Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 口腔生物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22188
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor樓國隆(Kuo-Long Lou)
dc.contributor.authorMeng-Hsuan Hsiehen
dc.contributor.author謝孟炫zh_TW
dc.date.accessioned2021-06-08T04:13:35Z-
dc.date.copyright2011-10-03
dc.date.issued2011
dc.date.submitted2011-08-18
dc.identifier.citationAlberts B, Johnson, A, Lewis, J, Raff, M, Roberts, K, Walter, P (2002) Molecular Biology of the Cell, 4 edn. New York: Garland Science.
Batista CVF, Gomez-Lagunas F, Lucas S, Possani LD (2000) Tc1, from Tityus cambridgei, is the first member of a new subfamily of scorpion toxin that blocks K+-channels. FEBS Letters 486: 117-120
Bemporad D, Sands ZA, Wee CL, Grottesi A, Sansom MS (2006) Vstx1, a modifier of Kv channel gating, localizes to the interfacial region of lipid bilayers. Biochemistry 45: 11844-11855
Blaurock AE (1971) Structure of the nerve myelin membrane: Proof of the low-resolution profile. Journal of Molecular Biology 56: 35-52
Bontems F, Gilquin B, Roumestand C, Menez A, Toma F (1992) Analysis of side-chain organization on a refined model of charybdotoxin: Structural and functional implications. Biochemistry 31: 7756-7764
Bontems F, Roumestand C, Gilquin B, Menez A, Toma F (1991) Refined structure of charybdotoxin: Common motifs in scorpion toxins and insect defensins. Science 254: 1521-1523
Calderon RO, DeVries GH (1997) Lipid composition and phospholipid asymmetry of membranes from a Schwann cell line. Journal of Neuroscience Research 49: 372-380
Cestele S, Qu Y, Rogers JC, Rochat H, Scheuer T, Catterall WA (1998) Voltage sensor trapping: Enhanced activation of sodium channels by beta-scorpion toxin bound to the S3 S4 loop in domain II. Neuron 21: 919-931
Chen FY, Hung WC, Huang HW (1997) Critical swelling of phospholipid bilayers. Physical Review Letters 79: 4026-4029
Chen FY, Lee MT, Huang HW (2003) Evidence for membrane thinning effect as the mechanism for peptide-induced pore formation. Biophysical Journal 84: 3751-3758
Cohen L, Gilles N, Karbat I, Ilan N, Gordon D, Gurevitz M (2006) Direct evidence that receptor site-4 of sodium channel gating modifiers is not dipped in the phospholipid bilayer of neuronal membranes. Journal of Biological Chemistry 281: 20673-20679
Ege C, Lee KYC (2004) Insertion of Alzheimer's A[beta]40 peptide into lipid monolayers. Biophysical Journal 87: 1732-1740
Eriksson MAL, Roux B (2002) Modeling the structure of agitoxin in complex with the Shaker K+ channel: A computational approach based on experimental distance restraints extracted from thermodynamic mutant cycles. Biophysical Journal 83: 2595-2609
Gidalevitz D, Ishitsuka Y, Muresan AS, Konovalov O, Waring AJ, Lehrer RI, Lee KYC (2003) Interaction of antimicrobial peptide protegrin with biomembranes. Proceedings of the National Academy of Sciences 100: 6302-6307
Goldstein SAN, Pheasant DJ, Miller C (1994) The charybdotoxin receptor of a Shaker K+ channel: Peptide and channel residues mediating molecular recognition. Neuron 12: 1377-1388
Gross A, MacKinnon R (1996) Agitoxin footprinting the Shaker potassium channel pore. Neuron 16: 399-406
Gutman GA, Chandy KG, Adelman JP, Aiyar J, Bayliss DA, Clapham DE, Covarriubias M, Desir GV, Furuichi K, Ganetzky B, Garcia ML, Grissmer S, Jan LY, Karschin A, Kim D, Kuperschmidt S, Kurachi Y, Lazdunski M, Lesage F, Lester HA, McKinnon D, Nichols CG, O'Kelly I, Robbins J, Robertson GA, Rudy B, Sanguinetti M, Seino S, Stuehmer W, Tamkun MM, Vandenberg CA, Wei A, Wulff H, Wymore RS (2003) International Union of Pharmacology. XII. Compendium of voltage-gated ion channels: Potassium channels. Pharmacological Reviews 55: 583-586
Hanakam F, Gerisch G, Lotz S, Alt T, Seelig A (1996) Binding of hisactophilin I and II to lipid membranes is controlled by a pH-dependent myristoyl−histidine switch. Biochemistry 35: 11036-11044
Harroun TA, Heller WT, Weiss TM, Yang L, Huang HW (1999) Experimental evidence for hydrophobic matching and membrane-mediated interactions in lipid bilayers containing gramicidin. Biophysical Journal 76: 937-945
Hill WG, Southern NM, MacIver B, Potter E, Apodaca G, Smith CP, Zeidel ML (2005) Isolation and characterization of the Xenopus oocyte plasma membrane: A new method for studying activity of water and solute transporters. American Journal of Physiology - Renal Physiology 289: F217-F224
Huang PT, Shiau YS, Lou KL (2007) The interaction of spider gating modifier peptides with voltage-gated potassium channels. Toxicon 49: 285-292
Hung WC, Chen F Y (2003) Hydrophobic-hydrophilic interface of phospholipid membrane studied by lamellar x-ray diffraction. Chinese Journal of Physics 41: 85-91
Hung WC, Lee MT, Chen FY, Huang HW (2007) The condensing effect of cholesterol in lipid bilayers. Biophysical Journal 92: 3960-3967
Ishitsuka Y, Pham DS, Waring AJ, Lehrer RI, Lee KYC (2006) Insertion selectivity of antimicrobial peptide protegrin-1 into lipid monolayers: Effect of head group electrostatics and tail group packing. Biochimica et Biophysica Acta - Biomembranes 1758: 1450-1460
Jung HJ, Lee JY, Kim SH, Eu YJ, Shin SY, Milescu M, Swartz KJ, Kim JI (2005) Solution structure and lipid membrane partitioning of VSTx1, an inhibitor of the KvAP potassium channel. Biochemistry 44: 6015-6023
Krezel AM, Kasibhatla C, Hidalgo P, Mackinnon R, Wagner G (1995) Solution structure of the potassium channel inhibitor agitoxin 2: Caliper for probing channel geometry. Protein Science 4: 1478-1489
Lee HC, Wang JM, Swartz KJ (2003) Interaction between extracellular hanatoxin and the resting conformation of the voltage-sensor paddle in Kv channels. Neuron 40: 527-536
Lee KYC, Lipp MM, Takamoto DY, Ter-Ovanesyan E, Zasadzinski JA, Waring AJ (1998) Apparatus for the continuous monitoring of surface morphology via fluorescence microscopy during monolayer transfer to substrates. Langmuir 14: 2567-2572
Lee SY, MacKinnon R (2004) A membrane-access mechanism of ion channel inhibition by voltage sensor toxins from spider venom. Nature 430: 232-235
Li-Smerin Y, Swartz KJ (1998) Gating modifier toxins reveal a conserved structural motif in voltage-gated Ca2+ and K+ channels. Proceedings of the National Academy of Sciences 95: 8585-8589
Li-Smerin Y, Swartz KJ (2000) Localization and molecular determinants of the Hanatoxin receptors on the voltage-sensing domains of a K+ channel. Journal of General Physiology 115: 673-684
Lipp MM, Lee KYC, Zasadzinski JA, Waring AJ (1997) Design and performance of an integrated fluorescence, polarized fluorescence, and Brewster angle microscope/Langmuir trough assembly for the study of lung surfactant monolayers. Review of Scientific Instruments 68: 2574-2582
Lou KL, Huang PT, Shiau YS, Liaw YC, Shiau YY, Liou HH (2003) A possible molecular mechanism of hanatoxin binding-modified gating in voltage-gated K+-channels. Journal of Molecular Recognition 16: 392-395
Lou KL, Huang PT, Shiau YS, Shiau YY (2002) Molecular determinants of the hanatoxin binding in voltage-gated K+-channel drk1. Journal of Molecular Recognition 15: 175-179
MacKinnon R, Heginbotham L, Abramson T (1990) Mapping the receptor site for charybdotoxin, a pore-blocking potassium channel inhibitor. Neuron 5: 767-771
McIntosh TJ, Simon SA (1986) Area per molecule and distribution of water in fully hydrated dilauroylphosphatidylethanolamine bilayers. Biochemistry 25: 4948-4952
Milescu M, Vobecky J, Roh SH, Kim SH, Jung HJ, Kim JI, Swartz KJ (2007) Tarantula toxins interact with voltage sensors within lipid membranes. Journal of General Physiology 130: 497-511
Nagle JF, Tristram-Nagle S (2000) Structure of lipid bilayers. Biochimica et Biophysica Acta - Biomembranes 1469: 159-195
Naranjo D (2002) Inhibition of single Shaker K channels by kappa-conotoxin-PVIIA. Biophysical Journal 82: 3003-3011
Naranjo D, Miller C (1996) A strongly interacting pair of residues on the contact surface of charybdotoxin and a Shaker K+ channel. Neuron 16: 123-130
Neville F, Cahuzac M, Konovalov O, Ishitsuka Y, Lee KYC, Kuzmenko I, Kale GM, Gidalevitz D (2006) Lipid headgroup discrimination by antimicrobial peptide LL-37: Insight into mechanism of action. Biophysical Journal 90: 1275-1287
Nishizawa M, Nishizawa K (2006) Interaction between K+ channel gate modifier hanatoxin and lipid bilayer membranes analyzed by molecular dynamics simulation. European Biophysics Journal 35: 373-381
Nishizawa M, Nishizawa K (2007) Molecular dynamics simulations of a stretch-activated channel inhibitor GsMTx4 with lipid membranes: two binding modes and effects of lipid structure. Biophysics Journal 92: 4233-4243
Perutz MF (1954) The structure of haemoglobin. III. Direct determination of the molecular transform. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences 225: 264-286
Phillips LR, Milescu M, Li-Smerin Y, Mindell JA, Kim JI, Swartz KJ (2005) Voltage-sensor activation with a tarantula toxin as cargo. Nature 436: 857-860
Posokhov YO, Gottlieb PA, Morales MJ, Sachs F, Ladokhin AS (2007) Is lipid bilayer binding a common property of inhibitor cysteine knot ion-channel blockers? Biophysical Journal 93: L20-L22
Ruta V, MacKinnon R (2004) Localization of the voltage-sensor toxin receptor on KvAP. Biochemistry 43: 10071-10079
Savarin P, Guenneugues M, Gilquin B, Lamthanh H, Gasparini S, Zinn-Justin S, Menez A (1998) Three-dimensional structure of κ-Conotoxin PVIIA, a novel potassium channel-blocking toxin from cone snails. Biochemistry 37: 5407-5416
Shon KJ, Stocker M, Terlau H, Stuhmer W, Jacobsen R, Walker C, Grilley M, Watkins M, Hillyard DR, Gray WR, Olivera BM (1998) κ-Conotoxin PVIIA is a peptide inhibiting the Shaker K+ channel. Journal of Biological Chemistry 273: 33-38
Simons K, Van Meer G (1988) Lipid sorting in epithelial cells. Biochemistry 27: 6197-6202
Smith JJ, Alphy S, Seibert AL, Blumenthal KM (2005) Differential phospholipid binding by site 3 and site 4 toxins. Implications for structural variability between voltage-sensitive sodium channel domains. Journal of Biological Chemistry 280: 11127-11133
Suchyna TM, Tape SE, Koeppe RE, 2nd, Andersen OS, Sachs F, Gottlieb PA (2004) Bilayer-dependent inhibition of mechanosensitive channels by neuroactive peptide enantiomers. Nature 430: 235-240
Swartz KJ, MacKinnon R (1995) An inhibitor of the Kv2.1 potassium channel isolated from the venom of a Chilean tarantula. Neuron 15: 941-949
Takahashi H, Kim JI, Min HJ, Sato K, Swartz KJ, Shimada I (2000) Solution structure of hanatoxin1, a gating modifier of voltage-dependent K+ channels: Common surface features of gating modifier toxins. Journal of Molecular Biology 297: 771-780
Torbet J, Wilkins MHF (1976) X-ray diffraction studies of lecithin bilayers. Journal of Theoretical Biology 62: 447-458
Wee CL, Gavaghan D, Sansom MS (2008) Lipid bilayer deformation and the free energy of interaction of a Kv channel gating-modifier toxin. Biophysical Journal 95: 3816-3826
Winterfield JR, Swartz KJ (2000) A hot spot for the interaction of gating modifier toxins with voltage-dependent ion channels. Journal of General Physiology 116: 637-644
Wu Y, He K, Ludtke SJ, Huang HW (1995) X-ray diffraction study of lipid bilayer membranes interacting with amphiphilic helical peptides: Diphytanoyl phosphatidylcholine with alamethicin at low concentrations. Biophysical Journal 68: 2361-2369
Yellen G (2002) The voltage-gated potassium channels and their relatives. Nature 419: 35-42
Yu FH, Catterall WA (2004) The VGL-chanome: A protein superfamily specialized for electrical signaling and ionic homeostasis. Science's STKE 2004: re15
李明道 (2004) Pore formation in membranes induced by antimicrobial peptides. 國立中央大學物理學系博士論文
李明道 (2007) 利用多片層X光繞射技術測量生物膜結構. 國家同步輻射研究中心簡訊 64: 13-15
洪偉清 (2000) 脂膜的X-光片層繞射. 國立中央大學物理學系博士論文
陳凱斌 (2003) Mixed monolayer behavior of DPPC with normal long chain alcohols at the air/water interface. 成功大學化學工程學系博士論文
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22188-
dc.description.abstract自然界中存在許多種由蜘蛛所分泌的多肽毒液,其中由智利蜘蛛毒液所分離出來的hanatoxin 1 (HaTx1),為一種廣泛研究的雙親性多肽。HaTx1作為電壓感應開啟式鉀離子通道的抑制劑,可與離子通道進行結合。以往透過電生理與點突變的相關研究來闡述HaTx1與電壓感應開啟式鉀離子通道 Kv2.1的抑制機制;研究指出 HaTx1並非直接與 Kv2.1結合,而必須先與細胞膜進行作用。本論文利用生物物理方法來探討HaTx1與脂質膜之間的交互作用,提供一個良好的實驗平台,再結合高強度的同步輻射研究設施探索原子級的結構變化。以微觀的觀點,進一步探討 HaTx1與生物膜之間的作用關係。
本研究進行兩項實驗,分別瞭解 HaTx1作用於單層膜及雙層膜的方式。首先,以蘭牟爾膜 (Langmuir-Blodgett film) 來研究 HaTx1吸附及插入單層膜的方式以及膜組成成份是否造成影響;本文結果顯示HaTx1會吸附於單層膜,但是插入單層膜的情況會因膜組成成份不同 (POPC;POPC:DOPG = 3:1;POPC:DOPG = 2:1) 而有不同程度的膜面積擴張,意含著磷脂質的親水性頭部在HaTx1吸附及插入膜中扮演著重要的角色。其次,以多片層X光繞射的技術來測量雙層磷脂質膜的厚度;本文結果指出隨著HaTx1相對於脂質的濃度 (the molar ratio of peptide-to-lipid, P/L) 上升,HaTx1會造成不同組成成份 (POPC;POPC:POPG = 3:1;POPC:POPG = 2:1) 的雙層磷脂質膜變薄,也就是說無論組成份是純 POPC 或者是含有帶負電 POPG 所構成的雙層磷脂質膜,都會隨著 P/L 的上升,而使雙層磷脂質膜厚度有不同程度的變薄效應。結果顯示,HaTx1為一種雙親性胜肽且具有使雙層磷脂質膜厚度變薄的效應,如同其他已被廣泛研究的雙親性分子 (melittin, curcumin) ,皆會造成雙層磷脂質膜的形變。然而細胞膜的形變可能會進一步影響膜蛋白的功能,因此HaTx1可能會藉由改變雙層磷脂質的性質來影響電壓感應開啟式鉀離子通道。
倘若未來實驗技術突破,我們希望可以同時考慮HaTx1、脂質膜及電壓感應開啟式鉀離子通道,三者之間的交互作用,對於電壓感應開啟式鉀離子通道的詳細作用機制做更明確的推論及闡述。
zh_TW
dc.description.abstractA variety of polypeptide toxins are isolated from spider venom, and hanatoxin 1 (HaTx1) from a Chilean tarantula is one of the most extensively investigated peptides. HaTx1 might act as a voltage-gating modifiers to bind ion channels and has been used to characterize the blocking properties of the voltage-gated potassium channel Kv2.1 through electrophysiological and mutational studies. Recent studies have shown that HaTx1 may first interact with the cell membrane rather than directly bind onto voltage-sensing domain of Kv2.1. Thus, in this study the interactions between HaTx1 and bio-membranes were investigated with biophysical methods as an excellent experimental platform and high intensity synchrotron radiation source to explore the structural changes of bio-membranes at atomic level. Furthermore, we depicted the detailed mechanism between HaTx1 and bio-membranes.
Two parts of experiments were designed to investigate the interactions between HaTx1 and monolayers at air/water interface and between HaTx1 and lipid bilayers. The Langmuir-Blodgett film was used to study the adsorption and the insertion into monolayers of HaTx1 and its effect on different compositions of lipids. The results indicated that HaTx1 first adsorbed to monolayers and caused the area expansion of membranes, which varied with different compositions of lipids (POPC;POPC:DOPG = 3:1;POPC:DOPG = 2:1), when inserting into monolayers. This implied that the headgroup of phospholipids plays a crucial role in the adsorption and insertion of HaTx1. In addition, Lamellar X-ray diffraction was used to measure the membrane thickness of phospholipid bilayers interacting with HaTx1. The results showed that the membrane thickness decreased as the molar ratio of peptide-to-lipid (P/L) increased in all three compositions of lipids (POPC;POPC:DOPG = 3:1;POPC:DOPG = 2:1); as the P/L increased, HaTx1 caused the thinning effect on the thickness of lipid bilayer in different extent. HaTx1 has been shown to be a amphipathic peptide and demonstrated the membrane-thinning effect. As other extensively investigated amphipathic molecules (e.g., melittin and curcumin), HaTx1 caused bilayer deformation. Such deformation of cell membrane might affect the function of membrane proteins, thus it is considerable that HaTx1 could affect the function of voltage-gated potassium channels by modifying the properties of phospholipid bilayers.
In the future with the breakthrough of experimental techniques, we aim to reveal the interplay between three components, HaTx1, lipid membranes, and voltage-gated potassium channels, and to elucidate the detailed mechanism of voltage-gated potassium channels.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:13:35Z (GMT). No. of bitstreams: 1
ntu-100-R97450002-1.pdf: 4648860 bytes, checksum: 01a9606b3e3b9909b894d565b66839b9 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract v
Contents vii
Abbreviations x
List of Figures xii
List of Table xvi
1 Introduction 1
1.1 Cell membrane 1
1.2 Voltage-gated potassium channels 6
1.3 Hanatoxin – a gating-modifier toxin 9
1.4 Principles of biophysics methods 12
1.4.1 Langmuir-Blodgett film 12
1.4.2 Lamellar X-ray Diffraction (LXD) 14
2 Research aims 18
3 Materials and Methods 20
3.1 Materials 20
Lipids 20
Toxin 20
Organic solvents 20
3.2 Langmuir-Blodgett trough 21
3.2.1 Sample preparation 21
3.2.2 Instrumental setup 21
3.2.3 The experimental procedure 22
3.3 Lamellar X-ray Diffraction (LXD) 25
3.3.1 Sample preparation 25
3.3.2 Hardware and measurements 26
4 Results 29
4.1 Pressure-area compression isotherms 29
4.2 Hanatoxin 1 insertion measurements 30
4.3 Effects of HaTx1 on membrane thickness 31
5 Discussions 33
5.1 (1) Toxin-membrane interactions 33
(2) The charge effect of phospholipid headgroup on HaTx1 insertion 34
5.2 Bilayer deformation 35
5.3 The complexity of biological membranes 36
5.4 Effects of structural changes of bio-membranes on different gating modifier toxins 37
6 Conclusions 38
7 References 39
8 Figures 52
dc.language.isoen
dc.subject多片層X光繞射zh_TW
dc.subjectHanatoxin 1zh_TW
dc.subject電壓感應開啟式鉀離子通道zh_TW
dc.subject生物膜zh_TW
dc.subject蘭牟爾膜zh_TW
dc.subjectLangmuir-Blodgett filmen
dc.subjectLamellar X-ray diffractionen
dc.subjectHanatoxin 1en
dc.subjectVoltage-gated potassium channelen
dc.subjectBio-membranesen
dc.title蜘蛛毒蛋白對於生物膜結構變化影響之探討zh_TW
dc.titleInvestigations on the Structural Change of Bio-Membranes Induced by Spider Gating Modifier Toxinsen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.coadvisor李明道(Ming-Tao Lee)
dc.contributor.oralexamcommittee趙治宇(Chih-Yu Chao),陳威戎(Wei-Jung Chen),林詩舜(Shih-Shun Lin)
dc.subject.keywordHanatoxin 1,電壓感應開啟式鉀離子通道,生物膜,蘭牟爾膜,多片層X光繞射,zh_TW
dc.subject.keywordHanatoxin 1,Voltage-gated potassium channel,Bio-membranes,Langmuir-Blodgett film,Lamellar X-ray diffraction,en
dc.relation.page75
dc.rights.note未授權
dc.date.accepted2011-08-18
dc.contributor.author-college牙醫專業學院zh_TW
dc.contributor.author-dept口腔生物科學研究所zh_TW
顯示於系所單位:口腔生物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
4.54 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved