請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22094完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林?萬(Lin, Chii-Wann) | |
| dc.contributor.author | "Li, Yu-Wei" | en |
| dc.contributor.author | 李昱瑋 | zh_TW |
| dc.date.accessioned | 2021-06-08T04:02:10Z | - |
| dc.date.copyright | 2018-08-14 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-06 | |
| dc.identifier.citation | [1] A. R. Zlotta and C. Kuk, “Transurethral Needle Ablation of the Prostate,” Smith’s Textb. Endourol. 3rd Ed., vol. 2, pp. 1503–1521, 2012.
[2] B. HILL et al., “Transurethral Needle Ablation Versus Transurethral Resection of the Prostate for the Treatment of Symptomatic Benign Prostatic Hyperplasia: 5-Year Results of a Prospective, Randomized, Multicenter Clinical Trial,” J. Urol., vol. 171, no. 6, pp. 2336–2340, 2004. [3] A. Borchert and D. A. Leavitt, “A Review of Male Sexual Health and Dysfunction Following Surgical Treatment for Benign Prostatic Hyperplasia and Lower Urinary Tract Symptoms,” Curr. Urol. Rep., vol. 19, no. 66, 2018. [4] “Risk Factors of Benign Prostatic Hyperplasia (BPH).” [Online]. Available: http://laser-prostate-robot.co.uk/benign-prostatic-hyperplasia/diagnostic-methods/risk-factors/. [Accessed: 12-Jul-2018]. [5] Y. Arai et al., “Impact of interventional therapy for benign prostatic hyperplasia on quality of life and sexual function: a prospective study.,” J. Urol., vol. 164, no. 4, pp. 1206–1211, 2000. [6] C. G. Roehrborn, “Benign Prostatic Hyperplasia: An Overview,” Rev. Urol., vol. 7, no. Suppl 9, pp. S3–S14, 2005. [7] S. C.C., C. C. Schulman, and A. R. Zlotta, “Transurethral needle ablation of the prostate for treatment of benign prostatic hyperplasia: Early clinical experience,” Urology, vol. 45, no. 1, pp. 28–33, 1995. [8] Y. K. Cho, J. K. Kim, W. T. Kim, and J. W. Chung, “Hepatic resection versus radiofrequency ablation for very early stage hepatocellular carcinoma: A markov model analysis,” Hepatology, vol. 51, no. 4, pp. 1284–1290, 2010. [9] I. Chang, “Finite element analysis of hepatic radiofrequency ablation probes using temperature-dependent electrical conductivity,” Biomed. Eng. Online, vol. 2, pp. 1–18, 2003. [10] J. Alba, A. Gonzalez-Suarez, M. Trujillo, and E. Berjano, “Theoretical and experimental study on RF tumor ablation with internally cooled electrodes: When does the roll-off occur?,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, no. in mm, pp. 314–317, 2011. [11] F. C. Su, S. H. Wang, and M. L. Yeh, “Numerical Modeling to Calculate Thermal Lesion Formation Using Internally-Cooled Electrodes during Radiofrequency Ablation of Liver Tumors,” IFMBE Proc., vol. 47, pp. 84–85, 2015. [12] P. Andersson, “Radio Frequency Thermal Treatment of Liver Tumours,” 2008. [13] T. Akman et al., “Effects of bipolar and monopolar transurethral resection of the prostate on urinary and erectile function: A prospective randomized comparative study,” BJU Int., vol. 111, no. 1, pp. 129–136, 2013. [14] G. T. Martin, M. G. Haddad, E. G. Cravalho, and H. F. Bowman, “Thermal model for the local microwave hyperthermia treatment of benign prostatic hyperplasia,” IEEE Trans. Biomed. Eng., vol. 39, no. 8, pp. 836–844, 1992. [15] E. W. Tanotogono, Suprijanto, and J. J. Sudirham, “Model development for RF ablation using bipolar forceps in cancer therapy,” Proc. - 2015 4th Int. Conf. Instrumentation, Commun. Inf. Technol. Biomed. Eng. ICICI-BME 2015, pp. 313–318, 2016. [16] I. dos Santos, D. Haemmerich, C. da Silva Pinheiro, and A. Ferreira da Rocha, “Effect of variable heat transfer coefficient on tissue temperature next to a large vessel during radiofrequency tumor ablation,” Biomed. Eng. Online, vol. 7, pp. 1–11, 2008. [17] C. G. Roehrborn, P. Boyle, J. C. Nickel, K. Hoefner, and G. Andriole, “Efficacy and safety of a dual inhibitor of 5-alpha-reductase types 1 and 2 (dutasteride) in men with benign prostatic hyperplasia,” Urology, vol. 60, no. 3, pp. 434–441, 2002. [18] A. Thorpe and D. Neal, “Benign prostatic hyperplasia.,” Lancet (London, England), vol. 361, no. 9366, pp. 1359–67, 2003. [19] “Transurethral resection of the prostate (TURP) | EAU Patient Information.” [Online]. Available: http://patients.uroweb.org/transurethral-resection-of-the-prostate-turp/. [Accessed: 11-Jul-2018]. [20] J. Rassweiler, D. Teber, R. Kuntz, and R. Hofmann, “Complications of Transurethral Resection of the Prostate (TURP)-Incidence, Management, and Prevention,” Eur. Urol., vol. 50, no. 5, pp. 969–980, 2006. [21] “TUNA (Transurethral needle ablation) | EAU Patient Information.” [Online]. Available: http://patients.infocaster-linux.net/tuna-transurethral-needle-ablation/. [Accessed: 13-Jul-2018]. [22] D. J. Rosario, J. T. Phillips, and C. R. Chapple, “Durability and Cost-Effectiveness of Transurethral Needle Ablation of the Prostate as an Alternative to Transurethral Resection of the Prostate When α-Adrenergic Antagonist Therapy Fails,” J. Urol., vol. 177, no. 3, pp. 1047–1051, 2007. [23] Z. P. JI ZHEN HUA, “New concept of comprehensive treatment of Cancer - Google Books.” [Online]. Available: https://books.google.com.tw/books?id=6TlntMtdAikC&pg=PA73&lpg=PA73&dq=RFA+組織壞死+溫度&source=bl&ots=ffDUNyQAoN&sig=PE5grWiWu65X3cdGAPjUHgJgNnQ&hl=en&sa=X&ved=0ahUKEwiNj7HXt_nbAhUNd94KHTHYB3wQ6AEIXzAF#v=onepage&q. [Accessed: 30-Jun-2018]. [24] J. A. Dickson and S. K. Calderwood, “Temperature Range and Selective Sensitivity of Tumors To Hyperthermia: a Critical Review,” Ann. N. Y. Acad. Sci., vol. 335, no. 1, pp. 180–205, 1980. [25] “Molecular and Cellular Mechanisms of Hyperthermia. (Thermoradiotherapy and Thermochemotherapy: Biology, Physiology, Physics) - Google 圖書.” [Online]. Available: https://books.google.com.tw/books?id=Z6b9CAAAQBAJ&pg=PA47&lpg=PA47&dq=molecular+and+cellular+mechanisms+of+hyperthermia+streffer&source=bl&ots=_9QgZ6kW7L&sig=LDeyWLOr86PL16JK7RRTNFejX20&hl=zh-TW&sa=X&ved=0ahUKEwjFk-6Bo5bcAhXGF4gKHd-HC-IQ6AEINjAC#v=onepage. [Accessed: 11-Jul-2018]. [26] Y. Ni, S. Mulier, Y. Miao, L. Michel, and G. Marchal, “A review of the general aspects of radiofrequency ablation,” Abdom. Imaging, vol. 30, no. 4, pp. 381–400, 2005. [27] J. C. Allain, M. L. E. Lous, and S. Bazin, “RELATIONSHIPS WITH COLLAGEN CROSS-LINKING ( 1 ) Preparation of tissues,” vol. 533, pp. 147–155, 1978. [28] H. Iida, T. Aihara, S. Ikuta, and N. Yamanaka, “Effectiveness of impedance monitoring during radiofrequency ablation for predicting popping,” World J. Gastroenterol., vol. 18, no. 41, pp. 5870–5878, 2012. [29] D. Haemmerich, J. G. Webster, and D. M. Mahvi, “Thermal dose versus isotherm as lesion boundary estimator for cardiac and hepatic radio-frequency ablation,” Proc. 25th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (IEEE Cat. No.03CH37439), vol. 1, pp. 134–137, 2003. [30] S. A. Sapareto and W. C. Dewey, “Thermal dose determination in cancer therapy,” Int. J. Radiat. Oncol. Biol. Phys., vol. 10, no. 6, pp. 787–800, 1984. [31] K. J. Henle and L. A. Dethlefsen, “Time-Temperature Relationships for Heat-Induced Killing of Mammalian Cells,” Ann. N. Y. Acad. Sci., vol. 335, no. 1, pp. 234–253, 1980. [32] W. M. Whelan and D. R. Wyman, “Dynamic Modeling of Interstitial Laser Photocoagulation : Implications for Lesion Formation in Liver In Vivo,” vol. 208, no. September 1998, pp. 202–208, 1999. [33] I. A. Chang, “Considerations for thermal injury analysis for RF ablation devices.,” Open Biomed. Eng. J., vol. 4, no. 2, pp. 3–12, 2010. [34] I. A. Chang and U. D. Nguyen, “Thermal modeling of lesion growth with radiofrequency ablation devices,” Biomed. Eng. Online, vol. 3, pp. 1–19, 2004. [35] D. Haemmerich, “Biophysics of Radiofrequency Ablation,” Crit. Rev. Biomed. Eng., vol. 38, no. 1, pp. 53–63, 2010. [36] B. Zhang, M. A. J. Moser, E. M. Zhang, Y. Luo, C. Liu, and W. Zhang, “A review of radiofrequency ablation: Large target tissue necrosis and mathematical modelling,” Phys. Medica, vol. 32, no. 8, pp. 961–971, 2016. [37] S. Singh and R. Repaka, “Effects of Target Temperature on Ablation Volume During Temperature-controlled RFA of Breast Tumor,” Comsol Conf. Banglaore, vol. D, no. 219, 2016. [38] “Temperature Controllers Information | Engineering360.” [Online]. Available: https://www.globalspec.com/learnmore/manufacturing_process_equipment/process_controllers/temperature_controllers. [Accessed: 12-Jul-2018]. [39] “Cool-tipTM RF Ablation System and Switching Controller | Medtronic.” [Online]. Available: http://www.medtronic.com/covidien/en-us/products/ablation-systems/cool-tip-rf-ablation-system-and-switching-controller.html. [Accessed: 12-Jul-2018]. [40] A. Dabbagh, B. J. J. Abdullah, C. Ramasindarum, and N. H. Abu Kasim, “Tissue-mimicking gel phantoms for thermal therapy studies,” Ultrason. Imaging, vol. 36, no. 4, pp. 291–316, 2014. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22094 | - |
| dc.description.abstract | 過去研究已經進行了許多嘗試來開發治療良性攝護腺腫大(BPH)的方法。射頻消融術(RFA)是臨床實踐中廣泛應用的技術,用於局部治療成型腫瘤,然而,射頻消融在良性攝護腺腫大治療的應用仍處於發展階段。經尿道針刺高溫消融切除術(TUNA)已被證明可有效改善良性攝護腺腫大病患的排尿症狀,但TUNA的術後成果具有高復發率。
本文討論了射頻消融的最新技術,採用有限元素法(FEM)來構建具有雙極電極的射頻溫控系統。數值模擬揭示了在射頻消融術的過程中消融體積對于目標溫度設定有強烈依賴性。本研究使用統計方法,比較細胞組織損傷以及因各種限制因素而產生的不同大小熱損傷,進而透過模擬和體外實驗結果相比,可以得知電極針消融裝置的結構設計的安全性與有效性。 關鍵字 - 射頻消融術(RFA),腫瘤消融切除術,良性攝護腺腫大(BPH),雙極針消融術,經尿道針刺高溫消融切除術(TUNA),熱損傷形成 | zh_TW |
| dc.description.abstract | Many attempts have been made to develop a method for treatment of benign prostatic hyperplasia (BPH). Radiofrequency ablation (RFA) is a widely applied technique in clinical practice for the local treatment of solid tumors. However, the application of RFA in the treatment of BPH is still in its developing stage. Transurethral Needle Ablation (TUNA) procedures have been shown to be efficacious for improving voiding symptoms in men with BPH. However, TUNA has also been noted to have a high retreatment rate.
This paper discusses the state-of-the-art of RFA, employing Finite Element Method (FEM) in order to build a temperature-controlled RF system with bipolar electrodes. The numerical simulation reveals a strong dependence of ablation volume on the set target temperature during RFA. Results were drawn from simulation and ex-vivo experiments, to retrospectively evaluate the safety and efficacy of the structural design of the needle ablation device, by determining cell tissue damage and the size of thermal lesions with various limiting factors using statistical methods. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T04:02:10Z (GMT). No. of bitstreams: 1 ntu-107-R05548058-1.pdf: 3956035 bytes, checksum: 1fe424978a8554e3b87e278f17b012bf (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | Verification letter from the Oral Examination Committee I
ACKNOWLEDGEMENTS II 摘要 IV ABSTRACT V Contents VI List of Figures VIII List of Tables XIII Chapter I Introduction 1 1.1 Background 1 1.1.1 Relevant Anatomy 1 1.2 Research Purpose 6 1.3 Contribution to Knowledge 6 1.4 Organization of the Dissertation 7 Chapter II Literature Review 8 2.1 Current Treatment of BPH and Its Downsides 8 2.1.1 Transurethral Resection of the Prostate 8 2.1.2 Transurethral Needle Ablation of the Prostate (TUNA) 9 2.1.3 TUNA vs. TURP 11 2.2 Radiofrequency Ablation (RFA) 12 2.2.1 RFA Settings 13 2.3 Calculation of the Ablation Zone Boundary 14 Chapter III Research Methodology 18 3.1 Mathematical modeling 18 3.2 Numerical Simulations 20 3.2.1 Material dimensions and properties of FE model 20 3.2.2 Initial and boundary conditions 25 3.2.3 Monopolar Electrode 26 3.3 Methods to Control Applied Power 27 3.3.1 Roll-Off Controller 27 3.3.2 On-Off Controller 28 3.3.3 Proportional Controller 30 3.4 Experimental Settings 32 3.4.1 Experimental Setup 32 3.4.2 Experimental Operating Steps 34 Chapter IV Data Analysis 38 4.1 Simulation Result 38 4.1.1 On-Off Controller vs. Proportional Controller 51 4.2 Experimental Results 52 4.3 Monopolar Electrode vs. Bipolar Electrodes 58 Chapter V Discussion and Further Work 62 Chapter VII Conclusions 69 References 70 | |
| dc.language.iso | en | |
| dc.subject | benign prostatic hyperplasia (BPH) | zh_TW |
| dc.subject | thermal lesion formation | zh_TW |
| dc.subject | transurethral needle ablation (TUNA) | zh_TW |
| dc.subject | bipolar needle ablation | zh_TW |
| dc.subject | tumor ablation | zh_TW |
| dc.subject | radiofrequency ablation (RFA) | zh_TW |
| dc.title | 多針射頻消融裝置設計用於治療良性攝護腺腫大 | zh_TW |
| dc.title | DESIGN OF MULTI-NEEDLE RADIOFREQUENCY ABLATION DEVICE FOR BENIGN PROSTATIC HYPERPLASIA TREATMENT | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 施文彬(Shih, Wen-Pin) | |
| dc.contributor.oralexamcommittee | 劉建豪(Chien-Hao Liu) | |
| dc.subject.keyword | radiofrequency ablation (RFA),tumor ablation,benign prostatic hyperplasia (BPH),bipolar needle ablation,transurethral needle ablation (TUNA),thermal lesion formation, | zh_TW |
| dc.relation.page | 75 | |
| dc.identifier.doi | 10.6342/NTU201802471 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2018-08-07 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 3.86 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
