請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22166
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 譚義績 | |
dc.contributor.author | His-Ting Fang | en |
dc.contributor.author | 方熙廷 | zh_TW |
dc.date.accessioned | 2021-06-08T04:06:06Z | - |
dc.date.copyright | 2018-08-01 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-07-26 | |
dc.identifier.citation | 一、地下水預報複合型類神經模型
1.張斐章、張麗秋,2015,「類神經網路導論原理與應用」,滄海書局。 2.中央地質調查所,2014,地下水補注地質敏感區劃定計畫書 G0002 屏東平原。 3.呂明旗 (2011),以小波和倒傳遞類神經網路建構鋁價預測模型,國立成功大學經營管理碩士學位學程學位論文。 4.Adamowski J, Chan HF (2011) A wavelet neural network conjunction model for groundwater level forecasting. Journal of Hydrology 407:28-40 doi:10.1016/j.jhydrol.2011.06.013 5.Adamowski J, Chan HF, Prasher SO, Ozga-Zielinski B, Sliusarieva A (2012) Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods for urban water demand forecasting in Montreal, Canada. Water Resources Research 48 doi:10.1029/2010wr009945 6.Barzegar R, Fijani E, Moghaddam AA, Tziritis E (2017) Forecasting of groundwater level fluctuations using ensemble hybrid multi-wavelet neural network-based models. Science of the Total Environment 599:20-31 doi:10.1016/j.scitotenv.2017.04.189 7.Deb K (2001) Multi-objective Optimization Using Evolutionary Algorithms. John Wiley, New York 8.Ebrahimi H, Rajaee T (2017) Simulation of groundwater level variations using wavelet combined with neural network, linear regression and support vector machine. Global and Planetary Change 148:181-191 doi:10.1016/j.gloplacha.2016.11.014 9.Emamgholizadeh S, Moslemi K, Karami G (2014) Prediction the Groundwater Level of Bastam Plain (Iran) by Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS). Water Resources Management 28:5433-5446 doi:10.1007/s11269-014-0810-0 10.I. Daubechies, ' Orthonormal bases of compactly supported wavelets,' Communications on Pure and Applied Mathematics, vol. 41, 1988, pp. 909-996. 11.J. H. Holland, Adaptation in Natural and Artificial Systems, MIT Press, 1975. 12.Jhong BC, Wang JH, Lin GF (2016) Improving the Long Lead-Time Inundation Forecasts Using Effective Typhoon Characteristics. Water Resources Management 30:4247-4271 doi:10.1007/s11269-016-1418-3 13.Jhong BC, Wang JH, Lin GF (2017) An integrated two-stage support vector machine approach to forecast inundation maps during typhoons. Journal of Hydrology 547:236-252 doi:10.1016/j.jhydrol.2017.01.057 14.Kim NW, Chung IM, Won YS, Arnold JG (2008) Development and application of the integrated SWAT-MODFLOW model. Journal of Hydrology 356: 1–16. 15.Kohonen T (2001) Self-Organizing Maps. Springer, New York 16.Konak A, Coit DW, Smith AE (2006) Multi-objective optimization using genetic algorithms: A tutorial. Reliability Engineering & System Safety 91:992-1007 doi:10.1016/j.ress.2005.11.018 17.L. Debnath, F.A. Shah. (2015) Wavelet Transforms and Their Applications. Springer Nature, Switzerland AG 18.Lin GF, Jhong BC, Chang CC (2013) Development of an effective data-driven model for hourly typhoon rainfall forecasting. Journal of Hydrology 495:52-63 doi:10.1016/j.jhydrol.2013.04.050 19.Lin GF, Wu MC (2007) A SOM-based approach to estimating design hyetographs of ungauged sites. Journal of Hydrology 339:216-226 doi:10.1016/j.jhydrol.2007.03.016 20.Maheswaran R, Khosa R (2012) Comparative study of different wavelets for hydrologic forecasting. Computers & Geosciences 46:284-295 doi:10.1016/j.cageo.2011.12.015 21.Maheswaran, R., Khosa, R (2013) Long term forecasting of groundwater levels withevidence of non-stationary and nonlinear characteristics. Comput. Geosci. 52,422–436. 22.Mallat (1989), “A Theory of Multiresolution Signal Decomposition: the Wavelet Representation,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 11, No. 7, pp. 674-693. 23.Mohanty S, Jha MK, Raul SK, Panda RK, Sudheer KP (2015) Using Artificial Neural Network Approach for Simultaneous Forecasting of Weekly Groundwater Levels at Multiple Sites. Water Resources Management 29:5521-5532 doi:10.1007/s11269-015-1132-6 24.Moosavi V, Vafakhah M, Shirmohammadi B, Behnia N (2013) A Wavelet-ANFIS Hybrid Model for Groundwater Level Forecasting for Different Prediction Periods. Water Resources Management 27:1301-1321 doi:10.1007/s11269-012-0239-2 25.Nourani V, Mousavi S (2016) Spatiotemporal groundwater level modeling using hybrid artificial intelligence-meshless method. Journal of Hydrology 536:10-25 doi:10.1016/j.jhydrol.2016.02.030 26.Nourani V, Alami MT, Vousoughi FD (2015) Wavelet-entropy data pre-processing approach for ANN-based groundwater level modeling. Journal of Hydrology 524:255-269 doi:10.1016/j.jhydrol.2015.02.048 27.Rao, R. M., A. S. Bopardikar (1998), “Introduction to theory and application” , Addison Wesley Longman, Inc. 28.Rezaie-Balf M, Naganna SR, Ghaemi A, Deka PC (2017) Wavelet coupled MARS and M5 Model Tree approaches for groundwater level forecasting. Journal of Hydrology 553:356-373 doi:10.1016/j.jhydrol.2017.08.006 29.Shirmohammadi B, Vafakhah M, Moosavi V, Moghaddamnia A (2013) Application of Several Data-Driven Techniques for Predicting Groundwater Level. Water Resources Management 27:419-432 doi:10.1007/s11269-012-0194-y 30.Suryanarayana C, Sudheer C, Mahammood V, Panigrahi BK (2014) An integrated wavelet-support vector machine for groundwater level prediction in Visakhapatnam, India. Neurocomputing 145:324-335 doi:10.1016/j.neucom.2014.05.026 31.Sujay Raghavendra, N., Deka, P.C. (2015) Forecasting monthly groundwater level fluctuations in coastal aquifers using hybrid wavelet packet-support vector regression. Cogent. Eng. 2 (1), 999414. 32.Vapnik V (1995) The nature of statistical learning theory. Springer, New York 二、河口—沿海含水層系統的地下水位解析 1.Asadi-Aghbolaghi, M., Chuang, M. H., & Yeh, H. D. (2012). Groundwater response to tidal fluctuation in a sloping leaky aquifer system. Applied Mathematical Modelling, 36(10), 4750-4759. doi:10.1016/j.apm.2011.12.009 2.Asadi-Aghbolaghi, M., Chuang, M. H., & Yeh, H. D. (2014). Groundwater Response to Tidal Fluctuation in an Inhomogeneous Coastal Aquifer-Aquitard System. Water Resources Management, 28(11), 3591-3617. doi:10.1007/s11269-014-0689-9 3.Carr, P.A., van der Kamp, G., (1969). Determining aquifer characteristics by the tidal methods. Water Resour. Res. 5 (5), 1023–1031. 4.Chen, P. C., Chuang, M. H., Tan, Y. C., & Ma, K. C. (2016). A general solution for groundwater flow in an estuarine's leaky aquifer system after considering aquifer anisotropy. Hydrological Processes, 30(12), 1862-1871. doi:10.1002/hyp.10687 5.Chuang, M. H., & Yeh, H. D. (2007). An analytical solution for the head distribution in a tidal leaky confined aquifer extending an infinite distance under the sea. Advances in Water Resources, 30(3), 439-445. doi:10.1016/j.advwatres.2006.05.011 6.Chuang, M. H., & Yeh, H. D. (2011). A generalized solution for groundwater head fluctuation in a tidal leaky aquifer system. Journal of Earth System Science, 120(6), 1055-1066. Retrieved from <Go to ISI>://WOS:000299225300007 7.Huang, F. K., Chuang, M. H., Wang, G. S., & Yeh, H. D. (2015). Tide-induced groundwater level fluctuation in a U-shaped coastal aquifer. Journal of Hydrology, 530, 291-305. doi:10.1016/j.jhydrol.2015.09.032 8.Jacob, C.E., (1950). Flow of groundwater. In: Rouse, H. (Ed.), Engineering Hydraulics. John Wiley, New York, pp. 321–386. 9.Jeng, D. S., Li, L., & Barry, D. A. (2002). Analytical solution for tidal propagation in a coupled semi-confined/phreatic coastal aquifer. Advances in Water Resources, 25(5), 577-584. doi:10.1016/s0309-1708(02)00016-7 10.Jiao, J. J., & Tang, Z. (2001). Comment on 'An analytical solution of groundwater response to tidal fluctuation in a leaky confined aquifer' by Jiu Jimmy Jiao and Zhonghua Tang - Reply. Water Resources Research, 37(1), 187-188. doi:10.1029/2000wr900217 11.Jiao, J. J., & Tang, Z. H. (1999). An analytical solution of groundwater response to tidal fluctuation in a leaky confined aquifer. Water Resources Research, 35(3), 747-751. doi:10.1029/1998wr900075 12.Liu, C. C. K., & Dai, J. J. (2012). SEAWATER INTRUSION AND SUSTAINABLE YIELD OF BASAL AQUIFERS. Journal of the American Water Resources Association, 48(5), 861-870. doi:10.1111/j.1752-1688.2012.00659.x 13.Li, H. L., & Jiao, J. J. (2001a). Analytical studies of groundwater-head fluctuation in a coastal confined aquifer overlain by a semi-permeable layer with storage. Advances in Water Resources, 24(5), 565-573. doi:10.1016/s0309-1708(00)00074-9 14.Li, H. L., & Jiao, J. J. (2001b). Tide-induced groundwater fluctuation in a coastal leaky confined aquifer system extending under the sea. Water Resources Research, 37(5), 1165-1171. doi:10.1029/2000wr900296 15.Li, H. L., & Jiao, J. J. (2002a). Analytical solutions of tidal groundwater flow in coastal two-aquifer system. Advances in Water Resources, 25(4), 417-426. doi:10.1016/s0309-1708(02)00004-0 16.Li, H. L., & Jiao, J. J. (2002b). Tidal groundwater level fluctuations in L-shaped leaky coastal aquifer system. Journal of Hydrology, 268(1-4), 234-243. doi:10.1016/s0022-1694(02)00177-4 17.Li, H. L., & Jiao, J. J. (2003). Influence of the tide on the mean watertable in an unconfined, anisotropic, inhomogeneous coastal aquifer. Advances in Water Resources, 26(1), 9-16. doi:10.1016/s0309-1708(02)00097-0 18.Li, H. L., Jiao, J. J., Luk, M., & Cheung, K. Y. (2002). Tide-induced groundwater level fluctuation in coastal aquifers bounded by L-shaped coastlines. Water Resources Research, 38(3), 8. doi:10.1029/2001wr000556 19.Li, H. L., Li, G. Y., Cheng, J. M., & Boufadel, M. C. (2007). Tide-induced head fluctuations in a confined aquifer with sediment covering its outlet at the sea floor. Water Resources Research, 43(3), 12. doi:10.1029/2005wr004724 20.Li, L., Barry, D. A., Cunningham, C., Stagnitti, F., & Parlange, J. Y. (2000). A two-dimensional analytical solution of groundwater responses to tidal loading in an estuary and ocean. Advances in Water Resources, 23(8), 825-833. doi:10.1016/s0309-1708(00)00016-6 21.Li, L., Barry, D. A., & Jeng, D. S. (2001). Tidal fluctuations in a leaky confined aquifer: Dynamic effects of an overlying phreatic aquifer. Water Resources Research, 37(4), 1095-1098. doi:10.1029/2000wr900402 22.Park, N., & Shi, L. (2015). A comprehensive sharp-interface simulation-optimization model for fresh and saline groundwater management in coastal areas. Hydrogeology Journal, 23(6), 1195-1204. doi:10.1007/s10040-015-1268-8 23.Parlange, J. Y., Stagnitti, F., Starr, J. L., & Braddock, R. D. (1984). Free-surface flow in porous-media and periodic-solution of the shallow-flow approximation. Journal of Hydrology, 70(1-4), 251-263. doi:10.1016/0022-1694(84)90125-2 24.Sun, H. B. (1997). A two-dimensional analytical solution of groundwater response to tidal loading in an estuary. Water Resources Research, 33(6), 1429-1435. doi:10.1029/97wr00482 25.Van der Kamp, G., (1972). Tidal fluctuations in a confined aquifer extending under the sea; 24th International Geological Conference, Montreal (ed.) J E Gill, Section 11 101–106. 26.Wang XJ, Li HL, Wan L, Liu FT, Jiang XW (2012) Loading effect of water table variation and density effect on tidal head fluctuations in a coastal aquifer system Water Resources Research 48 doi:10.1029/2011wr011600 27.Xia, Y. Q., Li, H. L., Boufadel, M. C., Guo, Q., Li, G. H., & Magos, A. (2007). Tidal wave propagation in a coastal aquifer: Effects of leakages through its submarine outlet-capping and offshore roof. Journal of Hydrology, 337(3-4), 249-257. doi:10.1016/j.jhydrol.2007.01.036 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22166 | - |
dc.description.abstract | 地下水為農業,水產養殖,工業和家庭用水日益重要的水資源,臺灣長期經濟發展下之地下水超抽行為,造成了地層下陷,海水侵入和地下水資源短缺等環境問題,而氣候變遷下,也可能對各地下水分區造成地下水補注潛能變化之衝擊。地下水位變動的原因包括水文地質條件,氣象因素和人類活動等綜合現象,而地下水位為水資源管理和使用的重要指標,例如在淺層含水層中,地下水位受抽水活動、降水與入滲等因素影響甚大,因此對於地下水位的分析評估,是水資源管理的重要課題。屏東平原以及其沿海區域,由於氣候特性與長期的抽取地下水,除了造成水資源管理上的問題,尤其在沿海地區長久以來養殖漁業不當發展,造成自然環境之破壞與衝擊。由於沖積平原地區與沿海地區,其地下水在自然條件與人為使用上,時間與空間上的尺度差異,為掌握未來相關環境變化趨勢,本研究為「平原與沿海地區地下水預測之類神經時空分析與理論解析」,重點包含兩個部分,首先利用類神經網路結合小波理論,包含利用自組映射組織圖(SOM)、多目標基因演算法(MOGA)、支持向量機演算法(SVM)與小波轉換(wavelet transform) 建置屏東平原的地下水預報複合型類神經模型;其次,在沿海地區地下水含水層系統複雜的感潮河道區域,開發通用的數學解析解,來分析河口—沿海含水層系統的地下水位振盪,結果顯示地下水位振盪是三種效應的綜合作用:負載效應、感潮河道含水層滲漏和內陸含水層滲漏等三種。當給定水文地質參數時,藉由本解析解,便可以清楚地描述出沿海地區地下水位振盪的行為。透過上述所發展的之複合型之地下水模式,可針對現今用水量增加,枯水期地面水資源缺乏,以及沿海地區地下水之問題,提供地下水位分析評估,作為水資源管理策略的參考依據。 | zh_TW |
dc.description.abstract | For the accurate and effective forecasting of groundwater level, a two-step spatial and temporal analysis process is necessary. The implementation of the SOM-based model can classify the hydrological and geographical zones and identify the recharge and subsidence regions. The Pingtung Plain is a large area with complex hydrology phenomena; the determination of optimal input meteorological factors via MOGA-SVM-based model could improve the groundwater level forecasting in the proximal-fan, the mid-fan and the distal-fan areas. The proposed spatial-temporal groundwater forecasting methodology is expected to be useful in regard to a huge and complex groundwater system, and can be provided as an alternative to the existing models for water resources management problems.
Tide-induced groundwater head fluctuations in coastal aquifers are complex, and numerous analytical solutions have been developed for these different aquifer systems. This paper investigated head fluctuations in a two-dimensional estuarine-coastal aquifer system consisting of an unconfined aquifer and a heterogeneous confined aquifer extending under a tidal river with a semipermeable layer between them. A general analytical solution was derived to explore the head fluctuations influenced by various hydrogeological conditions, such as the tidal river aquifer leakage, inland aquifer leakage, dimensionless transmissivity and transmissivity anisotropy ratios in the aquifer system. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T04:06:06Z (GMT). No. of bitstreams: 1 ntu-107-D02622006-1.pdf: 14120625 bytes, checksum: 5d4d9ced6f8a5a8b2bc22318352416fa (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 謝誌 I
摘要 II 目錄 IV 圖目錄 VI 表目錄 X 符號表 XI 第一章、緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 研究流程與架構 3 1.4 論文架構 5 第二章、文獻回顧 6 2.1 類神經網路於地下水位預測之時空分析 6 2.2 河口—沿海含水層系統的地下水位解析 9 第三章 研究理論與方法 11 3.1自組映射組織圖 (Self-Organizing Maps) 11 3.2 支持向量機 (Support Vector Machine) 13 3.3 多目標基因演算法 (Multi-Objective Genetic Algorithm) 16 3.4 小波理論 (Wavelet Analysis) 21 第四章、模式應用:地下水預報複合型類神經模型 27 4.1 研究區域與資料蒐集 27 4.2 氣象因子的選擇 30 4.3 模式開發 31 4.4 評估指標 32 4.5 SOM空間分析 33 4.6 MOGA-SVM時間分析 36 4.7 小波轉換與MOGA-SVM 60 第五章、模式應用:河口—沿海含水層系統的地下水位解析 81 5.1 感潮河道之地下水含水層系統 81 5.2 與過去研究驗證 86 5.3 感潮河道下拘限含水層無因次延伸長度(aL)的影響 90 5.4 內陸拘限含水層的滲漏效應 94 5.5 感潮河道和內陸拘限含水層的滲漏 96 5.6 拘限和非拘限含水層的無因次導水係數的影響 99 5.7 拘限和非拘限含水層的導水係數非等向性(T*)和無因次延伸長度效應(aL) 102 5.8 拘限和非拘限含水層的滲漏與導水係數非等向性的影響 106 5.9 結果與討論 107 第六章、結論與建議 109 6.1 結論 109 6.2 建議 110 參考文獻 112 附錄A 河口—沿海含水層系統的地下水位振盪控制方程式之推導 118 | |
dc.language.iso | zh-TW | |
dc.title | 平原與沿海地區地下水預測之類神經時空分析與理論解析 | zh_TW |
dc.title | An Integrated Ann-Based Spatial-Temporal Algorithms and Analytical Solution to Forecast Groundwater Level in Plain and Coastal Area | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 陳主惠,羅偉誠,余化龍,孫志鴻 | |
dc.subject.keyword | 屏東平原,地下水位預報,氣象因子,自組映射組織圖(SOM),多目標遺傳算法(MOGA),支持向量機(SVM),感潮河道—沿海含水層系統,感潮河道拘限含水層,導水係數非等向性,負載效應,無因次延伸長度,無因次導水係數,水位振盪,阻尼效應, | zh_TW |
dc.subject.keyword | Groundwater level forecast,Meteorological factor,Self-organizing map (SOM),Support vector machine (SVM),Multi-objective genetic algorithm (MOGA),Choushui River Alluvial Fan,Pingtung Plain,Groundwater level forecast,Meteorological factor,Self-organizing map (SOM),Support vector machine (SVM),Multi-objective genetic algorithm (MOGA),estuarine-coastal aquifer system,tidal-river confined aquifer,transmissivity anisotropy,loading effect,dimensionless extended length,dimensionless transmissivity,head fluctuations,damping effect, | en |
dc.relation.page | 121 | |
dc.identifier.doi | 10.6342/NTU201801919 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2018-07-27 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
顯示於系所單位: | 生物環境系統工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 13.79 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。