請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22095
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 呂東武 | |
dc.contributor.author | Jyun-Min Wang | en |
dc.contributor.author | 王鈞民 | zh_TW |
dc.date.accessioned | 2021-06-08T04:02:14Z | - |
dc.date.copyright | 2018-08-16 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-08-06 | |
dc.identifier.citation | 1. Baumhauer, J.F., et al., A prospective study of ankle injury risk factors. The American journal of sports medicine, 1995. 23(5): p. 564-570.
2. Garrick, J. and R. Requa, The epidemiology of foot and ankle injuries in sports. Clinics in sports medicine, 1988. 7(1): p. 29-36. 3. Garrick, J.G., The frequency of injury, mechanism of injury, and epidemiology of ankle sprains. The American journal of sports medicine, 1977. 5(6): p. 241-242. 4. Garrick, J.G. and R.K. Requa, Role of external support in the prevention of ankle sprains. Medicine and science in sports, 1973. 5(3): p. 200-203. 5. Yeung, M., et al., An epidemiological survey on ankle sprain. British journal of sports medicine, 1994. 28(2): p. 112-116. 6. Fong, D.T.-P., et al., A systematic review on ankle injury and ankle sprain in sports. Sports medicine, 2007. 37(1): p. 73-94. 7. Cornwall, M.W. and T.G. McPoil, Reliability and validity of center-of-pressure quantification. Journal of the American podiatric medical association, 2003. 93(2): p. 142-149. 8. Your Foot as a Twisted Plate: Supination and Pronation. 2014. 9. Riegger, C.L., Anatomy of the ankle and foot. Physical therapy, 1988. 68(12): p. 1802-1814. 10. Siegler, S., J. Chen, and C. Schneck, The three-dimensional kinematics and flexibility characteristics of the human ankle and subtalar joints—Part I: Kinematics. Journal of biomechanical engineering, 1988. 110(4): p. 364-373. 11. Holden, J.P., E.S. Grood, and J.F. Cummings, Factors affecting sensitivity of a transducer for measuring anterior cruciate ligament force. Journal of biomechanics, 1995. 28(1): p. 99-102. 12. Hall, G.W., et al., Rate-independent characteristics of an arthroscopically implantable force probe in the human achilles tendon. Journal of biomechanics, 1999. 32(2): p. 203-207. 13. Herzog, W., et al., Evaluation of the implantable force transducer for chronic tendon-force recordings. Journal of biomechanics, 1996. 29(1): p. 103-109. 14. Fleming, B.C., G.D. Peura, and B.D. Beynnon, Factors influencing the output of an implantable force transducer. Journal of biomechanics, 2000. 33(7): p. 889-893. 15. Ravary, B., et al., Strain and force transducers used in human and veterinary tendon and ligament biomechanical studies. Clinical biomechanics, 2004. 19(5): p. 433-447. 16. Siegler, S., et al., A six-degrees-of-freedom instrumented linkage for measuring the flexibility characteristics of the ankle joint complex. Journal of biomechanics, 1996. 29(7): p. 943-947. 17. de Asla, R.J., et al., Six DOF in vivo kinematics of the ankle joint complex: Application of a combined dual‐orthogonal fluoroscopic and magnetic resonance imaging technique. Journal of Orthopaedic Research, 2006. 24(5): p. 1019-1027. 18. Marcus Hollis, J., R. Dale Blasier, and C.M. Flahiff, Simulated lateral ankle ligamentous injury: change in ankle stability. The American journal of sports medicine, 1995. 23(6): p. 672-677. 19. Aydogan, U., R.R. Glisson, and J.A. Nunley, Extensor retinaculum augmentation reinforces anterior talofibular ligament repair. Clinical Orthopaedics and Related Research®, 2006. 442: p. 210-215. 20. Lewis, J., W. Lew, and J. Schmidt, A note on the application and evaluation of the buckle transducer for knee ligament force measurement. Journal of biomechanical engineering, 1982. 104(2): p. 125-128. 21. Bahr, R., et al., Mechanics of the anterior drawer and talar tilt tests: a cadaveric study of lateral ligament injuries of the ankle. Acta Orthopaedica Scandinavica, 1997. 68(5): p. 435-441. 22. Colville, M.R., et al., Strain measurement in lateral ankle ligaments. The American journal of sports medicine, 1990. 18(2): p. 196-200. 23. Ozeki, S., et al., Simultaneous strain measurement with determination of a zero strain reference for the medial and lateral ligaments of the ankle. Foot & ankle international, 2002. 23(9): p. 825-832. 24. Tohyama, H., et al., Biomechanical analysis of the ankle anterior drawer test for anterior talofibular ligament injuries. Journal of Orthopaedic Research, 1995. 13(4): p. 609-614. 25. Fujie, H., et al., The use of robotics technology to study human joint kinematics: a new methodology. Journal of biomechanical engineering, 1993. 115(3): p. 211-217. 26. Rudy, T., et al., A combined robotic/universal force sensor approach to determine in situ forces of knee ligaments. Journal of biomechanics, 1996. 29(10): p. 1357-1360. 27. Prisk, V.R., et al., Lateral ligament repair and reconstruction restore neither contact mechanics of the ankle joint nor motion patterns of the hindfoot. The Journal of Bone and Joint Surgery. American volume., 2010. 92(14): p. 2375. 28. Syu, C-C., Development of a Robot-Based Testing System for the Study of Joint Biomechanics. Institute of Biomedical Engineering National Taiwan University., 2005. 29. Hsieh, H.-J., et al., Evaluation of three force-position hybrid control methods for a robot-based biological joint-testing system. Biomedical engineering online, 2016. 15(1): p. 62. 30. Rusinkiewicz, S. and M. Levoy. Efficient variants of the ICP algorithm. in 3-D Digital Imaging and Modeling, 2001. Proceedings. Third International Conference on. 2001. IEEE. 31. Peters, W. and W. Ranson, Digital imaging techniques in experimental stress analysis. Optical engineering, 1982. 21(3): p. 213427. 32. Peters, W., et al., Application of digital correlation methods to rigid body mechanics. Optical Engineering, 1983. 22(6): p. 226738. 33. Chu, T., W. Ranson, and M.A. Sutton, Applications of digital-image-correlation techniques to experimental mechanics. Experimental mechanics, 1985. 25(3): p. 232-244. 34. Sutton, M., et al., Application of an optimized digital correlation method to planar deformation analysis. Image and Vision Computing, 1986. 4(3): p. 143-150. 35. Pan, B., et al., Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Measurement Science and Technology, 2009. 20(6): p. 062001. 36. Boyce, B.L., et al., Full-field deformation of bovine cornea under constrained inflation conditions. Biomaterials, 2008. 29(28): p. 3896-3904. 37. Gao, Z. and J.P. Desai, Estimating zero-strain states of very soft tissue under gravity loading using digital image correlation. Medical Image Analysis, 2010. 14(2): p. 126-137. 38. Sztefek, P., et al., Using digital image correlation to determine bone surface strains during loading and after adaptation of the mouse tibia. Journal of biomechanics, 2010. 43(4): p. 599-605. 39. Jian, L-D., Biomechanics of Articular Surface in Ankle Joint with Subtalar Arthrodesis Using Digital Image Correlation and Robot System. Institute of Biomedical Engineering National Taiwan University., 2013. 40. Wu, G., et al., ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine. Journal of biomechanics, 2002. 35(4): p. 543-548. 41. Watanabe, K., et al., Analysis of joint laxity after total ankle arthroplasty: cadaver study. Clinical Biomechanics, 2009. 24(8): p. 655-660. 42. Wang, H., et al., An MRI-compatible loading device to assess knee joint cartilage deformation: effect of preloading and inter-test repeatability. Journal of biomechanics, 2015. 48(12): p. 2934-2940. 43. Ching, R.P., et al., Comparison of residual stability in thoracolumbar spine fractures using neutral zone measurements. Journal of orthopaedic research, 1995. 13(4): p. 533-541. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22095 | - |
dc.description.abstract | 踝關節在日常生活中扮演重要的角色,不管走路、跑步、運動都會用到踝關節,也容易受傷,在運動傷害中造成的踝關節傷害佔25%,嚴重的踝關節傷害可能會導至踝關節功能上的限制和失能。在眾多踝關節傷害中,踝關節扭傷佔有 80%以上的比例,大約 77%的踝關節扭傷是屬於外側扭傷,而前距腓韌帶的破裂或撕裂佔有 73%,如果踝關節扭傷治療不當,73%的扭傷運動員踝關節扭傷反復發作,59%的運動員有明顯的殘留症狀和殘疾。踝關節扭傷時會產生疼痛症狀和踝關節活動的限制之外,嚴重可能會造成骨折或脛骨肌肉群損傷,導致踝關節與各軟組織之間的不平衡,間接影響破壞踝關節的穩定性,若踝關節長期處於不穩定的狀態之下,可能導致退化性關節炎或創傷性的發生,然而,踝關節相比其他下肢之負重關節,膝關節以及髖關節踝關節,雖然承受更大的壓應力,但踝關節關節炎的盛行率卻遠低於膝關節以及髖關節,因此研究踝關節的生物力學特殊性,是一個重要的議題。本研究結合了三維全域變形及應變量測系統與機械手臂關節測試系統,由此探討距下關節骨融合術對踝關節之影響。本研究包含前後拉伸試驗與內外翻模擬試驗,進行軟骨面重建,藉由模型對位可獲完整軟骨和骨頭模型,與量測出骨頭運動學資訊,推算出踝關節軟骨形變及韌帶之應變。本研究發現,距下骨融合術將會造成距骨活動性喪失,進一步的造成踝關節力量轉換機制失靈,特別是在內翻測試上,骨融合後之踝關節試體前距腓韌帶之伸長量增加,同時,跟腓韌帶和後距腓韌帶之伸長量卻減少,造成踝關節力量分配不均,使踝關節軟組織應力集中之現象增加,提高受傷之風險,說明距骨於踝關節力量分配中之重要性,本研究所得之關節位移、力量計算出勁度,韌帶應變之變化和關節面軟骨的形變結果,未來將可以用來驗證,其他踝關節外側韌帶之電腦模擬結果,並成為外科踝關節手術和術後復健之依據。 | zh_TW |
dc.description.abstract | The ankle joint injured more often in sports activity rather than occupational injury. Sever ankle joint injury might lead to loss of function in ankle joint. In all of the ankle injuries, ankle sprain stands more than 80%. About 77% of the sprain in ankle joint are the lateral ankle sprain. And, tearing ATFL involve in 73% of all the lateral ankle sprain. If the ankle sprain is not treated properly, 73% of the athletes will encounter ankle sprain again, moreover, 59% of the athletes will have residual symptoms and disability significantly. Ankle sustain weight bearing in daily activity. However, not like another weight-bearing joint, the prevalence of symptomatic arthritis in the ankle is much lower than the knee and hip. Studying particular biomechanical property in ankle joint might reveal how different ankle joint sustain weight during daily activity. This study aims to find the interaction between articular surface and the lateral ligaments in the ankle joint and the effect of subtalar joint arthrodesis. Kinetic and kinematic data recorded during anterior, posterior drawer test and varus, valgus tilt test. We found that arthrodesis results in stress concentration in several components during tests. This might be the result of the restrict motion from subtalar joint arthrodesis which implies that talus motion is highly relative to the biomechanics of loading distribution. Patients who had this surgery might be the caution to avoid unexpected loading in ligaments or articular surface. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T04:02:14Z (GMT). No. of bitstreams: 1 ntu-107-R05548039-1.pdf: 6108585 bytes, checksum: 8ce119394152812bc7bf5692bf57bfff (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 摘要 I
ABSTRACT II 目錄 III 表目錄 V 圖目錄 VI 第一章 緒論 1 第一節 研究動機 1 第二節 踝關節之功能解剖構造 3 一、 骨骼系統 3 二、 韌帶系統 5 三、 肌肉組織 6 四、 距下關節骨融合術 6 第三節 文獻回顧 8 第四節 研究目的 13 第二章 材料與方法 14 第一節 踝關節試體 14 第二節 硬體 15 一、 機械手臂系統 15 二、 六軸力規 16 三、 夾具設備 17 四、 三維全域變形及應變量測系統 18 第三節 軟體 19 一、 Visual Basic 6.0 19 二、 三維全域變形及應變量測系統 19 三、 Amira 5.5 19 四、 Geomagic Studio 12 19 第四節 數位影像相關法 21 第五節 控制理論與實驗流程 23 一、 座標系統定義 23 二、 機器人學理論應用:機械手臂控制 25 三、 實驗流程 27 第六節 分析方法 28 第三章 結果 30 第一節 前後拉測試與距骨傾斜測試 30 第二節 骨融合前後韌帶應變 47 第三節 距下關節骨融合術對距骨軟骨接觸力學之影響 57 第四章 討論 67 第一節 機械手臂關節側試系統於踝關節之收斂 67 第二節 距下關節骨融合術於前後、距骨傾斜測試 67 第三節 外側韌帶之貢獻 68 第四節 骨融合術與外側韌帶和軟骨接觸面積 69 第五章 結論 70 參考資料 71 | |
dc.language.iso | zh-TW | |
dc.title | 利用機械手臂量測距下關節骨融合術對外側韌帶應變與踝關節接觸力學之影響 | zh_TW |
dc.title | Effects of Subtalar Arthrodesis on the Strains of the Lateral Ligaments and Talocrural Articular Contact Mechanics Using a Robot-Based Joint Testing System | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳祥和,陳文斌,林正忠 | |
dc.subject.keyword | 踝關節,機械手臂關節測試系統,數位影像相關法,踝關節外側韌帶,骨融合術, | zh_TW |
dc.subject.keyword | Ankle Joint,Robotic-based Joint Testing System,Digital Image Correlation,Lateral Ligaments in Ankle Joint,Arthrodesis, | en |
dc.relation.page | 73 | |
dc.identifier.doi | 10.6342/NTU201802346 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2018-08-06 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
顯示於系所單位: | 醫學工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 5.97 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。