請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22058
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 柯淳涵(Chun-Han Ko) | |
dc.contributor.author | Jui-Tzu Wang | en |
dc.contributor.author | 王瑞慈 | zh_TW |
dc.date.accessioned | 2021-06-08T04:00:15Z | - |
dc.date.copyright | 2018-08-09 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-08-09 | |
dc.identifier.citation | 1. Borzani W, Souza, SJ (1995) Mechanism of the film thickness increasing during the bacterial production of cellulose on non-agitaded liquid media. Biotechnol Lett 17:1271-1272. https://doi.org/10.1007/BF00128400
2. Budhiono A, Rosidi B, Taher H, Iguchi M (1999) Kinetic aspects of bacterial cellulose formation in nata-de-coco culture system. Carbohydr Polym 40:137-143. https://doi.org/10.1016/S0144-8617(99)00050-8 3. Cakar F, Özer I, Aytekin AÖ, Şahin F (2014) Improvement production of bacterial cellulose by semi-continuous process in molasses medium. Carbohydr Polym 106:7-13. https://doi.org/10.1016/j.carbpol.2014.01.103 4. Chawla PR, Bajaj IB, Survase SA, Singhal RS (2009) Microbial cellulose: fermentative production and applications. Food Technol Biotechnol 47:107-124. 5. Hu W, Chen S, Yang Z, Liu L, Wang H (2011) Flexible electrically conductive nanocomposite membrane based on bacterial cellulose and polyaniline. The J Phys Chem B 115:8453-8457. https://doi.org/10.1021/jp204422v 6. Hu Y, Catchmark JM (2010). Influence of 1‐methylcyclopropene (1‐MCP) on the production of bacterial cellulose biosynthesized by Acetobacter xylinum under the agitated culture. Lett Appl Microbiol 51:109-113. https://doi.org/10.1111/j.1472-765X.2010.02866.x 7. Huang C, Guo HJ, et al (2016) Using wastewater after lipid fermentation as substrate for bacterial cellulose production by Gluconacetobacter xylinus. Carbohydr Polym 136:198-202. https://doi.org/10.1016/j.carbpol.2015.09.043 8. Jozala AF, Pértile RAN et al (2015) Bacterial cellulose production by Gluconacetobacter xylinus by employing alternative culture media. Appl Microbiol Biotechnol 99:1181-1190. https://doi.org/10.1007/s00253-014-6232-3 9. Jung HI, Lee OM et al (2010) Production and characterization of cellulose by Acetobacter sp. V6 using a cost-effective molasses–corn steep liquor medium. Appl Biochem Biotechnol 162:486-497. https://doi.org/10.1007/s12010-009-8759-9 10. Keshk S, Sameshima K (2006) Influence of lignosulfonate on crystal structure and productivity of bacterial cellulose in a static culture. Enzyme Microb Technol 40:4-8. https://doi.org/10.1016/j.enzmictec.2006.07.037 11. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358-3393. https://doi.org/10.1002/anie.200460587 12. Kurosumi A, Sasaki C, Yamashita Y, Nakamura Y (2009) Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydr Polym 76:333-335. https://doi.org/10.1016/j.carbpol.2008.11.009 13. Li Z, Wang L, Hua J, Jia S, Zhang J, Liu H (2015) Production of nano bacterial cellulose from waste water of candied jujube-processing industry using Acetobacter xylinum. Carbohydr Polym 120:115-119. https://doi.org/10.1016/j.carbpol.2014.11.061 14. Lin D, Lopez-Sanchez P, Li R, Li Z (2014) Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source. Bioresour Technol 151:113-119. https://doi.org/10.1016/j.biortech.2013.10.052 15. Lu Z, Zhang Y, Chi Y, Xu N, Yao W, Sun B (2011) Effects of alcohols on bacterial cellulose production by Acetobacter xylinum 186. World J Microbiol Biotechnol 27:2281-2285. https://doi.org/10.1007/s11274-011-0692-8 16. Mikkelsen D, Flanagan BM, Dykes GA, Gidley MJ (2009) Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524. J Appl Microbiol 107:576-583. https://doi.org/10.1111/j.1365-2672.2009.04226.x 17. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941-3994. http://doi.org/10.1039/C0CS00108B 18. Onabe F (1978) Studies on interfacial properties of polyelectrolyte‐cellulose systems. I. Formation and structure of adsorbed layers of cationic polyelectrolyte‐(poly‐DMDAAC) on cellulose fibers. J Appl Polym Sci 22:3495-3510. https://doi.org/10.1002/app.1978.070221214 19. Trovatti E, Serafim LS, Freire CS, Silvestre AJ, Neto CP (2011) Gluconacetobacter sacchari: an efficient bacterial cellulose cell-factory. Carbohydr Polym 86:1417-1420. https://doi.org/10.1016/j.carbpol.2011.06.046 20. Updegraff DM (1969) Semimicro determination of cellulose inbiological materials. Anal Biochem 32:420-424. https://doi.org/10.1016/S0003-2697(69)80009-6 21. Wagberg L (2000) Polyelectrolyte adsorption onto cellulose fibres-A review. Nord Pulp Pap Res J 15:586-597. https://doi.org/10.3183/npprj-2000-15-05-p586-597 22. Wen CY (2017) Effect of Substrate-induced Strain on the Alignment, Morphology, and Characteristics of Regenerated Cellulose Films, National Taiwan University 23.Wu JM, Liu RH (2012) Thin stillage supplementation greatly enhances bacterial cellulose production by Gluconacetobacter xylinus. Carbohydr Polym 90:116-121. https://doi.org/10.1016/j.carbpol.2012.05.003 24. Wu SC, Lia YK (2008) Application of bacterial cellulose pellets in enzyme immobilization. J Mol Catal B: Enzym 54:103-108. https://doi.org/10.1016/j.molcatb.2007.12.021 25. Yan Z, Chen S, Wang H, Wang B, Jiang J (2008) Biosynthesis of bacterial cellulose/multi-walled carbon nanotubes in agitated culture. Carbohydr Polym 74:659-665. https://doi.org/10.1016/j.carbpol.2008.04.028 26. Zhang YHP, Cui J, Lynd LR, Kuang LR (2006) A transition from cellulose swelling to cellulose dissolution by o-phosphoric acid: evidence from enzymatic hydrolysis and supramolecular structure. Biomacromolecules 7:644-648. https://doi.org/10.1021/bm050799c 27. Zhang J, Zhang J, Lin L, Chen T, Zhang J, Liu S et al (2009) Dissolution of microcrystalline cellulose in phosphoric acid—molecular changes and kinetics. Molecules, 14:5027-5041. https://doi.org/10.3390/molecules14125027 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22058 | - |
dc.description.abstract | 纖維素是由D-葡萄糖以β-1,4-糖苷鍵組成,具有生物可降解、可再生等性質,可由植物細胞壁與細菌代謝產物取得,因纖維素具有氫鍵形成結晶區與非結晶區,而不溶於水與大多數的溶劑。本實驗分為兩大部分,第一部分為以漂白漿、結晶纖維素與細菌纖維素進行磷酸處理降低纖維素結晶度,並加入聚電解質後將纖維素溶於具有環境友善且高回收率的N-甲基嗎晽-N的氧化物水溶液(NMMO)中,製造出再生纖維素薄膜;第二部分為改變細菌纖維素生長基板、培養環境與模式,以光學顯微鏡、掃描式電子顯微鏡、原子力顯微鏡與統計分析方法檢測纖維素薄膜的特性。
實驗結果顯示,經過磷酸處理的纖維素,因其分子量較小其所製成的再生纖維素薄膜表面粗糙度下降,且觀察不到粗纖維束,而加入較高濃度的聚電解質可以幫助纖維素溶於NMMO溶液,使再生纖維素薄膜粗糙度下降,不同電性的聚電解質不影響再生纖維素薄膜表面粗糙度。不同基板、傾斜角度、培養方式所生產出的細菌纖維素薄膜其表面粗糙度並沒有顯著差異,但較接近基板的纖維素排列方向會與流動方向較為平行。經過前處理所生產出的薄膜表面平整且均一,不再具有粗纖維,未來具有應用在不同領域的潛力。 | zh_TW |
dc.description.abstract | The objective of this experiment is to obtain the eco-friendly and well-aligned cellulose film. The experiment divide into two parts. First, we use three materials (BEK, Avicel and bacterial cellulose) treated with pretreatment and use N-methylmorpholine-N-oxide (NMMO) to produce regenerated cellulose films. Second, bacterial cellulose is cultivated on different condition. We use statistic method, POM, SEM, profilometer, and AFM to determine the morphology of cellulose films and use GPC and DP to determine the properties of cellulose.
The pretreatment used in this research is phosphorylation and polyelectrolytes. Phosphorylation and polyelectrolytes help cellulose dissolve in NMMO which decrease the roughness of thin films.Bacterial cellulose is cultivated in different condition, such as substrate, tilt height and condition mode. The result shows that tilt height,substrate and condition mode can't influence the roughness of bacterial cellulose. However, the alignment of bacterial cellulose can be influenced by fluid direction. Pretreatment can obtain well-aligned cellulose film which can be applied in many different field. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T04:00:15Z (GMT). No. of bitstreams: 1 ntu-107-R05625008-1.pdf: 5617902 bytes, checksum: 337823a9ed2b430adc75d2393c2e6f64 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 謝誌 I
摘要 II Abstract III List of abbreviation IV Contents V Figure Index IX Table Index X Chapter 1 Introduction 1 Chapter 2 Literature Review 4 2.1 Cellulose 4 2.1.1 Plant cellulose 4 2.1.2 Bacterial cellulose 6 2.2 Phosphorylated cellulose 11 2.3 Polyelectrolytes 14 2.4 Ionic liquid 16 2.4.1 Characteristics 16 2.4.2 NMMO 17 2.5 Regenerated cellulose-NMMO films 20 2.5.1 Mechanism of cellulose dissolution in NMMO 20 2.5.2 Techniques for manufacturing regenerated cellulose films 21 2.5.3 Properties of regenerated cellulose films 22 2.6 Cellulose films apply to liquid crystals displays 24 2.6.1 Liquid crystals 24 2.6.2 Liquid crystal displays 26 Chapter 3 Materials and Methods 28 3.1 Research framework 28 3.2 Materials 29 3.2.1 Cellulose feedstock 29 3.2.2 Substrate 30 3.2.3 Solvents 30 3.2.4 Liquid crystals 31 3.3 Methods 32 3.3.1 Cultivation of bacterial cellulose 32 3.3.2 The yield and conversion rate of bacterial cellulose 32 3.3.3 Chemical composition 33 3.3.4 Phosphorylation of cellulose 33 3.3.5 Addition of Polyelectrolytes 33 3.3.6 Preparation of regenerated cellulose films 34 3.3.7 Effect of BC cultivation conditions on fiber directionality 34 3.3.8 Polarizing optical microscope (POM) 37 3.3.9 Profilometer 37 3.3.10 Scanning electron microscope (SEM) 38 3.3.11 Atomic force microscope (AFM) 38 3.3.12 Degree of polymerization (DP) 39 3.3.13 GPC 40 3.3.14 Statistical analysis method 40 Chapter 4 Result and Discussion 41 4.1 Bacterial cellulose production yield 41 4.2 The properties of materials 43 4.3 Effect of phosphorylation on regenerated cellulose films 45 4.4 Effect of polyelectrolytes on regenerated cellulose films 51 4.4.1 Effect of polyelectrolytes concentration 51 4.4.2 Effect of polyelectrolytes electrical property 57 4.5 Effect of cultivation condition on bacterial cellulose films 63 4.5.1 Substrates conditions 65 4.5.2 Fluid angle conditions 74 4.5.3 Cultivation conditions 76 Chapter 5 Conclusion 77 Chapter 6 References 79 Appendix 82 | |
dc.language.iso | en | |
dc.title | 原物料前處理對纖維素薄膜特性之影響 | zh_TW |
dc.title | Impact of Feedstock Pretreatment on Characteristic of Cellulose Films | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 徐秀福(Hsiu-Fu Hsu),鄭建中(Chien-Chung Cheng) | |
dc.subject.keyword | N-甲基嗎?-N-氧化物(NMMO),細菌纖維素,再生纖維素薄膜,纖維束,方向性,磷酸處理,聚電解質, | zh_TW |
dc.subject.keyword | N-methylmorpholine-N-oxide (NMMO),Bacterial cellulose,Regenerated cellulose film,Fiber bundles,Orientation,Phosphorylation,Polyelectrolytes, | en |
dc.relation.page | 86 | |
dc.identifier.doi | 10.6342/NTU201802856 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2018-08-09 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
顯示於系所單位: | 森林環境暨資源學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 5.49 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。