Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 免疫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22138
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor江伯倫(Bor-Luen Chiang)
dc.contributor.authorTsai-Ying Yehen
dc.contributor.author葉采穎zh_TW
dc.date.accessioned2021-06-08T04:04:32Z-
dc.date.copyright2018-08-30
dc.date.issued2018
dc.date.submitted2018-07-31
dc.identifier.citation1. Xing, Y. and K.A. Hogquist, T-cell tolerance: central and peripheral. Cold Spring Harb Perspect Biol, 2012. 4(6).
2. Sakaguchi, S., et al., Regulatory T cells and immune tolerance. Cell, 2008. 133(5): p. 775-87.
3. Long, S.A. and J.H. Buckner, CD4+FOXP3+ T regulatory cells in human autoimmunity: more than a numbers game. J Immunol, 2011. 187(5): p. 2061-6.
4. Schmidt, A., N. Oberle, and P.H. Krammer, Molecular mechanisms of treg-mediated T cell suppression. Front Immunol, 2012. 3: p. 51.
5. Sakaguchi, S., et al., FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol, 2010. 10(7): p. 490-500.
6. Li, M.O., S. Sanjabi, and R.A. Flavell, Transforming growth factor-beta controls development, homeostasis, and tolerance of T cells by regulatory T cell-dependent and -independent mechanisms. Immunity, 2006. 25(3): p. 455-71.
7. Cao, X., et al., Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance. Immunity, 2007. 27(4): p. 635-46.
8. Huang, C.T., et al., Role of LAG-3 in regulatory T cells. Immunity, 2004. 21(4): p. 503-13.
9. Janssens, W., et al., CD4+CD25+ T cells lyse antigen-presenting B cells by Fas-Fas ligand interaction in an epitope-specific manner. J Immunol, 2003. 171(9): p. 4604-12.
10. Zhao, D.M., et al., Activated CD4+CD25+ T cells selectively kill B lymphocytes. Blood, 2006. 107(10): p. 3925-32.
11. Sojka, D.K., Y.H. Huang, and D.J. Fowell, Mechanisms of regulatory T-cell suppression - a diverse arsenal for a moving target. Immunology, 2008. 124(1): p. 13-22.
12. de la Rosa, M., et al., Interleukin-2 is essential for CD4+CD25+ regulatory T cell function. Eur J Immunol, 2004. 34(9): p. 2480-8.
13. Barthlott, T., et al., CD25+ CD4+ T cells compete with naive CD4+ T cells for IL-2 and exploit it for the induction of IL-10 production. Int Immunol, 2005. 17(3): p. 279-88.
14. Shevach, E.M. and A.M. Thornton, tTregs, pTregs, and iTregs: similarities and differences. Immunol Rev, 2014. 259(1): p. 88-102.
15. Curotto de Lafaille, M.A. and J.J. Lafaille, Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor? Immunity, 2009. 30(5): p. 626-35.
16. Zeng, H., et al., Type 1 regulatory T cells: a new mechanism of peripheral immune tolerance. Cell Mol Immunol, 2015. 12(5): p. 566-71.
17. Carrier, Y., et al., Th3 cells in peripheral tolerance. I. Induction of Foxp3-positive regulatory T cells by Th3 cells derived from TGF-beta T cell-transgenic mice. J Immunol, 2007. 178(1): p. 179-85.
18. Churlaud, G., et al., Human and Mouse CD8(+)CD25(+)FOXP3(+) Regulatory T Cells at Steady State and during Interleukin-2 Therapy. Front Immunol, 2015. 6: p. 171.
19. Gonnella, P.A., et al., Induction of oral tolerization in CD86 deficient mice: a role for CD86 and B cells in the up-regulation of TGF-beta. J Autoimmun, 2006. 26(2): p. 73-81.
20. Wu, H.Y., A. Monsonego, and H.L. Weiner, The mechanism of nasal tolerance in lupus prone mice is T-cell anergy induced by immature B cells that lack B7 expression. J Autoimmun, 2006. 26(2): p. 116-26.
21. Reichardt, P., et al., Naive B cells generate regulatory T cells in the presence of a mature immunologic synapse. Blood, 2007. 110(5): p. 1519-29.
22. Morlacchi, S., et al., Self-antigen presentation by mouse B cells results in regulatory T-cell induction rather than anergy or clonal deletion. Blood, 2011. 118(4): p. 984-91.
23. Chu, K.H. and B.L. Chiang, Regulatory T cells induced by mucosal B cells alleviate allergic airway hypersensitivity. Am J Respir Cell Mol Biol, 2012. 46(5): p. 651-9.
24. Hsu, L.H., et al., A B-1a cell subset induces Foxp3(-) T cells with regulatory activity through an IL-10-independent pathway. Cell Mol Immunol, 2015. 12(3): p. 354-65.
25. Chen, S.Y., et al., Lymphocyte-activation gene 3(+) (LAG3(+)) forkhead box protein 3(-) (FOXP3(-)) regulatory T cells induced by B cells alleviates joint inflammation in collagen-induced arthritis. J Autoimmun, 2016. 68: p. 75-85.
26. Chien, C.H., H.H. Yu, and B.L. Chiang, Single allergen-induced oral tolerance inhibits airway inflammation in conjugated allergen immunized mice. J Allergy Clin Immunol, 2015. 136(4): p. 1110-3.e4.
27. Shao, T.Y., et al., Novel Foxp3(-) IL-10(-) Regulatory T-cells Induced by B-Cells Alleviate Intestinal Inflammation in Vivo. Sci Rep, 2016. 6: p. 32415.
28. Crespo, J., et al., T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Curr Opin Immunol, 2013. 25(2): p. 214-21.
29. Chappert, P. and R.H. Schwartz, Induction of T cell anergy: integration of environmental cues and infectious tolerance. Curr Opin Immunol, 2010. 22(5): p. 552-9.
30. Muller, M.R. and A. Rao, NFAT, immunity and cancer: a transcription factor comes of age. Nat Rev Immunol, 2010. 10(9): p. 645-56.
31. Seroogy, C.M. and C.G. Fathman, T-cell anergy: from phenotype to genotype and back. Immunol Res, 2003. 28(3): p. 255-64.
32. Gavin, M.A., et al., Homeostasis and anergy of CD4(+)CD25(+) suppressor T cells in vivo. Nat Immunol, 2002. 3(1): p. 33-41.
33. Takahashi, T., et al., Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int Immunol, 1998. 10(12): p. 1969-80.
34. Fields, P.E., T.F. Gajewski, and F.W. Fitch, Blocked Ras activation in anergic CD4+ T cells. Science, 1996. 271(5253): p. 1276-8.
35. Li, W., et al., Blocked signal transduction to the ERK and JNK protein kinases in anergic CD4+ T cells. Science, 1996. 271(5253): p. 1272-6.
36. Jenkins, M.K. and R.H. Schwartz, Antigen presentation by chemically modified splenocytes induces antigen-specific T cell unresponsiveness in vitro and in vivo. J Exp Med, 1987. 165(2): p. 302-19.
37. Harada, Y., et al., Transcription factors Foxo3a and Foxo1 couple the E3 ligase Cbl-b to the induction of Foxp3 expression in induced regulatory T cells. J Exp Med, 2010. 207(7): p. 1381-91.
38. Nurieva, R.I., et al., The E3 ubiquitin ligase GRAIL regulates T cell tolerance and regulatory T cell function by mediating T cell receptor-CD3 degradation. Immunity, 2010. 32(5): p. 670-80.
39. Jin, H.S., et al., Itch expression by Treg cells controls Th2 inflammatory responses. J Clin Invest, 2013. 123(11): p. 4923-34.
40. Sauer, S., et al., T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc Natl Acad Sci U S A, 2008. 105(22): p. 7797-802.
41. Procaccini, C., et al., An oscillatory switch in mTOR kinase activity sets regulatory T cell responsiveness. Immunity, 2010. 33(6): p. 929-41.
42. Kalekar, L.A., et al., CD4(+) T cell anergy prevents autoimmunity and generates regulatory T cell precursors. Nat Immunol, 2016. 17(3): p. 304-14.
43. Rebollo, A. and C. Schmitt, Ikaros, Aiolos and Helios: transcription regulators and lymphoid malignancies. Immunol Cell Biol, 2003. 81(3): p. 171-5.
44. Schmitt, C., et al., Aiolos and Ikaros: regulators of lymphocyte development, homeostasis and lymphoproliferation. Apoptosis, 2002. 7(3): p. 277-84.
45. Wang, J.H., et al., Aiolos regulates B cell activation and maturation to effector state. Immunity, 1998. 9(4): p. 543-53.
46. Hung, K.H., et al., Aiolos collaborates with Blimp-1 to regulate the survival of multiple myeloma cells. Cell Death Differ, 2016. 23(7): p. 1175-84.
47. Gandhi, A.K., et al., Immunomodulatory agents lenalidomide and pomalidomide co-stimulate T cells by inducing degradation of T cell repressors Ikaros and Aiolos via modulation of the E3 ubiquitin ligase complex CRL4(CRBN.). Br J Haematol, 2014. 164(6): p. 811-21.
48. Seng, A. and T.M. Yankee, The Role of the Ikaros Family of Transcription Factors in Regulatory T cell Development and Function. J Clin Cell Immunol, 2017. 8(2).
49. Romero, F., et al., Aiolos transcription factor controls cell death in T cells by regulating Bcl-2 expression and its cellular localization. Embo j, 1999. 18(12): p. 3419-30.
50. Quintana, F.J., et al., Aiolos promotes TH17 differentiation by directly silencing Il2 expression. Nat Immunol, 2012. 13(8): p. 770-7.
51. Raffin, C., et al., Human memory Helios- FOXP3+ regulatory T cells (Tregs) encompass induced Tregs that express Aiolos and respond to IL-1beta by downregulating their suppressor functions. J Immunol, 2013. 191(9): p. 4619-27.
52. MacKenzie, D.A., et al., GRAIL is up-regulated in CD4+ CD25+ T regulatory cells and is sufficient for conversion of T cells to a regulatory phenotype. J Biol Chem, 2007. 282(13): p. 9696-702.
53. Venuprasad, K., Cbl-b and itch: key regulators of peripheral T-cell tolerance. Cancer Res, 2010. 70(8): p. 3009-12.
54. Vicente, R., et al., Nonclassical CD4+CD49b+ Regulatory T Cells as a Better Alternative to Conventional CD4+CD25+ T Cells To Dampen Arthritis Severity. J Immunol, 2016. 196(1): p. 298-309.
55. Baine, I., et al., Helios induces epigenetic silencing of IL2 gene expression in regulatory T cells. J Immunol, 2013. 190(3): p. 1008-16.
56. Takatori, H., et al., Helios Enhances Treg Cell Function in Cooperation With FoxP3. Arthritis Rheumatol, 2015. 67(6): p. 1491-502.
57. Tang, Q., et al., Cutting edge: CD28 controls peripheral homeostasis of CD4+CD25+ regulatory T cells. J Immunol, 2003. 171(7): p. 3348-52.
58. Scarlata, C.M., et al., Differential expression of the immunosuppressive enzyme IL4I1 in human induced Aiolos+, but not natural Helios+, FOXP3+ Treg cells. Eur J Immunol, 2015. 45(2): p. 474-9.
59. Bishop, G.A., B cell-T cell interaction: antigen bridge to antigen presentation. Nat Rev Immunol, 2016. 16(8): p. 467.
60. Lanzavecchia, A., Antigen-specific interaction between T and B cells. Nature, 1985. 314(6011): p. 537-9.
61. Bishop, G.A. and B.S. Hostager, B lymphocyte activation by contact-mediated interactions with T lymphocytes. Curr Opin Immunol, 2001. 13(3): p. 278-85.
62. Swain, S.L. and R.W. Dutton, Consequences of the direct interaction of helper T cells with B cells presenting antigen. Immunol Rev, 1987. 99: p. 263-80.
63. Moore, T.C., et al., B Cell Requirement for Robust Regulatory T Cell Responses to Friend Retrovirus Infection. MBio, 2017. 8(4).
64. Avalos, A.M., et al., Monovalent engagement of the BCR activates ovalbumin-specific transnuclear B cells. J Exp Med, 2014. 211(2): p. 365-79.
65. Chien, C.H., et al., Characterization of c-Maf+Foxp3- Regulatory T Cells Induced by Repeated Stimulation of Antigen-Presenting B Cells. Sci Rep, 2017. 7: p. 46348.
66. Hellebrekers, D.M., et al., Epigenetic regulation of tumor endothelial cell anergy: silencing of intercellular adhesion molecule-1 by histone modifications. Cancer Res, 2006. 66(22): p. 10770-7.
67. Wells, A.D., New insights into the molecular basis of T cell anergy: anergy factors, avoidance sensors, and epigenetic imprinting. J Immunol, 2009. 182(12): p. 7331-41.
68. Rebollo, A. and C. Schmitt, Ikaros, Aiolos and Helios: Transcription regulators and lymphoid malignancies. Immunology And Cell Biology, 2003. 81: p. 171.
69. Li, X., et al., Aiolos promotes anchorage independence by silencing p66Shc transcription in cancer cells. Cancer Cell, 2014. 25(5): p. 575-89.
70. Mohinta, S., et al., Differential regulation of Th17 and T regulatory cell differentiation by aryl hydrocarbon receptor dependent xenobiotic response element dependent and independent pathways. Toxicol Sci, 2015. 145(2): p. 233-43.
71. Esensten, J.H., et al., CD28 Costimulation: From Mechanism to Therapy. Immunity, 2016. 44(5): p. 973-88.
72. de Kouchkovsky, D., et al., microRNA-17-92 regulates IL-10 production by regulatory T cells and control of experimental autoimmune encephalomyelitis. J Immunol, 2013. 191(4): p. 1594-605.
73. Semple, K., et al., Strong CD28 costimulation suppresses induction of regulatory T cells from naive precursors through Lck signaling. Blood, 2011. 117(11): p. 3096-103.
74. Rieder, S.A., et al., Eos Is Redundant for Regulatory T Cell Function but Plays an Important Role in IL-2 and Th17 Production by CD4+ Conventional T Cells. J Immunol, 2015. 195(2): p. 553-63.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22138-
dc.description.abstractB細胞可以做為抗原呈現細胞誘導出一群不表達Foxp3的調節性T細胞,將其命名為B細胞誘發的調節性T細胞(Treg-of-B),然而不同於天然調節性T細胞與第一型調節性T細胞,這群B細胞誘發調節性T細胞是藉由緊密的細胞接觸來執行其抑制的功能,與其他兩群調節性細胞有所分別。數篇研究指出在一些自體免疫疾病的動物模式中,這群B細胞誘發調節性T細胞可以減緩其發炎的程度。細胞失能是周邊耐受性的機制之一,為較弱或是缺少共同刺激分子刺激下所造成的細胞不反應現象。而天然調節性T細胞被認為是自然狀態下細胞失能型態的細胞,而這些細胞失能型態的特色不只是調節性細胞的表徵特色,同時也有文獻指出這些細胞失能相關基因對於調節性T細胞的發展與抑制功能有相關。
在本篇研究中,首先確認B細胞誘發的調節性T細胞具有細胞失能型態,其次觀察其細胞失能相關基因的表現。同時我們設計各種不同B細胞誘發的調節性T細胞誘發條件包含抗原專一性B細胞與不同強度的CD28刺激,再進而探討白介素2抑制因子-Aiolos在B細胞誘發的調節性T細胞中的不同表現與其對於誘導與功能扮演的相關性。實驗結果發現,B細胞誘發的調節性T細胞呈現一個細胞失能的型態,包括刺激後細胞不增殖,且較低的白介素2分泌,但B細胞誘發的調節性T細胞卻不表達NFAT相關的細胞失能的相關基因,藉由此,我們再深入了探討白介素2抑制因子-Aiolos在B細胞誘發的調節性T細胞中的不同表現,發現Aiolos在B細胞誘發的調節性T細胞量介於Foxp3+自然調節性T 細胞與初始T細胞之間。由此我們延伸到探討調節性T細胞的誘導活化過程,我們利用兩種不同的活化條件,分別是不同強度的CD28刺激與卵清蛋白專一性B細胞所誘導出調節性T細胞。此篇研究的結果發現較高量的CD28刺激,或者是運用抗原特異性的B細胞進行誘導,並不會影響其細胞失能的表徵與相關基因表現,但卻會增加其B細胞誘發的調節性T細胞在再次刺激後的增值能力,除此之外,其抑制作用型T細胞的能力也有下降的趨勢,我們進而檢測其Aiolos的表現,發現在兩個變因下,其Aiolos的表現都相較於控制組低,且其抑制相關的分子表現也有下降的趨勢。
本篇研究發現了Aiolos與B細胞誘發的調節性T細胞活化與失能間的相關性,但Aiolos實際在發育與功能上的腳色還需要進一步的研究。此外不同誘導條件,會影響其抑制功能與細胞增殖的能力,也暗示了在誘導過程中適當程度的活化,對於其功能與發育的影響。
zh_TW
dc.description.abstractB cells are considered to be poor antigen presenting cells which tend to convert CD4+CD25- naïve T cells into CD25+Foxp3- regulatory T cells, which are termed Treg-of-B cells. Treg-of-B cells suppressed effector T cells by cell-cell contact manner which is different from the other two groups of regulatory T cells, natural regulatory T cells and type 1 regulatory T cells. In several studies of autoimmune disease animal models, Treg-of-B cells have been able to alleviate the level of inflammation. Anergy is one of the mechanisms of peripheral tolerance which is caused by weak or non-costimulatory signal result in unresponsiveness. Regulatory T cells are considered to be naturally anergic because of its hypoproliferate characters and low IL-2 production after stimulation, the cell with these characteristics are considered to have anergic phenotype. In addition to this anergic phenotype, several studies indicated that anergy associated factors take part in Treg cells development and suppressive function.
In this study, we first characterized the anergic phenotype if Treg-of-B cell, second to analyze the anergy associated gene expression. We designed several induction systems to discuss how antigen specificity and co-stimulatory signal affecting the development and the function of Treg-of-B cell. Finally, we analyzed the IL-2 suppressor – Aiolos expression of Treg-of-B cells in a variety of induction systems. The results showed that Treg-of-B cells exerted anergic phenotype including hypoproliferate and low IL-2 production but they did not have the significant expression of NFAT related anergy associated gene. Hence, we further examed the IL-2 regulator Aiolos, we found that the Aiolos expression of Treg-of-B cells were somewhere in between the expression of nTreg cells and Naïve T cells. We then extend the experiment to the different process of the induction of Treg-of-B cells, one is the different strengths of CD28 mAb stimulation, we also used OVA-specific B cell to perform the B cell- T cell co-culture. We discovered that stronger CD28 stimulation and the involvement of antigen-specific B cell—OB1 B cell, did not alter the anergic phenotype of Treg-of-B cell or T-of-OB1 cells, but somehow increased their ability to proliferate, and dreaded the suppression capacity and the molecules involved in the suppressive function compared to the control Treg-of-B cells.
In this study, we observed that there is an association between the activation/anergy status of Treg-of-B cells, but the actual role of Aiolos in the development and function of Treg-of-B cells still need further studies. We also found that different activation condition during the induction of Treg-of-B cells would affect their suppressive capacity and the proliferation ability, which suggest that the appropriate level of activation is crucial for the development and function of Treg-of-B cells.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:04:32Z (GMT). No. of bitstreams: 1
ntu-107-R05449013-1.pdf: 2739343 bytes, checksum: c1256a5d74a0e42c207eaec87175b8ae (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract v
Chapter I 1
Introduction 1
1 Background 2
1.1 T cell and immune tolerance 2
1.2 Regulatory T cells 2
1.3 The immune role and regulatory mechanisms of Treg cells 2
1.4 Treg population 4
1.5 B cells and tolerance 4
1.6 Treg-of-B 5
1.7 Anergy 5
1.8 Anergy and Regulatory T cells 6
1.9 Aiolos 7
2 Hypothesis and specific aims 8
Chapert II 11
Materials and Methods 11
1. Materials 12
1.1 Animals 12
1.2 Culture medium 12
1.3 Buffer 13
1.4 EasySepTM system 14
1.5 BD IMagTM system 14
1.6 Monoclonal antibodies(mAbs) 14
1.7 Flow cytometry 14
1.8 [3H]-incorporation assay 15
1.9 Enzyme-linked immunosorbent assay(ELISA) 16
1.10 RNA extraction 16
1.11 Reverse transcription polymerase chain reaction (RT-PCR) 17
1.12 Real-time polymerase chain reaction(quantitative PCR,qPCR 17
2. Methods 18
Results 25
1. The purity of B220+ B and CD4+CD25- T cells 26
2. Surface molecules expression of Treg-of-B cells 26
3. Suppressive function of Treg –of-B cells 27
4. The anergic phenotype of Treg –of-B cells 27
5. Anergy associated gene expression in Treg-of-B cells 28
6. Helios expression in T cells 29
7. Aiolos expression 29
8. Treg-of-B cell induced with different ratio of CD3/CD28 30
9. Anergy associated gene expression in Treg-of-B cell induced by different ratio of CD3/CD28. 31
10. Expression of suppression associated molecules in Treg-of-B cell induced by different ratio of CD3/CD28. 32
11. OB-1 B cells induced Treg-of-B 33
12. Anergy associated gene expression in T-of-OB1. 34
13. Suppression associated molecules expression in T-of-OB1 cells 35
14. IL-2 production of Treg-of-B cell under different CD28 stimulation and T-of-OB1 cells. 35
Chapter IV 37
Discussion 37
References 43
Figures 49
Figure 1. Purification of B220+ B cells and CD4+CD25- T cells 50
Figure 2. Surface molecules expression of Treg-of-B cells 51
Figure 3. The suppressive function of Treg-of-B cells 53
Figure 4. The Anergic phenotype of Treg-of-B 54
56
Figure 5. Anergy associated gene expression of CD4+CD25- T cells, CD4+CD25+ nTreg and Treg-of-B cells 56
Figure 6. Helios expressions of nTreg cells, Naïve T cells, Treg-of-B cells. 58
Figure 7. Aiolos expressions of nTreg cells, Naïve T cells, Treg-of-B cells. 60
Figure 8. Characterizations of Treg-of-B cells induced with different ratio of CD3/CD28. 63
Figure 9. The anergy associated genes expressions in Treg-of-B cells induced by different ratio of CD3/CD28. 65
Figure 10. The expression of suppression associated molecules in Treg-of-B cells induced by different ratio of CD3/CD28. 68
Figure 11. Characterization of OB1 B cells induced T-of-OB1. 70
Figure 12. Anergy associated gene expression in WT Treg-of-B cells and T-of-OB1 cells. 71
Figure 13. Suppression associated molecules expression in T-of-OB1 73
Figure 14. IL-2 production of Treg-of-B cell and T-of-OB1 cells. 75
dc.language.isozh-TW
dc.subjectAioloszh_TW
dc.subject調節性T細胞zh_TW
dc.subjectB細胞誘發的調節性T細胞zh_TW
dc.subject細胞失能zh_TW
dc.subject白介素2zh_TW
dc.subjectregulatory T cellsen
dc.subjectAiolosen
dc.subjectanergyen
dc.subjectIL-2en
dc.subjectTreg-of-B cellsen
dc.title探討細胞失能相關因子對B細胞誘導調節性T細胞的發育及功能所扮演的腳色zh_TW
dc.titleThe role of anergy-related molecules in development and function of Treg-of-B cellen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee賈景山(Jean-San Chia),楊皇煜(Huang-Yu Yang)
dc.subject.keyword調節性T細胞,B細胞誘發的調節性T細胞,細胞失能,白介素2,Aiolos,zh_TW
dc.subject.keywordregulatory T cells,Treg-of-B cells,anergy,IL-2,Aiolos,en
dc.relation.page76
dc.identifier.doi10.6342/NTU201801680
dc.rights.note未授權
dc.date.accepted2018-07-31
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept免疫學研究所zh_TW
顯示於系所單位:免疫學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
2.68 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved