請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22194完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 金洛仁(Laurent Zimmerli) | |
| dc.contributor.author | Yi-Chun Kuo | en |
| dc.contributor.author | 郭怡君 | zh_TW |
| dc.date.accessioned | 2021-06-08T04:13:38Z | - |
| dc.date.copyright | 2010-08-20 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-16 | |
| dc.identifier.citation | Aist J.R. (1976). Papillae and related wound plugs of plant cells. Annu Rev Phytopathol 14:145–163.
Asai, T., Tena, G., Plotnikova, J., Willmann, M.R., Chiu, W.L., Gomez-Gomez, L., Boller, T., Ausubel, F.M., and Sheen, J. (2002). MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415, 977-983. Babosha, A.V. (2008). Inducible lectins and plant resistance to pathogens and abiotic stress. Biochemistry (Mosc) 73, 812-825. Barre, A., Herve, C., Lescure, B., and Rouge, P. (2002). Lectin receptor kinases in plants. Crit Rev Plant Sci 21, 379-399. Boudsocq, M., Willmann, M. R., McCormack, M., Lee, H., Shan, L., He, P., Bush, J., Cheng, S. and Sheen J. (2010). Differential innate immune signalling via Ca2+ sensor protein kinases. Nature 464, 418-422. Bouwmeester, K., and Govers, F. (2009). Arabidopsis L-type lectin receptor kinases: phylogeny, classification, and expression profiles. J Exp Bot 60, 4383-4396. Chinchilla, D., Zipfel, C., Robatzek, S., Kemmerling, B., Nurnberger, T., Jones, J.D., Felix, G., and Boller, T. (2007). A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448, 497-500. Conrath, U., Beckers, G.J., Flors, V., Garcia-Agustin, P., Jakab, G., Mauch, F., Newman, M.A., Pieterse, C.M., Poinssot, B., Pozo, M.J., Pugin, A., Schaffrath, U., Ton, J., Wendehenne, D., Zimmerli, L., and Mauch-Mani, B. (2006). Priming: getting ready for battle. Mol Plant Microbe Interact 19, 1062-1071. Cook, D.N., Pisetsky, D.S., and Schwartz, D.A. (2004). Toll-like receptors in the pathogenesis of human disease. Nat Immunol 5, 975-979. Dievart, A., and Clark, S.E. (2004). LRR-containing receptors regulating plant development and defense. Development 131, 251-261. Donofrio, N.M. and Delaney, T.P. (2001). Abnormal callose response phenotype and hypersusceptibility to Peronospora parasitica in defense-compromised Arabidopsis nim1-1 and salicylate hydroxylase expressing plants. Mol Plant Microbe Interact 14:439–450. Felix, G., Duran, J.D., Volko, S. and Boller, T. (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18, 265–76. Girardin, S.E., Sansonetti, P.J., and Philpott, D.J. (2002). Intracellular vs extracellular recognition of pathogens----common concepts in mammals and flies. Trends Microbiol 10, 193-199. Gomez-Gomez, L., Felix, G., and Boller, T. (1999). A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. Plant J 18, 277-284. Gomez-Gomez, L., and Boller, T. (2000). FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5, 1003-1011. Gust, A.A., Biswas, R., Lenz, H.D., Rauhut, T., Ranf, S. and Kemmerling, B. (2007).Bacteria-derived peptidoglycans constitute pathogen-associated molecular patterns triggering innate immunity in Arabidopsis. J. Biol. Chem. 282, 32338–32348. Heese, A., Hann, D.R., Gimenez-Ibanez, S., Jones, A.M., He, K., Li, J., Schroeder, J.I., Peck, S.C., and Rathjen, J.P. (2007). The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proc Natl Acad Sci USA 104, 12217-12222. Iriti, M., and Faoro, F. (2007). Review of innate and specific immunity in plants and animals. Mycopathologia 164, 57-64. Janeway Jr., C.A. and Medzhitov,R. (2002). Innate immune recognition, Annu Rev Immunol. 20, 197–216. Jones, J.D.G. and Dangl, J. F. (2006). The plant immune system. Nature 444, 323 – 329. Kaliff, M., Staal, J., Myrenås, M. and Dixelius, C. (2007).ABA is required for Leptosphaeria maculans resistance via ABI1- and ABI4-dependent signaling. Mol Plant Microbe Interact. 20(4):335-45. Kemmerling, B., Schwedt, A., Rodriguez, P., Mazzotta, S., Frank, M., Qamar, S.A., Mengiste, T., Betsuyaku, S., Parker, J.E., Müssig, C., Thomma, B.P., Albrecht, C., de Vries, S.C., Hirt, H.and Nürnberger, T. (2007).The BRI1-associated kinase 1, BAK1, has a brassinolide-independent role in plant cell-death control. Current Biology 17:1116-1122. Kim, M.G., da Cunha, L., McFall, A.J., Belkhadir, Y., DebRoy, S., Dangl, J.L. and Mackey, D.(2005).Two Pseudomonas syringae type III effectors inhibit RIN4-regulated basal defense in Arabidopsis. Cell 121:749-59. Kunkel, B.N., and Brooks, D.M. (2002). Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5, 325-331. Kunze, G., Zipfel, C., Robatzek, S., Niehaus, K., Boller, T., and Felix, G. (2004). The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell 16, 3496-3507. Kusaba, M., Dwyer, K., Hendershot, J., Vrebalov, J., Nasrallah, J.B., and Nasrallah, M.E. (2001). Self-incompatibility in the genus Arabidopsis: characterization of the S locus in the outcrossing A. lyrata and its autogamous relative A. thaliana. Plant Cell 13, 627-643. Lecourieux,D., Lamotte,O., Bourque, S., Wendehenne, D., Mazars, C., Ranjeva, R. and Pugin, A. (2005). Proteinaceous and oligosaccharidic elicitors induce different calcium signatures in the nucleus of tobacco cells. Cell Calcium 38, 527–538. Li, J., Wen, J., Lease, K.A., Doke, J.T., Tax, F.E., and Walker, J.C. (2002). BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110, 213-222. Ligterink, W., Kroj, T., Zurnieden, U., Hirt, H. & Scheel, D. (1997). Receptor-mediated activation of a MAP kinase in pathogen defense in plants. Science 276, 2054-2057. Medzhitov, R., and Janeway, C.A., Jr. (2002). Decoding the patterns of self and nonself by the innate immune system. Science 296, 298-300. Melotto, M., Underwood, W., Koczan, J., Nomura, K. and He, S.Y. (2006). Plant stomata function in innate immunity against bacterial invasion. Cell 126, 969–980. Mishina, T.E. and Zeier, J.(2007).Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in Arabidopsis. Plant J. 50:500-13. Nam, K.H., and Li, J. (2002). BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell 110, 203-212. Navarro, L., Zipfel, C., Rowland, O., Keller, I., Robatzek, S., Boller, T. and Jones, J.D. (2004). The transcriptional innate immune response to flg22. Interplay and overlap with Avr gene-dependent defense responses and bacterial pathogenesis. Plant Physiol. 135,1113-28. Neill, S., Barros, R., Bright, J., Desikan, R.,Hancock, J., Harrison J., Morris P., Ribeiro, D., and Wilson, I. (2008). Nitric oxide,stomatal closure, and abiotic stress. J Exp Bot 59,165-176. Nurnberger, T., Brunner, F., Kemmerling, B., and Piater, L. (2004). Innate immunity in plants and animals: striking similarities and obvious differences. Immunol Rev 198, 249-266. Nuhse, T. S., Peck, S. C., Hirt, H. & Boller, T. (2000). Microbial elicitors induce activation and dual phosphorylation of the Arabidopsis thaliana MAPK6. J Biol Chem 275, 7521-7526. Roetschi, A., Si-Ammour, A., Belbahri, L., Mauch, F. and Mauch-Mani B. (2001). Characterization of an Arabidopsis-Phytophthora pathosystem: resistance requires a functional PAD2 gene and is independent of salicylic acid, ethylene and jasmonic acid signaling. Plant J 3,293–305. Shan, L., He, P., Li, J., Heese, A., Peck, S.C., Nurnberger, T., Martin, G.B., and Sheen, J. (2008). Bacterial effectors target the common signaling partner BAK1 to disrupt multiple MAMP receptor-signaling complexes and impede plant immunity. Cell Host Microbe 4, 17-27. Sherman-Broyles, S., Boggs, N., Farkas, A., Liu, P., Vrebalov, J., Nasrallah, M.E., and Nasrallah, J.B. (2007). S locus genes and the evolution of self-fertility in Arabidopsis thaliana. Plant Cell 19, 94-106. Shiu, S.H., and Bleecker, A.B. (2001). Plant receptor-like kinase gene family: diversity, function, and signaling. Sci STKE 2001, re22. Thilmony, R., Underwood, W.and He, S.Y.(2006).Genome-wide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000 and the human pathogen Escherichia coli O157:H7.Plant J. 46(1):34-53. Ton, J. and Mauch-Mani, B. (2004). b-Aminobutyric acid induced resistance against necrotrophic pathogens is based on ABA-dependent priming of callose. Plant J 38,119–130. Ton, J., Flors, V. and Mauch-Mani, B. (2004). The multifaceted role of ABA in disease resistance. Trends in Plant Science. Vol.14 No.6 Tsuda, K., Glazebrook, J. and Katagiri, F. (2008).The interplay between MAMP and SA signaling.Plant Signal Behav. 3:359-61. Underwood, W., Melotto, M., and He, S.Y. (2007). Role of plant stomata in bacterial invasion. Cell Microbiol 9, 1621-1629. Walker, J.C. (1994). Structure and function of the receptor-like protein kinases of higher plants. Plant Mol Biol 26, 1599-1609. Wan, J., Patel, A., Mathieu, M., Kim, S.Y., Xu, D., and Stacey, G. (2008). A lectin receptor-like kinase is required for pollen development in Arabidopsis. Plant Mol Biol 67, 469-482. Wang, L., Tsuda, K., Sato, M., Cohen, J.D., Katagiri, F., and Glazebrook, J. (2009). Arabidopsis CaM binding protein CBP60g contributes to MAMP-induced SA accumulation and is involved in disease resistance against Pseudomonas syringae. PLoS Pathog 5, e1000301. Wildermuth, M.C., Dewdney, J., Wu, G., and Ausubel, F.M. (2001). Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414, 562-565. Xin, Z., Wang, A., Yang, G., Gao, P., and Zheng, Z.L. (2009). The Arabidopsis A4 subfamily of lectin receptor kinases negatively regulates abscisic acid response in seed germination. Plant Physiol 149, 434-444. Zeidler, D., Zahringer, U., Gerber, I., Dubery, I., Hartung, T. and Bors, W. (2004). Innate immunity in Arabidopsis thaliana: lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. Proc. Natl Acad. Sci. USA 101, 15811–15816. Zimmerli L, Jakab G, Metraux JP, Mauch-Mani B. (2000). Potentiation of pathogen-specific defense mechanisms in Arabidopsis by beta-aminobutyric acid. Proc Natl Acad Sci USA 97,12920–12925. Zimmerli, L., Hou, B.H., Tsai, C.H., Jakab, G., Mauch-Mani, B., and Somerville, S. (2008). The xenobiotic beta-aminobutyric acid enhances Arabidopsis thermotolerance. Plant J 53, 144-156. Zhang, W., He, S.Y. and Assmann, S. M. (2008). The plant innate immunity response in stomatal guard cells invokes G-protein-dependent ion channel regulation. Plant J 56,984-996. Zipfel, C., Robatzek, S., Navarro, L., Oakeley, E.J., Jones, J.D., Felix, G., and Boller, T. (2004). Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428, 764-767. Zipfel, C., Kunze, G., Chinchilla, D., Caniard, A., Jones, J.D., Boller, T., and Felix, G. (2006). Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125, 749-760. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22194 | - |
| dc.description.abstract | 藉由感知病原菌特定分子標誌(pathogen-associated molecular patterns, PAMPs),植物可感應病原菌的入侵,進而引發植物中的PAMP誘導免疫反應(PAMP-triggered immunity, PTI)。
本論文發現,阿拉伯芥之凝集素受體激酶6.2(Lectin receptor kinase -VI.2, LecRK-VI.2),在植物抗病反應中,扮演正面的調控角色。LecRK-VI.2的T-DNA插入突變株,lecrk-VI.2-1,對於半活體寄生型(hemi-biotrophic)的細菌性斑點病病原菌(Pseudomonas syringae pv tomato DC3000)與死體寄生型(necrotrophic)的細菌性軟腐病病原菌(Erwinia carotovora subsp. carotovora)較為感病,顯示LecRK-VI.2可能參與植物抗病之防禦反應。 我們的分析資料顯示,lecrk-VI.2-1在被細菌感染或經細菌PAMPs處理後,其PTI標的基因(例如FRK1和WRKY29)的轉錄活性有缺陷,但對於細菌PAMP幾丁質的反應則不受影響。同時,經細菌或細菌PAMPs處理後,lecrk-VI.2-1之胝質蓄積(callose deposition)量較少,其氣孔關閉反應也有缺陷,顯示LecRK6.2的突變會導致多方面PAMP誘導免疫反應的缺失。 於互補實驗中,在突變株的背景下表現LecRK-VI.2,可以回復PTI標的基因的轉錄活性、胼質醣合成及氣孔關閉反應,也可以回復此植株對於細菌性入侵的抗病性。 此外,本論文發現,LecRK-VI.2大量表現的轉殖株會持續性的表現PAMP誘導免疫反應,包括擁有高基礎轉錄活性(basal transcriptional level)的PTI標的基因表現、持續性的胝質蓄積及關閉的氣孔。這些持續性的PAMP誘導免疫反應使轉殖株對於細菌性病原菌斑點病病原菌和軟腐病病原菌之抗病性提升,但對於卵菌性黃葉病病原菌的抗病性卻與野生株Col-0相似。 由以上結果,可以推論LecRK-VI.2對於細菌引發的PAMP誘導免疫反應,扮演一個正向的調節因子。 | zh_TW |
| dc.description.abstract | Plants can sense pathogen infections through perception of pathogen-associated molecular patterns (PAMPs) by pattern-recognition receptors (PRRs) located on the cell surface. Recognition leads to enhanced plant resistance through the activation of PAMP-triggered immunity (PTI). Here we report that the LECTIN RECEPTOR KINASE-VI.2 (LecRK-VI.2) is essential for Arabidopsis PTI. lecrk-VI.2-1, a LecRK-VI.2 knock-out mutant, was less resistant to the hemi-biotrophic bacterial pathogen Pseudomonas syringae pv tomato (Pst) DC3000 and the necrotrophic bacterial pathogen Erwinia carotovora subsp. carotovora (Ecc) bacteria, suggesting LecRK-VI.2 is required for efficient plant defense response. lecrk-VI.2-1 was deficient in the transcriptional activation of PTI marker genes such as FRK1 and WRKY29 upon inoculation with bacteria and various bacterial PAMPs such as flg22, efl-26 and peptidoglycan (PGN). However, lecrk-VI.2-1 demonstrated a normal response to the fungal PAMP chitin. lecrk-VI.2-1 was also impaired in callose deposition and stomatal response, two typical PTI responses, when challenged with Pst DC3000 and bacterial PAMPs. Together my results suggest that LecRK-VI.2 is involved in the PTI response triggered by the perceptions of bacterial PAMPs but not the fungal chitin PAMP. Over-expression of LecRK-VI.2 in lecrk-VI.2-1 background restored resistance to bacterial microbes and PTI responses to a wild-type level. In addition, high-levels of LecRK-VI.2 expressions in lecrk-VI.2-1 background constitutively activated PTI responses. Such transgenics were found to be highly resistant to bacteria, but confer normal response to the fungal pathogen Botyris cinerea. Our data suggest that LecRK-VI.2 acts as a positive regulator of the Arabidosps PTI by participating in defense mechanisms such as PTI gene activations, callose deposition and stomatal responses. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T04:13:38Z (GMT). No. of bitstreams: 1 ntu-99-R97b42008-1.pdf: 2493641 bytes, checksum: 353f1b23a239c5f17f61879c42dd9b11 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 碩士論文口試委員審定書
致謝 中文摘要 Abstract List of figures Abbreviations Introduction 1 Plant defense mechanisms and the innate immunity response 1 The perception of PAMP 1 The MAPK kinase cascade activation and Ca2+ influx 2 The downstream phytohormone responses: salicylic acid (SA) and abscisic acid (ABA) 3 The role of receptor-like kinase in plant defense mechanism 4 L-type lectin receptor kinases in Arabidopsis thaliana 4 Material and Methods 6 Biological Materials and Growth Conditions 6 Semi-quantitative RT–PCR 6 BABA pretreatment 6 Disease Assays 6 RNA extraction and cDNA biosynthesis 7 Quantitative RT-PCR 7 PAMPs treatments assay 8 Callose Staining 8 Complementation Experiments 8 Results 10 lecrk-VI.2-1 is a knockout line of At5g01540 10 lecrk-VI.2-1 demonstrates a normal BABA-mediate protection against Pst DC3000 infection 10 LecRK-VI.2 is up-regulated by Pst DC3000 and various kinds of PAMPs 11 lecrk-VI.2-1 is more susceptible to Pst DC3000 dipping inoculation 11 lecrk-VI.2-1 is normally resistant to Pst DC3000 infiltration inoculation 11 lecrk-VI.2-1 showed reduced PTI marker genes induction after Pst DC3000 hrcC infection 11 lecrk-VI.2-1 shows reduced PTI marker genes induction after various kinds of PAMPs treatments 12 lecrk-VI.2-1 shows impaired callose deposition after Pst DC3000 hrcC infection 12 Complementation of lecrk-VI.2-1 by over-expression of LecRK-VI.2 13 High-level of over-expression of LecRK-VI.2 in lecrk-VI.2-1 leads to dwarf phenotypes 13 Transgenics demonstrating a high level of LecRK-VI.2 expression constitutively activates defense-related genes 14 High-levels of LecRK-VI.2 over-expression increases resistance to Pst DC3000 14 High-levels of LecRK-VI.2 over-expression increases resistance to Ecc 14 High-levels of LecRK-VI.2 over-expression does not increase resistance to the fungal pathogen B. cinerea 15 Discussion 16 LecRK-VI.2 is involved in Arabidopsis PTI 16 Instead of being responsible for PAMP recognition directly, LeRK-VI.2 may function as part of the receptor complex or play a role downstream of PAMP perceptions 18 High-level of LecRK-VI.2 over-expression can increase plant defense through the activation of PTI marker genes, which go through the SA pathways 19 LecRK-VI.2 may increase plant defense against pathogens via the ABA-dependent pathway 21 Conclusion and future perspectives 23 Figures 24 Appendix 49 References 53 | |
| dc.language.iso | en | |
| dc.subject | 胼胝質 | zh_TW |
| dc.subject | 阿拉伯芥 | zh_TW |
| dc.subject | 細菌性斑點病菌 | zh_TW |
| dc.subject | 凝集素受體激酶 | zh_TW |
| dc.subject | 細菌 | zh_TW |
| dc.subject | 病原菌特定分子標誌 | zh_TW |
| dc.subject | PAMP誘導免疫反應 | zh_TW |
| dc.subject | bacteria | en |
| dc.subject | PAMP-triggered immunity | en |
| dc.subject | PAMP | en |
| dc.subject | Arabidopsis | en |
| dc.subject | Pseudomonas syringae | en |
| dc.subject | Erwinia carotovora | en |
| dc.subject | Botrytis cinerea | en |
| dc.subject | lectin receptor kinase | en |
| dc.subject | callose | en |
| dc.title | 阿拉伯芥凝集素受體激酶6.2參與植物對抗細菌誘發之基本性免疫作用 | zh_TW |
| dc.title | The Lectin Receptor-Like Kinase-VI.2 Is Involved in the Arabidopsis Innate Immunity Response Against the Bacterial Pathogen Pseudomonas syringae | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鄭石通(Shih-Tong Jeng),吳克強(Keqiang Wu),鄭秋萍(Chiu-Ping Cheng) | |
| dc.subject.keyword | 阿拉伯芥,細菌性斑點病菌,凝集素受體激酶,細菌,病原菌特定分子標誌,PAMP誘導免疫反應,胼胝質, | zh_TW |
| dc.subject.keyword | Arabidopsis,Pseudomonas syringae,Erwinia carotovora,Botrytis cinerea,lectin receptor kinase,bacteria,PAMP,PAMP-triggered immunity,callose, | en |
| dc.relation.page | 58 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2010-08-16 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 植物科學研究所 | zh_TW |
| 顯示於系所單位: | 植物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 2.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
