Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 口腔生物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22154
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor江伯倫
dc.contributor.authorHsin Hoen
dc.contributor.author何欣zh_TW
dc.date.accessioned2021-06-08T04:05:26Z-
dc.date.copyright2018-08-01
dc.date.issued2018
dc.date.submitted2018-07-27
dc.identifier.citation1. Yamashita, Y.M., et al., Polarity in stem cell division: asymmetric stem cell division in tissue homeostasis. Cold Spring Harb Perspect Biol, 2010. 2(1): p. a001313.
2. Freida, D., et al., Human bone marrow mesenchymal stem cells regulate biased DNA segregation in response to cell adhesion asymmetry. Cell Rep, 2013. 5(3): p. 601-10.
3. Hass, R., et al., Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal, 2011. 9: p. 12.
4. Dominici, M., et al., Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 2006. 8(4): p. 315-7.
5. Boxall, S.A. and E. Jones, Markers for characterization of bone marrow multipotential stromal cells. Stem Cells Int, 2012. 2012: p. 975871.
6. Beyer Nardi, N. and L. da Silva Meirelles, Mesenchymal stem cells: isolation, in vitro expansion and characterization. Handb Exp Pharmacol, 2006(174): p. 249-82.
7. Anderson, P., et al., CD105 (endoglin)-negative murine mesenchymal stromal cells define a new multipotent subpopulation with distinct differentiation and immunomodulatory capacities. PLoS One, 2013. 8(10): p. e76979.
8. Lin, C.S., et al., Is CD34 truly a negative marker for mesenchymal stromal cells? Cytotherapy, 2012. 14(10): p. 1159-63.
9. Sung, J.H., et al., Isolation and characterization of mouse mesenchymal stem cells. Transplant Proc, 2008. 40(8): p. 2649-54.
10. Meirelles Lda, S. and N.B. Nardi, Murine marrow-derived mesenchymal stem cell: isolation, in vitro expansion, and characterization. Br J Haematol, 2003. 123(4): p. 702-11.
11. Le Blanc, K. and D. Mougiakakos, Multipotent mesenchymal stromal cells and the innate immune system. Nat Rev Immunol, 2012. 12(5): p. 383-96.
12. Glenn, J.D. and K.A. Whartenby, Mesenchymal stem cells: Emerging mechanisms of immunomodulation and therapy. World J Stem Cells, 2014. 6(5): p. 526-39.
13. Ren, G., et al., Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell, 2008. 2(2): p. 141-50.
14. Krampera, M., et al., Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells, 2006. 24(2): p. 386-98.
15. English, K., et al., IFN-gamma and TNF-alpha differentially regulate immunomodulation by murine mesenchymal stem cells. Immunol Lett, 2007. 110(2): p. 91-100.
16. Han, Z., et al., The role of immunosuppression of mesenchymal stem cells in tissue repair and tumor growth. Cell Biosci, 2012. 2(1): p. 8.
17. Franquesa, M., et al., Immunomodulatory effect of mesenchymal stem cells on B cells. Front Immunol, 2012. 3: p. 212.
18. Augello, A., et al., Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. Eur J Immunol, 2005. 35(5): p. 1482-90.
19. Sato, K., et al., Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood, 2007. 109(1): p. 228-34.
20. Ren, G., et al., Species variation in the mechanisms of mesenchymal stem cell-mediated immunosuppression. Stem Cells, 2009. 27(8): p. 1954-62.
21. Wei, X., et al., Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacol Sin, 2013. 34(6): p. 747-54.
22. Sordi, V., et al., Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood, 2005. 106(2): p. 419-27.
23. Sohni, A. and C.M. Verfaillie, Mesenchymal stem cells migration homing and tracking. Stem Cells Int, 2013. 2013: p. 130763.
24. Ghannam, S., et al., Immunosuppression by mesenchymal stem cells: mechanisms and clinical applications. Stem Cell Res Ther, 2010. 1(1): p. 2.
25. Casiraghi, F., et al., Pretransplant infusion of mesenchymal stem cells prolongs the survival of a semiallogeneic heart transplant through the generation of regulatory T cells. J Immunol, 2008. 181(6): p. 3933-46.
26. Bartholomew, A., et al., Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol, 2002. 30(1): p. 42-8.
27. Koc, O.N., et al., Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol, 2000. 18(2): p. 307-16.
28. Augello, A., et al., Cell therapy using allogeneic bone marrow mesenchymal stem cells prevents tissue damage in collagen-induced arthritis. Arthritis Rheum, 2007. 56(4): p. 1175-86.
29. Mao, F., et al., Immunosuppressive effects of mesenchymal stem cells in collagen-induced mouse arthritis. Inflamm Res, 2010. 59(3): p. 219-25.
30. Bruder, S.P., N. Jaiswal, and S.E. Haynesworth, Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem, 1997. 64(2): p. 278-94.
31. Bourin, P., et al., Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy, 2013. 15(6): p. 641-8.
32. Liu, Y. and T. Ma, Metabolic regulation of mesenchymal stem cell in expansion and therapeutic application. Biotechnol Prog, 2015. 31(2): p. 468-81.
33. Shyh-Chang, N. and H.H. Ng, The metabolic programming of stem cells. Genes Dev, 2017. 31(4): p. 336-346.
34. Ito, K. and T. Suda, Metabolic requirements for the maintenance of self-renewing stem cells. Nat Rev Mol Cell Biol, 2014. 15(4): p. 243-56.
35. Kaur, J., A comprehensive review on metabolic syndrome. Cardiol Res Pract, 2014. 2014: p. 943162.
36. Alberti, K.G., et al., Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation, 2009. 120(16): p. 1640-5.
37. Cinti, S., et al., Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res, 2005. 46(11): p. 2347-55.
38. Lau, D.C., et al., Adipokines: molecular links between obesity and atheroslcerosis. Am J Physiol Heart Circ Physiol, 2005. 288(5): p. H2031-41.
39. Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation, 2002. 106(25): p. 3143-421.
40. Chobanian, A.V., et al., The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA, 2003. 289(19): p. 2560-72.
41. Petersen, K.F. and G.I. Shulman, Etiology of insulin resistance. Am J Med, 2006. 119(5 Suppl 1): p. S10-6.
42. Donath, M.Y. and S.E. Shoelson, Type 2 diabetes as an inflammatory disease. Nat Rev Immunol, 2011. 11(2): p. 98-107.
43. Guo, Y., et al., Succinate and its G-protein-coupled receptor stimulates osteoclastogenesis. Nat Commun, 2017. 8: p. 15621.
44. Tretter, L., A. Patocs, and C. Chinopoulos, Succinate, an intermediate in metabolism, signal transduction, ROS, hypoxia, and tumorigenesis. Biochim Biophys Acta, 2016. 1857(8): p. 1086-1101.
45. de Castro Fonseca, M., et al., GPR91: expanding the frontiers of Krebs cycle intermediates. Cell Commun Signal, 2016. 14: p. 3.
46. O'Neill, L.A., R.J. Kishton, and J. Rathmell, A guide to immunometabolism for immunologists. Nat Rev Immunol, 2016. 16(9): p. 553-65.
47. Jha, A.K., et al., Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity, 2015. 42(3): p. 419-30.
48. Tannahill, G.M., et al., Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha. Nature, 2013. 496(7444): p. 238-42.
49. Mills, E. and L.A. O'Neill, Succinate: a metabolic signal in inflammation. Trends Cell Biol, 2014. 24(5): p. 313-20.
50. Gilissen, J., et al., Insight into SUCNR1 (GPR91) structure and function. Pharmacol Ther, 2016. 159: p. 56-65.
51. Dang, E.V., et al., Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell, 2011. 146(5): p. 772-84.
52. Kirpichnikov, D., S.I. McFarlane, and J.R. Sowers, Metformin: an update. Ann Intern Med, 2002. 137(1): p. 25-33.
53. Collier, C.A., et al., Metformin counters the insulin-induced suppression of fatty acid oxidation and stimulation of triacylglycerol storage in rodent skeletal muscle. Am J Physiol Endocrinol Metab, 2006. 291(1): p. E182-9.
54. Owen, M.R., E. Doran, and A.P. Halestrap, Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J, 2000. 348 Pt 3: p. 607-14.

55. El-Mir, M.Y., et al., Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem, 2000. 275(1): p. 223-8.
56. Kelly, B., et al., Metformin inhibits the production of reactive oxygen species from NADH:Ubiquinone oxidoreductase to limit induction of interleukin-1beta (IL-1beta) and boosts interleukin-10 (IL-10) in lipopolysaccharide (LPS)-activated macrophages. J Biol Chem, 2015. 290(33): p. 20348-59.
57. Saisho, Y., Metformin and inflammation: Its potential beyond glucose-lowering effect. Endocr Metab Immune Disord Drug Targets, 2015. 15(3): p. 196-205.
58. Pernicova, I. and M. Korbonits, Metformin--mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol, 2014. 10(3): p. 143-56.
59. Rogacka, D., et al., Metformin overcomes high glucose-induced insulin resistance of podocytes by pleiotropic effects on SIRT1 and AMPK. Biochim Biophys Acta, 2018. 1864(1): p. 115-125.
60. Caton, P.W., et al., Metformin suppresses hepatic gluconeogenesis through induction of SIRT1 and GCN5. J Endocrinol, 2010. 205(1): p. 97-106.
61. Li, X., SIRT1 and energy metabolism. Acta Biochim Biophys Sin (Shanghai), 2013. 45(1): p. 51-60.
62. Yeung, F., et al., Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J, 2004. 23(12): p. 2369-80.
63. Liang, F., S. Kume, and D. Koya, SIRT1 and insulin resistance. Nat Rev Endocrinol, 2009. 5(7): p. 367-73.
64. Yu, H.C. and B.L. Chiang, Toll-like receptor 2 ligation of mesenchymal stem cells alleviates asthmatic airway inflammation. J Allergy Clin Immunol, 2018 Jan 31. pii: S0091-6749(18)30124-6. doi: 10.1016/j.jaci.2017.12.996.
65. Palomaki, S., et al., HIF-1alpha is upregulated in human mesenchymal stem cells. Stem Cells, 2013. 31(9): p. 1902-9.
66. Lee, J.H., et al., Hypoxia induces PDK4 gene expression through induction of the orphan nuclear receptor ERRgamma. PLoS One, 2012. 7(9): p. e46324.
67. Villena, J.A. and A. Kralli, ERRalpha: a metabolic function for the oldest orphan. Trends Endocrinol Metab, 2008. 19(8): p. 269-76.
68. Ventura-Clapier, R., A. Garnier, and V. Veksler, Transcriptional control of mitochondrial biogenesis: the central role of PGC-1alpha. Cardiovasc Res, 2008. 79(2): p. 208-17.
69. Vachharajani, V.T., et al., Sirtuins link inflammation and metabolism. J Immunol Res, 2016. 2016: p. 8167273.
70. Alimova, I.N., et al., Metformin inhibits breast cancer cell growth, colony formation and induces cell cycle arrest in vitro. Cell Cycle, 2009. 8(6): p. 909-15.
71. Liu, B., et al., Metformin induces unique biological and molecular responses in triple negative breast cancer cells. Cell Cycle, 2009. 8(13): p. 2031-40.
72. Luo, Q., et al., In vitro and in vivo anti-tumor effect of metformin as a novel therapeutic agent in human oral squamous cell carcinoma. BMC Cancer, 2012. 12: p. 517.
73. Karnevi, E., et al., Metformin-mediated growth inhibition involves suppression of the IGF-I receptor signalling pathway in human pancreatic cancer cells. BMC Cancer, 2013. 13: p. 235.
74. Wilcock, C. and C.J. Bailey, Accumulation of metformin by tissues of the normal and diabetic mouse. Xenobiotica, 1994. 24(1): p. 49-57.
75. Gao, Y., et al., Metformin regulates osteoblast and adipocyte differentiation of rat mesenchymal stem cells. J Pharm Pharmacol, 2008. 60(12): p. 1695-700.
76. Molinuevo, M.S., et al., Effect of metformin on bone marrow progenitor cell differentiation: in vivo and in vitro studies. J Bone Miner Res, 2010. 25(2): p. 211-21.
77. Jeyabalan, J., et al., The anti-diabetic drug metformin does not affect bone mass in vivo or fracture healing. Osteoporos Int, 2013. 24(10): p. 2659-70.
78. Greenberg, A.S. and M.S. Obin, Obesity and the role of adipose tissue in inflammation and metabolism. Am J Clin Nutr, 2006. 83(2): p. 461S-465S.

79. Liang, H. and W.F. Ward, PGC-1alpha: a key regulator of energy metabolism. Adv Physiol Educ, 2006. 30(4): p. 145-51.
80. Dorn, G.W., 2nd, R.B. Vega, and D.P. Kelly, Mitochondrial biogenesis and dynamics in the developing and diseased heart. Genes Dev, 2015. 29(19): p. 1981-91.
81. Spees, J.L., R.H. Lee, and C.A. Gregory, Mechanisms of mesenchymal stem/stromal cell function. Stem Cell Res Ther, 2016. 7(1): p. 125.
82. Raposo, G. and W. Stoorvogel, Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol, 2013. 200(4): p. 373-83.
83. Cheng, L., et al., Focus on Mesenchymal stem cell-derived exosomes: opportunities and challenges in cell-free therapy. Stem Cells Int, 2017. 2017: p. 6305295.
84. Le Blanc, K. and L.C. Davies, Mesenchymal stromal cells and the innate immune response. Immunol Lett, 2015. 168(2): p. 140-6.
85. Di Nicola, M., et al., Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood, 2002. 99(10): p. 3838-43.
86. Meisel, R., et al., Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood, 2004. 103(12): p. 4619-21.
87. Kadle, R.L., et al., Microenvironmental cues enhance mesenchymal stem cell-mediated immunomodulation and regulatory T-cell expansion. PLoS One, 2018. 13(3): p. e0193178.
88. Galgani, M., et al., Role of metabolism in the immunobiology of regulatory T cells. J Immunol, 2016. 197(7): p. 2567-75.
89. Beier, U.H., et al., Essential role of mitochondrial energy metabolism in Foxp3(+) T-regulatory cell function and allograft survival. FASEB J, 2015. 29(6): p. 2315-26.
90. Chao, T., H. Wang, and P.C. Ho, Mitochondrial control and guidance of cellular activities of T cells. Front Immunol, 2017. 8: p. 473.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22154-
dc.description.abstract間葉幹細胞(Mesenchymal stem cells, MSCs)因具有分化和免疫抑制之特性而已被用於治療許多疾病,而代謝調節可增強間葉幹細胞之特性,但對於免疫調節抑制之特性的影響卻鮮少被探討。第二型糖尿病(Type 2 diabetes)同時視為代謝和發炎疾病,並可以間葉幹細胞治療,因此適合探討代謝對於間葉幹細胞的特性影響。高血糖會誘導發炎反應和破壞檸檬酸循環(TCA cycle),導致琥珀酸(Succinate)的堆積,而琥珀酸在免疫反應上扮演著重要的角色。二甲雙胍(Metformin)為糖尿病的代謝調節藥物,但在機制上還有許多未知的地方,NAD+依賴性的去乙醯酶sirtuin 1(SIRT1)為二甲雙胍潛在的調控因子,因此若結合二甲雙胍與間葉幹細胞或許可作為第二型糖尿病的新療法。本次研究中,我們主要探討二甲雙胍和琥珀酸對於間葉幹細胞功能的影響,包括了解SIRT1所扮演的角色。我們將間葉幹細胞分別與二甲雙胍和琥珀酸作處理,並偵測對於CD4+ T細胞增生的抑制功能、脂肪細胞和硬骨細胞的分化能力以及調控因子的基因表現,研究結果顯示,二甲雙胍和琥珀酸可以提升間葉幹細胞抑制CD4+ T細胞增生的功能,並且二甲雙胍會增強間葉幹細胞分化成脂肪細胞的能力,然而琥珀酸卻會降低脂肪分化的能力,而兩者也會降低間葉幹細胞分化成硬骨細胞能力。在間葉幹細胞免疫抑制作用之調控因子基因表現上,發現二甲雙胍和琥珀酸會提升iNOS和IL-6的基因表現,間葉幹細胞免疫抑制功能需藉由IFN-γ活化,但再給予IFN-γ刺激後iNOS基因的表現量則會下降,此外,IFN-γ刺激前後,二甲雙胍和琥珀酸亦會改變代謝基因的表現量,並呈現相反的效果;而收集經過二甲雙胍或琥珀酸處理後的間葉幹細胞之上清液,也發現到具有增強的抑制CD4+ T細胞增生之效果。根據目前的研究結果,二甲雙胍和琥珀酸可以提升間葉幹細胞對於CD4+ T細胞的免疫抑制效果,對於脂肪和硬骨分化以及代謝基因表現上也有相反的影響,而二甲雙胍和琥珀酸對於間葉幹細胞的確切的潛在調節機制則需要更進一步探討。zh_TW
dc.description.abstractMesenchymal stem cells (MSCs) have been used for many diseases because of their multipotency and immunomodulatory function. Metabolic regulation has indicated to enhance MSCs properties, however, the underlying mechanisms remain unclear. Type 2 diabetes (T2D) is considered as a metabolic and inflammatory disease and it could be treated by MSCs. Thus it is worthy to study the effect of metabolic regulation immunomodulatory function of MSC. Hyperglycemia induces inflammation, impairs TCA cycle and lead to the accumulation of succinate, while succinate plays a vital role in immunity and inflammation. Metformin as a metabolic modulator is the first-line medication for T2D patients, and NAD+-dependent deacetylase sirtuin 1 (SIRT1) has been suggested as new mediator of metformin, which plays a vital role in its metabolism. Therefore, the combination of metformin and MSCs may serve as a novel therapeutic strategy for T2D. In our study, we investigated the immunomodulatory effect of metformin and succinate on the MSCs, including clarifying the role of SIRT1 in the underlying mechanisms. We treated MSCs with metformin or succinate, and detected the immunomodulation, differentiation and genes expression of treated-MSCs. The results showed that metformin and succinate could increase suppressive function of MSCs on CD4+ T cell proliferation. Also, metformin treatment promoted the differentiation into adipocyte, whereas succinate non-interacted this effect. In contrast, both metformin and succinate interfered the differentiation of MSCs into osteocyte. We also found metformin and succinate treatment increased mRNA levels of iNOS and IL-6 of MSCs but iNOS decreased from IFN-γ treated MSCs, as IFN-γ was required for MSC-mediated immunosuppression. In the presence or absence of IFN-γ, metformin and succinate seemed to display opposite effects on glycolysis, oxidative metabolism, fatty acid oxidation and mitochondrial biogenesis. In addition, soluble factors secreted by treated MSCs significantly enhanced the suppressive function of MSCs. The underlying mechanisms of metformin and succinate effects of MSCs functions await further investigation.en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:05:26Z (GMT). No. of bitstreams: 1
ntu-107-R05450003-1.pdf: 7170496 bytes, checksum: a68eea1ece4c373e7050ff17e46613bd (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsContents
口試委員審定書.............................................................................................................. I
致謝................................................................................................................................. II
摘要................................................................................................................................ III
Abstract .......................................................................................................................... V
Contents ....................................................................................................................... VII
Figure Contents ...........................................................................................................XIII
Table Contents ............................................................................................................. XV
Chapter I Introduction .............................................................................................. 1
1. Overview of Mesenchymal Stem/Stromal Cells ...................................................... 2
1.1 Characterization of MSCs .................................................................................. 2
1.2 Immunoregulatory Activities of MSCs .............................................................. 3
1.3 Therapeutic Applications of MSCs .................................................................... 5
2. Metabolic Regulation of MSCs in Therapeutic Applications .................................. 7
2.1 Strategies to Enhance MSCs Properties by Metabolic Regulation .................... 7
2.2 Overview of Metabolic Syndrome ..................................................................... 9
2.3 Type 2 Diabetes:Metabolic Disease and Inflammatory Disease ................... 10
2.4 Abnormal Succinate Accumulated in T2D mice................................................11
2.5 Succinate in Immunity and Inflammation .........................................................13
3. Metformin is the First-line Medication for T2D .................................................... 14
3.1 Metfomin: A Metabolic Modulator .................................................................. 14
3.2 Metformin can Mediate Its Anti-diabetic Activity through SIRT1 .................. 15
4. Hypothesis and Specific Aims ................................................................................ 17
Chapter II Materials and Methods ......................................................................... 18
Part1 Materials ......................................................................................................... 19
1. Reagents ................................................................................................................. 19
2. Cell Culture ............................................................................................................ 19
2.1 Animals ............................................................................................................ 19
2.2 MSCs culture medium and buffer..................................................................... 19
3. Characterization of MSCs ...................................................................................... 20
3.1 Flow cytometry ................................................................................................ 20
3.2 T lymphocyte proliferation assay ..................................................................... 21
3.3 MSCs differentiation ........................................................................................ 22
4. Detection of RNA expression ................................................................................ 23
4.1 Extraction of RNA ........................................................................................... 23
4.2 Reverse transcription-polymerase chain reaction (RT-PCR) .......................... 24
4.3 Quantitative real-time polymerase chain reaction (qPCR) .............................. 24
Part2 Methods .......................................................................................................... 25
1. Cell Culture ............................................................................................................ 25
1.1 Preparation of bone marrow derived MSCs .................................................... 25
1.2 Cell passage ..................................................................................................... 25
1.3 Isolation of CD4+ T lymphocytes .................................................................... 26
1.4 MTT cytotoxicity assay ................................................................................... 26
2. Characterization of MSC ....................................................................................... 27
2.1 Flow cytometry ................................................................................................ 27
2.2 T lymphocyte proliferation assay .................................................................... 27
2.3 MSC differentiation assay ............................................................................... 28
2.4 Oil Red O staining and quantification ............................................................. 29
2.5 Alizarin Red S staining and quantification ...................................................... 29
3. Detection of RNA expression ................................................................................ 30
3.1 Extraction of RNA ........................................................................................... 30
3.2 Reverse transcription-polymerase chain reaction (RT-PCR) .......................... 31
3.3 Quantitative real-time polymerase chain reaction (qPCR) ............................. 32
4. Statistical analysis ................................................................................................. 33
Chapter III Results .................................................................................................. 34
1. Experimental Designs ............................................................................................ 35
2. MSCs can express specific surface markers, differentiate into various kinds of cells, and suppress CD4+ T-lymphocyte proliferation ......................................................... 37
3. Metformin or succinate treatment increases the immunosuppressive function of MSCs on activated CD4+ T cells................................................................................. 37
4. Metformin increases adipocyte differentiation from MSCs, whereas succinate displays opposite effect ................................................................................................. 38
5. Both metformin and succinate treatment inhibit osteoblast differentiation from MSCs ............................................................................................................................. 39
6. Metformin and succinate at the concentration of 1mM express the higher mRNA level of iNOS than other immunoregulatory factors, and 1mM metformin increases the mRNA level of IL-6 ..................................................................................................... 39
7. The changes of metabolic genes in metformin- and succinate-treated MSCs .......... 40
8. Metformin- or succinate-treated MSCs decreases the mRNA level of iNOS after treating with IFN-γ, which is required for MSC-mediated immunosuppression activation ....................................................................................................................... 41
9. The changes of metabolic genes in metformin- and succinate-treated MSCs after treating with IFN-γ ........................................................................................................ 42
10. The potential role of SIRT1 in the MSCs, which has suggested a newly molecular mechanism for metformin ............................................................................................. 43
11. The supernatant of treated-MSCs demonstrated enhanced immunosuppressive function compared to cell-cell contact between MSCs and T cells .............................. 44
Chapter IV Discussion and Conclusion .................................................................... 45
References ................................................................................................................... 55
Figures ......................................................................................................................... 71
Tables ........................................................................................................................... 96




Figure Contents
Figure 1. Experimental design .................................................................................... 72
Figure 2. MSCs can express specific surface markers, differentiate into various kinds of cells, and suppress CD4+ T-lymphocyte proliferation .............................................. 74
Figure 3. Metformin or succinate treatment increases the immunosuppressive function of MSCs on activated CD4+ T cells ............................................................................... 76
Figure 4. Metformin increases adipocyte differentiation from MSCs, whereas succinate displays opposite effect ................................................................................. 78
Figure 5. Both metformin and succinate treatment inhibit osteoblast differentiation from MSCs .................................................................................................................... 80
Figure 6. Metformin and succinate at the concentration of 1mM expressed the higher mRNA level of iNOS than other immunoregulatory factors, and 1mM metformin increases the mRNA level of IL-6 ................................................................................ 82
Figure 7. The changes of metabolic genes in metformin- and succinate-treated MSCs ............................................................................................................................ 84
Figure 8. Metformin- or succinate-treated MSCs decreased the mRNA level of iNOS after treating with IFN-γ, which is required for MSC-mediated immunosuppression activation ....................................................................................................................... 86
Figure 9. The changes of metabolic genes in metformin- and succinate-treated MSCs after treating with IFN-γ ............................................................................................... 88
Figure 10. The potential role of SIRT1 in the MSCs, which has suggested a newly molecular mechanism for metformin ........................................................................... 90
Figure 11. The supernatant of treated-MSCs demonstrated enhanced immunosuppressive function compared to cell-cell contact between MSCs and T cells ............................................................................................................................... 92
Figure 12. The schematic of the conclusion .............................................................. 94


Table Contents
Table 1. Primer sequences ......................................................................................... 97
dc.language.isoen
dc.subject第二型糖尿病zh_TW
dc.subject間葉幹細胞zh_TW
dc.subject二甲雙胍zh_TW
dc.subject琥珀酸zh_TW
dc.subject代謝zh_TW
dc.subjectType 2 diabetesen
dc.subjectSuccinateen
dc.subjectMesenchymal stem cellsen
dc.subjectMetforminen
dc.subjectMetabolismen
dc.title二甲雙胍和琥珀酸對間葉幹細胞分化能力與功能影響之探討zh_TW
dc.titleStudy on the Effect of Metformin and Succinate on the Differentiation and
Functions of Mesenchymal Stem Cell
en
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee莊雅惠,孫昭玲
dc.subject.keyword間葉幹細胞,二甲雙胍,琥珀酸,代謝,第二型糖尿病,zh_TW
dc.subject.keywordMesenchymal stem cells,Metformin,Succinate,Metabolism,Type 2 diabetes,en
dc.relation.page98
dc.identifier.doi10.6342/NTU201802011
dc.rights.note未授權
dc.date.accepted2018-07-30
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept口腔生物科學研究所zh_TW
顯示於系所單位:口腔生物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
7 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved