 Normal human chondrocytes with cytokine stimulation 28 3.2.1 Identification of hexosaminidase as the dominant extracellular glycosaminoglycan-degrading glycosidase under cytokine stimulation 28 3.2.2 Effect of hexosaminidase inhibitors on glycosaminoglycan content 30 3.3 Chondrocytes from patients with osteoarthritis 31 3.3.1 Identification of hexosaminidase as the dominant extracellular glycosaminoglycan-degrading glycosidase 31 3.3.2 Effect of hexosaminidase inhibitors on glycosaminoglycan content 32 3.4 In vivo selectivity and effective dosage range of hexosaminidase inhibitors 33 4. Conclusion 36 5. References 37 6. Figures 56 | |
| dc.language.iso | en | |
| dc.subject | 退化性關節炎 | zh_TW |
| dc.subject | 醣胺多醣 | zh_TW |
| dc.subject | 乙醯胺基葡萄糖水解酶 | zh_TW |
| dc.subject | 抑制劑 | zh_TW |
| dc.subject | 葡萄胺醣 | zh_TW |
| dc.subject | hexosaminidase | en |
| dc.subject | osteoarthritis | en |
| dc.subject | O-GlcNAc | en |
| dc.subject | inhibitor | en |
| dc.subject | glycosaminoglycan | en |
| dc.title | 應用乙醯胺基葡萄糖水解酶抑制劑減緩退化性關節炎中醣胺多醣之降解 | zh_TW |
| dc.title | Hexosaminidase Inhibitors Reduce the Degradation of glycosaminoglycans in Osteoarthritis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊榮森(Rong-Sen Yang),陳佩燁(Pei-Yeh Chen),張崇毅(Chung-I Chang) | |
| dc.subject.keyword | 醣胺多醣,乙醯胺基葡萄糖水解酶,抑制劑,葡萄胺醣,退化性關節炎, | zh_TW |
| dc.subject.keyword | glycosaminoglycan,hexosaminidase,inhibitor,O-GlcNAc,osteoarthritis, | en |
| dc.relation.page | 73 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2010-08-15 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 3.07 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
