Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22133
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蕫致韡,廖振鐸
dc.contributor.authorPo-Ya Wuen
dc.contributor.author吳博雅zh_TW
dc.date.accessioned2021-06-08T04:04:15Z-
dc.date.copyright2018-08-02
dc.date.issued2018
dc.date.submitted2018-07-31
dc.identifier.citationReferences
Akdemir, D., Sanchez, J. I., and Jannink, J.-L. (2015). Optimization of genomic selection training populations with a genetic algorithm. Genetics, Selection, Evolution: GSE, 47(1).
Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., and Buckler, E. S. (2007). TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics (Oxford, England), 23(19):2633–2635.
Covarrubias-Pazaran, G. (2016). Genome-Assisted Prediction of Quantitative Traits Us- ing the R Package sommer. PLOS ONE, 11(6).
Darrudi, R., Nazeri, V., Soltani, F., Shokrpour, M., and Ercolano, M. R. (2018). Eval- uation of combining ability in Cucurbita pepo L. and Cucurbita moschata Duchesne accessions for fruit and seed quantitative traits. Journal of Applied Research on Medic- inal and Aromatic Plants, 9:70–77.
Desta, Z. A. and Ortiz, R. (2014). Genomic selection: genome-wide prediction in plant improvement. Trends in Plant Science, 19(9):592–601.
Elshire, R. J., Glaubitz, J. C., Sun, Q., Poland, J. A., Kawamoto, K., Buckler, E. S., and Mitchell, S. E. (2011). A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species. PLOS ONE, 6(5).
Falconer, D. S. and Mackay, T. F. (1996). Introduction to Quantitative Genetics. Long- man, 4 edition.
Ferriol, M. and Pico ́, B. (2008). Pumpkin and Winter Squash, pages 317–349. Springer New York.
Fonseca, S. and Patterson, F. L. (1968). Hybrid Vigor in a Seven-Parent Diallel Cross in Common Winter Wheat (Triticum aestivum L.). Crop Science, 8(1):85–88.
Garcia, M. G. P., Medeiros, M. C., and Vasconcelos, G. F. R. (2017). Real-time inflation forecasting with high-dimensional models: The case of Brazil. International Journal of Forecasting, 33(3):679–693.
Glaubitz, J. C., Casstevens, T. M., Lu, F., Harriman, J., Elshire, R. J., Sun, Q., and Buckler, E. S. (2014). TASSEL-GBS: A High Capacity Genotyping by Sequencing Analysis Pipeline. PLOS ONE, 9(2).
Henderson, C. (1984). Applications of Linear Models in Animal Breeding. University of Guelph.
Jannink, J.-L., Lorenz, A. J., and Iwata, H. (2010). Genomic selection in plant breeding: from theory to practice. Briefings in Functional Genomics, 9(2):166–177.
Kizilkaya, K., Fernando, R. L., and Garrick, D. J. (2014). Reduction in accuracy of genomic prediction for ordered categorical data compared to continuous observations. Genetics Selection Evolution, 46(1):37.
Longin, C. F. H., Mu ̈hleisen, J., Maurer, H. P., Zhang, H., Gowda, M., and Reif, J. C. (2012). Hybrid breeding in autogamous cereals. Theoretical and Applied Genetics, 125(6):1087–1096.
Meuwissen, T. H. E., Hayes, B. J., and Goddard, M. E. (2001). Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps. Genetics, 157(4):1819–1829.
Money, D., Gardner, K., Migicovsky, Z., Schwaninger, H., Zhong, G.-Y., and Myles, S. (2015). LinkImpute: Fast and Accurate Genotype Imputation for Nonmodel Organ- isms. G3: Genes, Genomes, Genetics, 5(11):2383–2390.
Montesinos-Lo ́pez, O. A., Montesinos-Lo ́pez, A., Pe ́rez-Rodr ́ıguez, P., Campos, G. d. l., Eskridge, K., and Crossa, J. (2015). Threshold Models for Genome-Enabled Predic- tion of Ordinal Categorical Traits in Plant Breeding. G3: Genes, Genomes, Genetics, 5(2):291–300.
Perez, P. and de los Campos, G. (2014). Genome-Wide Regression and Prediction with the BGLR Statistical Package. Genetics, 198(2):483–495.
Schaffer, A. A. and Paris, H. S. (2003). MELONS, SQUASHES, AND GOURDS. In Caballero, B., editor, Encyclopedia of Food Sciences and Nutrition (Second Edition), pages 3817–3826. Academic Press.
Technow, F., Riedelsheimer, C., Schrag, T. A., and Melchinger, A. E. (2012). Genomic prediction of hybrid performance in maize with models incorporating dominance and population specific marker effects. Theoretical and Applied Genetics, 125(6):1181– 1194.
Technow, F., Schrag, T. A., Schipprack, W., Bauer, E., Simianer, H., and Melchinger, A. E. (2014). Genome Properties and Prospects of Genomic Prediction of Hybrid Performance in a Breeding Program of Maize. Genetics, 197(4):1343–1355.
Wang, C.-L., Ding, X.-D., Wang, J.-Y., Liu, J.-F., Fu, W.-X., Zhang, Z., Yin, Z.-J., and Zhang, Q. (2013). Bayesian methods for estimating GEBVs of threshold traits. Hered- ity, 110(3):213–219.
Wang, Q., Yu, Y., Yuan, J., Zhang, X., Huang, H., Li, F., and Xiang, J. (2017). Effects of marker density and population structure on the genomic prediction accuracy for growth trait in Pacific white shrimp Litopenaeus vannamei. BMC Genetics, 18.
Wang, X., Li, L., Yang, Z., Zheng, X., Yu, S., Xu, C., and Hu, Z. (2016). Predicting rice hybrid performance using univariate and multivariate GBLUP models based on North Carolina mating design II. Heredity, 118:302–310.
Wang, X., Xu, Y., Hu, Z., and Xu, C. (2018). Genomic selection methods for crop im- provement: Current status and prospects. The Crop Journal.
Xavier, A., Muir, W. M., Craig, B., and Rainey, K. M. (2016). Walking through the statis- tical black boxes of plant breeding. Theoretical and Applied Genetics, 129(10):1933– 1949.
Xu, S., Zhu, D., and Zhang, Q. (2014). Predicting hybrid performance in rice using genomic best linear unbiased prediction. Proceedings of the National Academy of Sci- ences, 111(34):12456–12461.
Zhao, Y., Mette, M. F., and Reif, J. C. (2015). Genomic selection in hybrid breeding. Plant Breeding, 134(1):1–10.
Zhao, Y., Zeng, J., Fernando, R., and Reif, J. C. (2013). Genomic Prediction of Hybrid Wheat Performance. Crop Science, 53(3):802.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22133-
dc.description.abstract全基因組選拔 (genomic selection; GS) 是一種強大而有效的工具,可用於協助判定具有潛力的雜交組合。在本研究中,利用具有已知基因型與外表型觀測值的訓練族群來建置 GS 模型,接著,使用所得的 GS 模型來預測所有感興趣的雜交組合之育種價估計值 (genomic estimated breeding value; GEBV),在此我們所使用的 GS 模型由加性和顯性分子標記效應 (additive and dominance effects) 組成。為調查不同估計分子標記效應的方法對 GEBV 的影響,我們透過統計模擬的方式來評估三種壓縮估計方法 (ridge regression, LASSO, elastic net)、三種貝式估計方法 (Bayes A, Bayes B, Bayes C) 以及線性混合效應模型 (linear mixed effects model; LMM),而外表型值包含以連續度量與序數評分測量的數量性狀。結果顯示,除 LASSO 和 Elastic net 這兩種估計方法外,大多數估算方法都能產生穩健的GEBV。另外,我們採用留一驗證法 (leave-one-out cross-validation),從這些穩健的估計方法中進一步決定每個性狀最合適的估計方法用於南瓜實際資料分析。最後,我們利用所建立好的 GS 模型,各自預測兩群南瓜 C. maxima 與 C. moschata 種內雜交之表現,並提供有用的訊息於育種者,以協助辨認具潛力的雜交組合與優良的親本。zh_TW
dc.description.abstractGenomic selection (GS) is a powerful and efficient tool to identify potential hybrids in a hybrid breeding program. In our study, we typically build a GS model based on a training population with known genotypic and phenotypic values. Then, we use the resulting GS model to predict genomic estimated breeding values (GEBVs) for all the hybrid combinations of interest. The used GS model consists of both additive and dominance marker effects. We first evaluate three shrinkage estimations (ridge regression, LASSO, elastic net), three Bayesian estimations (Bayes A, Bayes B, Bayes C) and linear mixed effects model (LMM) estimation for the marker effects through simulation studies. The phenotypic values contain quantitative traits measured in continuous scale or ordinal score. It is shown that most of the estimation methods result in robust GEBVs, except LASSO and elastic net methods. We further determine the most appropriate estimation method from those robust methods for each trait of our pumpkin data using leave-one-out cross-validation. Finally, we predict hybrid performance for the two intra-crossing groups within C. maxima and C. moschata of pumpkin, and provide useful information for plant breeders to identify potential hybrids and superior parental lines.en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:04:15Z (GMT). No. of bitstreams: 1
ntu-107-R05621202-1.pdf: 2610736 bytes, checksum: e4f879e022192b53be75eebb48bccc2b (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
摘要 iii
Abstract iv
1 Introduction 1
2 Materials and Methods 3
2.1 Phenotypedata ............................... 3
2.2 Genotypedata................................ 3
2.3 PopulationstructureandLDdecay..................... 4
2.4 Statisticalmodels .............................. 8
2.4.1 Continuoustrait........................... 8
2.4.2 Ordinaltrait............................. 8
2.5 Estimationformarkereffects........................ 10
2.5.1 Continuoustrait........................... 10
2.5.2 Ordinaltrait............................. 12
2.6 Simulationstudy .............................. 13
2.6.1 Continuoustrait........................... 13
2.6.2 Ordinaltrait............................. 14
2.7 Realdataanalysis.............................. 15
3 Results 16
3.1 Simulationstudy .............................. 16
3.1.1 Continuoustrait........................... 16
3.1.2 Ordinaltrait............................. 16
3.2 Realdataanalysis.............................. 20
3.2.1 Cross-validation .......................... 20
3.2.2 Prediction of potential hybrids and parental lines . . . . . . . .22
4 Discussion 24
References 27
Appendix 31
Appendix A – The summary of 50 potential hybrids with top GEBVs for other traits..................................... 31
Appendix B – The summary of 10 superior parental lines with top GCAs for othertraits.................................. 37
Appendix C–Rcode ............................... 41
dc.language.isoen
dc.title利用全基因組選拔預測雜交組合之表現:以南瓜為例zh_TW
dc.titleHybrid Performance Prediction based on Genomic Selection: a Case Study of Pumpkinen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee高振宏,蔡欣甫
dc.subject.keyword加性效應,顯性效應,壓縮估計法貝氏估計法,線性混合效應模型,zh_TW
dc.subject.keywordadditive effect,dominance effect,shrinkage estimation,Bayesian estimation,linear mixed effects model,en
dc.relation.page49
dc.identifier.doi10.6342/NTU201802288
dc.rights.note未授權
dc.date.accepted2018-08-01
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
2.55 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved