請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22064完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳志毅(Chih-I Wu) | |
| dc.contributor.author | Yun-Hsuan Hsu | en |
| dc.contributor.author | 許芸瑄 | zh_TW |
| dc.date.accessioned | 2021-06-08T04:00:33Z | - |
| dc.date.copyright | 2021-04-07 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-03-04 | |
| dc.identifier.citation | [1] V. P. Trivedi and J. G. Fossum, 'Scaling fully depleted SOI CMOS,' IEEE Transactions on Electron devices, vol. 50, no. 10, pp. 2095-2103, 2003. [2] B. Doyle et al., 'High performance fully-depleted tri-gate CMOS transistors,' in IEEE Electron Device Letters vol. 24, ed, 2003, pp. 263-265. [3] E. Gusev et al., 'Ultrathin high-K gate stacks for advanced CMOS devices,' in International Electron Devices Meeting. Technical Digest (Cat. No. 01CH37224), 2001: IEEE, pp. 20.1. 1-20.1. 4. [4] S. Salahuddin and S. Datta, 'Use of negative capacitance to provide voltage amplification for low power nanoscale devices,' Nano letters, vol. 8, no. 2, pp. 405-410, 2008. [5] B. Sheu, K. Wilcox, A. Keshavarzi, and D. Antoniadis, 'EP1: Moore's law challenges below 10nm: Technology, design and economic implications,' in 2015 IEEE International Solid-State Circuits Conference-(ISSCC) Digest of Technical Papers, 2015: IEEE, pp. 1-1. [6] Y. Hsu et al., 'Failure mechanism of electromigration in via sidewall for copper dual damascene interconnection,' Journal of The Electrochemical Society, vol. 153, no. 8, p. G782, 2006. [7] L. Li et al., 'Vertical and lateral copper transport through graphene layers,' ACS nano, vol. 9, no. 8, pp. 8361-8367, 2015. [8] T. Mizuno, C. Schmauss, and S. Rayport, 'Distinct roles of presynaptic dopamine receptors in the differential modulation of the intrinsic synapses of medium-spiny neurons in the nucleus accumbens,' BMC neuroscience, vol. 8, no. 1, pp. 1-15, 2007. [9] W. Steinhögl, G. Schindler, G. Steinlesberger, M. Traving, and M. Engelhardt, 'Comprehensive study of the resistivity of copper wires with lateral dimensions of 100 nm and smaller,' Journal of Applied Physics, vol. 97, no. 2, p. 023706, 2005. [10] X. Li et al., 'Graphene and related two-dimensional materials: Structure- property relationships for electronics and optoelectronics,' Applied Physics Reviews, vol. 4, no. 2, p. 021306, 2017. [11] A. Kaloyeros and E. Eisenbraun, 'Ultrathin diffusion barriers/liners for gigascale copper metallization,' Annual review of materials science, vol. 30, no. 1, pp. 363-385, 2000. [12] D. Zhang et al., 'Investigation of Barrier Property of Amorphous Co–Ti Layer as Single Barrier/Liner in Local Co Interconnects,' IEEE Transactions on Electron Devices, vol. 67, no. 5, pp. 2076-2081, 2020. [13] R. Bernasconi and L. Magagnin, 'Ruthenium as Diffusion Barrier Layer in Electronic Interconnects: Current Literature with a Focus on Electrochemical Deposition Methods,' Journal of The Electrochemical Society, vol. 166, no. 1, p. D3219, 2018. [14] M. Jang, 'The Potential Power of Graphene.' [15] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, 'The electronic properties of graphene,' RvMP, vol. 81, no. 1, pp. 109-162, 2009. [16] P. Miró, M. Audiffred, and T. Heine, 'An atlas of two-dimensional materials,' Chemical Society Reviews, vol. 43, no. 18, pp. 6537-6554, 2014. [17] R. Mehta, S. Chugh, and Z. Chen, 'Enhanced electrical and thermal conduction in graphene-encapsulated copper nanowires,' Nano letters, vol. 15, no. 3, pp. 2024-2030, 2015. [18] M. Sang, J. Shin, K. Kim, and K. J. Yu, 'Electronic and thermal properties of graphene and recent advances in graphene based electronics applications,' Nanomaterials, vol. 9, no. 3, p. 374, 2019. [19] W. A. De Heer et al., 'Epitaxial graphene,' Solid State Communications, vol. 143, no. 1-2, pp. 92-100, 2007. [20] N. C. Wang, S. Sinha, B. Cline, C. D. English, G. Yeric, and E. Pop, 'Replacing copper interconnects with graphene at a 7-nm node,' in 2017 IEEE International Interconnect Technology Conference (IITC), 2017: IEEE, pp. 1-3. [21] K. S. Novoselov et al., 'Electric field effect in atomically thin carbon films,' science, vol. 306, no. 5696, pp. 666-669, 2004. [22] N. D. Mermin and H. Wagner, 'Absence of ferromagnetism or antiferromagnetism in one-or two-dimensional isotropic Heisenberg models,' Physical Review Letters, vol. 17, no. 22, p. 1133, 1966. [23] Q. Ke and J. Wang, 'Graphene-based materials for supercapacitor electrodes–A review,' Journal of Materiomics, vol. 2, no. 1, pp. 37-54, 2016. [24] K. S. Kim et al., 'Large-scale pattern growth of graphene films for stretchable transparent electrodes,' nature, vol. 457, no. 7230, pp. 706-710, 2009. [25] Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay, and Y. Lin, 'Graphene based electrochemical sensors and biosensors: a review,' Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, vol. 22, no. 10, pp. 1027-1036, 2010. [26] W. Choi, I. Lahiri, R. Seelaboyina, and Y. S. Kang, 'Synthesis of graphene and its applications: a review,' Critical Reviews in Solid State and Materials Sciences, vol. 35, no. 1, pp. 52-71, 2010. [27] K. S. Novoselov et al., 'Two-dimensional gas of massless Dirac fermions in graphene,' nature, vol. 438, no. 7065, pp. 197-200, 2005. [28] C. Berger et al., 'Electronic confinement and coherence in patterned epitaxial graphene,' Science, vol. 312, no. 5777, pp. 1191-1196, 2006. [29] J. Hass, W. De Heer, and E. Conrad, 'The growth and morphology of epitaxial multilayer graphene,' Journal of Physics: Condensed Matter, vol. 20, no. 32, p. 323202, 2008. [30] R. Ming et al., 'Epitaxial graphene on silicon carbide: Introduction to structured graphene,' 2012. [31] R. S. Edwards and K. S. Coleman, 'Graphene synthesis: relationship to applications,' Nanoscale, vol. 5, no. 1, pp. 38-51, 2013. [32] [44] F. Schwierz, 'Graphene transistors,' Nature nanotechnology, vol. 5, no. 7, p. 487, 2010. [33] J. Lienig, 'Electromigration and its impact on physical design in future technologies,' in Proceedings of the 2013 ACM International symposium on Physical Design, 2013, pp. 33-40. [34] T. Wang et al., 'A review on graphene-based gas/vapor sensors with unique properties and potential applications,' Nano-Micro Letters, vol. 8, no. 2, pp. 95-119, 2016. [35] [46] M. Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim, 'Energy band-gap engineering of graphene nanoribbons,' Physical review letters, vol. 98, no. 20, p. 206805, 2007. [36] A. Zhang, Y. Wu, S.-H. Ke, Y. P. Feng, and C. Zhang, 'Bandgap engineering of zigzag graphene nanoribbons by manipulating edge states via defective boundaries,' Nanotechnology, vol. 22, no. 43, p. 435702, 2011 [37] Y. Zhang et al., 'Direct observation of a widely tunable bandgap in bilayer graphene,' Nature, vol. 459, no. 7248, pp. 820-823, 2009. [38] A. Reina et al., 'Transferring and identification of single-and few-layer graphene on arbitrary substrates,' The Journal of Physical Chemistry C, vol. 112, no. 46, pp. 17741-17744, 2008. [39] [50] J. Lloyd and J. Clement, 'Electromigration in copper conductors,' Thin solid films, vol. 262, no. 1-2, pp. 135-141, 1995. [40] W. Shao, A. Vairagar, C.-H. Tung, Z.-L. Xie, A. Krishnamoorthy, and S. Mhaisalkar, 'Electromigration in copper damascene interconnects: reservoir effects and failure analysis,' Surface and Coatings Technology, vol. 198, no. 1-3, pp. 257-261, 2005. [41] C. C. Moura, R. S. Tare, R. O. Oreffo, and S. Mahajan, 'Raman spectroscopy and coherent anti-Stokes Raman scattering imaging: prospective tools for monitoring skeletal cells and skeletal regeneration,' Journal of The Royal Society Interface, vol. 13, no. 118, p. 20160182, 2016. [42] W. Zhou, R. Apkarian, Z. L. Wang, and D. Joy, 'Fundamentals of scanning electron microscopy (SEM),' in Scanning microscopy for nanotechnology: Springer, 2006, pp. 1-40. [43] K.-N. Tu, J. W. Mayer, and L. Feldman, Electronic thin film science for electrical engineers and materials scientists. Macmillan, 1992. [44] K.-N. Tu, 'Electromigration in stressed thin films,' Physical Review B, vol. 45, no. 3, p. 1409, 1992. [45] J. R. Black, 'Electromigration—A brief survey and some recent results,' IEEE Transactions on Electron Devices, vol. 16, no. 4, pp. 338-347, 1969. [46] I. Blech and C. Herring, 'Stress generation by electromigration,' Applied Physics Letters, vol. 29, no. 3, pp. 131-133, 1976. [47] G. Francis, 'The glow discharge at low pressure,' in HDP, 1956, vol. 4, pp. 53-208. [48] A. Schutze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, and R. F. Hicks, 'The atmospheric-pressure plasma jet: a review and comparison to other plasma sources,' IEEE transactions on plasma science, vol. 26, no. 6, pp. 1685-1694, 1998. [49] R. Johns and D. Blackburn, 'Grain boundaries and their effect on thermonigration in pure lead at low diffusion temperatures,' Thin Solid Films, vol. 25, no. 2, pp. 291-300, 1975. [50] G. Van Gurp, P. De Waard, and F. Du Chatenier, 'Thermomigration in indium and indium alloy films,' Journal of applied physics, vol. 58, no. 2, pp. 728-735, 1985. [51] J. Wu, P. Zheng, K. Lee, C. Chiu, and J. Lee, 'Electromigration failures of UBM/bump systems of flip-chip packages,' in 52nd Electronic Components and Technology Conference 2002.(Cat. No. 02CH37345), 2002: IEEE, pp. 452-457. [52] M. A. Lieberman and A. J. Lichtenberg, Principles of plasma discharges and materials processing. John Wiley Sons, 2005. [53] 蕭宏, 半導體製程技術導論. 台灣培生教育, 2007. [54] R. Hippler, S. Pfau, M. Schmidt, and K. H. Schoenbach, Low temperature plasma physics: fundamental aspects and applications. 2001. [55] R. K. Marcus and J. A. Broekaert, Glow discharge plasmas in analytical spectroscopy. Wiley Online Library, 2003. [56] M. Losurdo, M. M. Giangregorio, P. Capezzuto, and G. Bruno, 'Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure,' Physical Chemistry Chemical Physics, vol. 13, no. 46, pp. 20836-20843, 2011. [57] R. M. Jacobberger and M. S. Arnold, 'Graphene growth dynamics on epitaxial copper thin films,' Chemistry of Materials, vol. 25, no. 6, pp. 871-877, 2013. [58] L. Gao, J. R. Guest, and N. P. Guisinger, 'Epitaxial graphene on Cu (111),' Nano letters, vol. 10, no. 9, pp. 3512-3516, 2010. [59] X. Li et al., 'Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper,' Journal of the American Chemical Society, vol. 133, no. 9, pp. 2816-2819, 2011. [60] R. Sagar, X. Zhang, and C. Xiong, 'Growth of graphene on copper and nickel foils via chemical vapour deposition using ethylene,' Materials Research Innovations, vol. 18, no. sup4, pp. S4-706-S4-710, 2014. [61] C.-S. Chen and C.-K. Hsieh, 'Effects of acetylene flow rate and processing temperature on graphene films grown by thermal chemical vapor deposition,' Thin Solid Films, vol. 584, pp. 265-269, 2015. [62] G. Heo, Y. S. Kim, S.-H. Chun, and M.-J. Seong, 'Polarized Raman spectroscopy with differing angles of laser incidence on single-layer graphene,' Nanoscale Research Letters, vol. 10, no. 1, p. 45, 2015. [63] M. Li, Y. Li, and J. M. Mbengue, 'DFT Investigations on the CVD Growth of Graphene,' Surface Energy, p. 153, 2015. [64] E. Della Torre, Magnetic hysteresis. Wiley, 2000. [65] C. P. Steinmetz, 'On the law of hysteresis,' Proceedings of the IEEE, vol. 72, no. 2, pp. 197-221, 1984. [66] J. Zhao, M. Shaygan, J. r. Eckert, M. Meyyappan, and M. H. Rümmeli, 'A growth mechanism for free-standing vertical graphene,' Nano letters, vol. 14, no. 6, pp. 3064-3071, 2014. [67] W.-W. Liu, S.-P. Chai, A. R. Mohamed, and U. Hashim, 'Synthesis and characterization of graphene and carbon nanotubes: A review on the past and recent developments,' Journal of Industrial and Engineering Chemistry, vol. 20, no. 4, pp. 1171-1185, 2014. [68] K. Croes et al., 'Interconnect metals beyond copper: reliability challenges and opportunities,' in 2018 IEEE International Electron Devices Meeting (IEDM), 2018: IEEE, pp. 5.3. 1-5.3. 4. [69] N. Bekiaris et al., 'Cobalt fill for advanced interconnects,' in 2017 IEEE International Interconnect Technology Conference (IITC), 2017: IEEE, pp. 1-3. [70] G. Amato, 'High temperature growth of graphene from cobalt volume: effect on structural properties,' Materials, vol. 11, no. 2, p. 257, 2018. [71] T. M. Philip et al., 'First-Principles Evaluation of fcc Ruthenium for its use in Advanced Interconnects,' Physical Review Applied, vol. 13, no. 4, p. 044045, 2020. [72] X.-Y. Wang, X. Yao, and K. Müllen, 'Polycyclic aromatic hydrocarbons in the graphene era,' Science China Chemistry, vol. 62, no. 9, pp. 1099-1144, 2019. [73] S. Wang et al., 'Synthesis of graphene on a polycrystalline Co film by radio-frequency plasma-enhanced chemical vapour deposition,' Journal of Physics D: Applied Physics, vol. 43, no. 45, p. 455402, 2010. [74] C.-Y. Su et al., 'Direct formation of wafer scale graphene thin layers on insulating substrates by chemical vapor deposition,' Nano letters, vol. 11, no. 9, pp. 3612-3616, 2011. [75] K.-J. Peng et al., 'Hydrogen-free PECVD growth of few-layer graphene on an ultra-thin nickel film at the threshold dissolution temperature,' Journal of Materials Chemistry C, vol. 1, no. 24, pp. 3862-3870, 2013. [76] M. Othman, R. Ritikos, S. M. Hafiz, N. H. Khanis, N. M. A. Rashid, and S. A. Rahman, 'Low-temperature plasma-enhanced chemical vapour deposition of transfer-free graphene thin films,' Materials Letters, vol. 158, pp. 436-438, 2015. [77] A. Kumar, S. Khan, M. Zulfequar, and M. Husain, 'Low temperature synthesis and field emission characteristics of single to few layered graphene grown using PECVD,' Applied Surface Science, vol. 402, pp. 161-167, 2017 [78] M. Othman, R. Ritikos, and S. A. Rahman, 'Growth of plasma-enhanced chemical vapour deposition and hot filament plasma-enhanced chemical vapour deposition transfer-free graphene using a nickel catalyst,' Thin Solid Films, vol. 685, pp. 335-342, 2019. [79] B. Bekdüz, U. Kaya, M. Langer, W. Mertin, and G. Bacher, 'Direct growth of graphene on Ge (100) and Ge (110) via thermal and plasma enhanced CVD,' Scientific reports, vol. 10, no. 1, pp. 1-11, 2020. [80] S. Hussain et al., 'Low-temperature low-power PECVD synthesis of vertically aligned graphene,' Nanotechnology, vol. 31, no. 39, p. 395604, 2020. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22064 | - |
| dc.description.abstract | 本論文主要是探討利用感應式電漿輔助化學氣相沉積法(ICP-PECVD)來優化石墨烯製程,是一種新式製程方法,其特點為可以直接將石墨烯沉積於金屬表面,且可於低溫環境下短時間成長石墨烯,相較於傳統化學氣相沉積法有更進一步的突破。
一開始先以金屬銅作為測試金屬,於銅箔上進行生長,之後將技術轉移至金屬薄膜上,接著調控石墨烯成長參數,以達到較佳的品質,並藉由掃描式電子顯微鏡觀測其生長形貌,最後量測其片電阻值進行分析,最終石墨烯的2D/G比例可達到0.39,片電阻值約1K歐姆。 之後將調整好之碳源流量參數應用於各試金屬薄膜上,並改變其生長時間以生長高品質石墨烯,如鈷、釕、鉬、鎢,各式金屬皆能生成出品質不錯的石墨烯,對於未來尺寸微縮後可能以其他金屬材料替代銅時,此成長方式依舊可以與製程匹配。之後我們將製程改良,透過提升初始石墨烯的生長溫度,突破了過往以電漿系統中多為垂直生長的石墨烯形貌,於鈷薄膜上成功生成出平坦無垂直狀的高品質石墨烯,於350 oC時2D/G可達0.4,若將射頻電源升高後於400 oC其2D/G之值可達0.6。 最後我們將石墨烯應用於金屬導線上,量測其崩潰電流。對於銅導線而言,覆蓋石墨烯的導線相較於未覆蓋石墨烯的銅導線,其可承載的電流提升了1.265倍,而在導線崩潰後石墨烯能承載電流為其提高可靠性;以鈷導線而言,覆蓋石墨烯的導線相較於未覆蓋石墨烯的電流值提升了1.67倍。 | zh_TW |
| dc.description.abstract | An innovative graphene growth method, inductively-coupled plasma chemical vapor deposition (ICP-PECVD), will be introduced in this article. Compared with the traditional chemical vapor deposition (CVD) method, graphene is able to be deposited on metal directly under ultra-low temperature and within short growth time in the new one, and this is definitely a breakthrough of graphene growth.
In the beginning, Cu foil had acted as the experimental substrate to develop the process of this method, before the technique was utilized on Cu film. In this experiment, tuning parameters plays an influential role on growing excellent graphene. Therefore, the most proper parameters will be reported in this article. To ensure the quality of graphene, the layers, morphology, and electrical traits was measured by various instruments including Raman spectrum, scanning electron microscopy (SEM) and four-point probes method. In the end, the 2D/G ratio in Raman spectrum and sheet resistance turned out to be 0.39 and 1000 Ohm respectively. In the second part, the well-tuned precursor flow rate was utilized on a variety of metal films, and the growth time was tuned to receive high quality graphene. It is noticeable that optimal graphene was able to be grown on various metal films such as Co, Ru, Mo, and W. This consequence illustrated that this method was expected to stay valuable, although new metals will replace Cu in the advanced technique which has smaller nanowire size in the future. And afterwards a new approach was introduced. Raising the initial growth temperature in this process is able to overcome the challenge of the vertical structure in graphene grown by plasma. A totally horizontally structural graphene was successfully grown on Co by this enhanced method. The 2D/G ratio of this graphene become 0.4 at 350oC and 0.6 at 400oC. In the last part, the graphene can be applied and covered on Cu and Co nanowires to improve the breakdown current. Furthermore, the graphene layer can still carry current when the Cu nanowires breakdown. Take Cu nanowires for instance, the breakdown current of Cu nanowires with graphene increased to 1.265 times as high as that of the nanowires without graphene. As for Co nanowires, the breakdown current of the wires with graphene dramatically increased to 1.67 times higher as that of the one without graphene. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T04:00:33Z (GMT). No. of bitstreams: 1 U0001-0403202114515100.pdf: 6950226 bytes, checksum: 18bbe89445b2a107cb34a2f80dec5ec0 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 誌謝 I 中文摘要 III ABSTRACT IV CONTENTS VI List of Figures X List of Tables XV Chapter 1 緒論 1 1.1 背景簡介 1 1.1.1 半導體發展趨勢 1 1.2 石墨烯簡介 3 1.2.1 石墨烯發展背景 3 1.2.2 石墨烯結構與基本特性 4 1.2.3 石墨烯的製備方法 7 1.2.4 石墨烯之應用與困境 9 1.3 金屬互連瓶頸 10 1.3.1 電致遷移原理 10 1.3.2 電致遷移條件 11 1.4 研究動機 12 Chapter 2 實驗原理與方法 14 2.1 製程儀器 14 2.1.1 氮氣手套箱 14 2.1.2 射頻電源供應器 14 2.1.3 氧電漿蝕刻機 15 2.1.4 單面對準曝光機(Top Side Mask Aligner) 16 2.1.5 旋轉塗佈機(Spin Coater) 16 2.2 量測儀器 17 2.2.1 拉曼光譜儀(Raman Spectrometer) 17 2.2.2 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 18 2.2.3 穿隧式電子顯微鏡(Transmission Electron Microscope, TEM) 19 2.2.4 電性量測 19 2.2.5 原子力顯微鏡(Atomic Force Microscope, AFM) 20 2.2.6 X光繞射儀(X-ray Diffraction, XRD) 20 2.3 實驗原理 21 2.3.1 電感式耦合電漿 (Inductively Coupled Plasma, ICP) 21 2.3.2 石墨烯生長 26 2.4 實驗流程 28 2.4.1 基板製備 28 2.4.2 石墨烯成長步驟 29 2.4.3 石墨烯轉印 30 2.4.4 氫氣電漿蝕刻石墨烯 30 Chapter 3 石墨烯成長於金屬銅薄膜 32 3.1 成長於金屬薄膜之阻礙 33 3.2 生長溫度與基板選擇 36 3.3 沉積時間與碳源流量 39 Chapter 4 石墨烯成長於各式金屬薄膜及製程改良 53 4.1 石墨烯成長於各式金屬薄膜 53 4.1.1 鈷薄膜 54 4.1.2 釕薄膜 59 4.1.3 鉬薄膜 62 4.1.4 鎢薄膜 65 4.2 製程瓶頸與改良 67 4.2.1 改良設計 68 4.2.2 石墨烯生長 69 4.2.2.1 提升初始溫度輔助生長 69 4.2.2.2 恆定溫度輔助生長 71 Chapter 5 導線測試 74 5.1 銅導線 74 5.1.1 石墨烯參數選擇 74 5.1.2 氫氣蝕刻 78 5.1.3 崩潰電流 79 5.2 鈷導線 81 5.2.1 導線製備 81 5.2.2 崩潰電流 83 Chapter 6 總結與未來展望 86 6.1 總結 86 6.2 未來展望 88 | |
| dc.language.iso | zh-TW | |
| dc.subject | 低溫製程 | zh_TW |
| dc.subject | 石墨烯 | zh_TW |
| dc.subject | 感應式耦合電漿輔助化學氣相沉積法 | zh_TW |
| dc.subject | 金屬薄膜 | zh_TW |
| dc.subject | Metal films | en |
| dc.subject | Low Temperature Deposition Processes | en |
| dc.subject | Graphene | en |
| dc.subject | Inductively-coupled plasma chemical vapor deposition (ICP-PECVD) | en |
| dc.title | 感應式耦合電漿輔助化學氣相沉積法低溫生長石墨烯於金屬薄膜 | zh_TW |
| dc.title | Graphene Growth on Metal Films by Inductively-Coupled Plasma Chemical Vapor Deposition at Low Temperature | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡孟霖(Meng-Lin Tsai),陳美杏(Mei-Hsin Chen),吳肇欣(Chao-Hsin Wu) | |
| dc.subject.keyword | 石墨烯,感應式耦合電漿輔助化學氣相沉積法,金屬薄膜,低溫製程, | zh_TW |
| dc.subject.keyword | Graphene,Inductively-coupled plasma chemical vapor deposition (ICP-PECVD),Metal films,Low Temperature Deposition Processes, | en |
| dc.relation.page | 93 | |
| dc.identifier.doi | 10.6342/NTU202100773 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2021-03-05 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0403202114515100.pdf 未授權公開取用 | 6.79 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
